On convex lattice polygons

P.R. Scott

Let Π be a convex lattice polygon with b boundary points and $c(\geq 1)$ interior points. We show that for any given c, the number b satisfies $b \leq 2 c+7$, and identify the polygons for which equality holds.

A Zattice polygon Π is a simple polygon whose vertices are points of the integral lattice. We let $A=A(I I)$ denote the area of $\Pi, b(I I)$ the number of lattice points on the boundary of Π, and $c(\Pi)$ the number of lattice points interior to II .

In 1899, Pick [2] proved that

$$
A(\Pi)=\frac{1}{2} b(\Pi)+c(\Pi)-1 .
$$

Nosarzewska [1] and more recently Wills [4], have established inequalities relating the area, perimeter, and number of interior points of a convex lattice polygon. It is our purpose here to establish a simple necessary condition for Π to be convex.

We set $f(\Pi)=b(\Pi)-2 c(\Pi)$. Using Pick's formula we can obtain alternative expressions for $f(\Pi)$:

$$
\frac{z_{2}}{2} f(\Pi)=b(\Pi)-A(\Pi)-1
$$

and

$$
\frac{7}{2} f(\Pi)=A(\Pi)-2 c(\Pi)+1 .
$$

Lattice polygons which can be obtained from one another using integral unimodular transformations or translations are said to be equivalent. The property of convexity, and the quantities A, b, c, and f are easily seen to be invariant under equivalence.

Received 12 July 1976.

The illustrated triangle, Δ (Figure 1) is a lattice polygon of special interest. We observe that

$$
A(\Delta)=\frac{9}{2}, \quad b(\Delta)=9, \quad c(\Delta)=1,
$$

and

FIGURE 1

$$
f(\Delta)=7 .
$$

THEOREM. Let Π be a convex lattice polygon with at least one interior point. If Π is equivalent to Δ, then $f(\Pi)=7$. Otherwise $f(\Pi) \leq 6$.

In the proof of this theorem, we shall make use of the following lemma.

LEMMA. Let $A B, C D$ be segments lying along the x-axis, having integral endpoints, and lengths h, k respectively. Let p be a positive integer such that $p>h+k$. Then there exist points P, R on $A B, C D$ respectively having integral coordinates, and such that distance $P R$ satisfies
$P R=m Q+u$ (m a non-negative integer) where $|u| \leq \frac{1}{2}(p-h-k)$.
Proof. Let $A B$ be the segment $[0, h]$, and let $A^{\prime} B^{\prime}$ be the setment $[p, p+h]$ obtained by translating $A B$ through p. We may translate $C D$ through integral multiples of p to the position $[t, t+k]$, where $0 \leq t<p$. In fact, we may assume that $h<t<p-k$, else $C D$ overlaps one of the segments $A B, A^{\prime} B^{\prime}$, and we have our result with $u=0$.

Hence we may assume that points $A, B, C, D, A^{\prime}, B^{\prime}$ lie in this order along the x-axis. Let $B C=x, D A^{\prime}=y$. Then

$$
\left(B A^{\prime} \Rightarrow\right) p-h=x+k+y ;
$$

that is,

$$
x+y=p-h-k .
$$

Clearly it is impossible for both x and y to be greater than $\frac{7}{2}(p-h-k)$, and the result follows.

Proof of the theorem. Let π meet supporting lines $y=0, y=p$ in segments of length h, k (possibly zero) respectively (Figure 2).

Since I contains interior points, $p \geq 2$.
Because Π is convex, each horizontal line between $y=0$ and $y=p$ cuts the boundary of Π in two points. We deduce that

$$
b(\Pi) \leq h+k+2 p
$$

We now distinguish between several different cases.

FIGURE 2

Case 1. $p=2$, or $h+k \geq 4$, or $p=h+k=3$. Since Π is convex, $I I$ contains the convex hull of the two given segments. Hence

$$
A(\Pi) \geq 32 p(h+k)
$$

and

$$
\begin{aligned}
f(\Pi) & =2 b(\Pi)-2 A(\Pi)-2 \\
& \leq 2(h+k+2 p)-p(h+k)-2 \\
& =(h+k-4)(2-p)+6 \\
& \leq 7 .
\end{aligned}
$$

Case 2. $p=3$ and $h+k \leq 2$. Now $b(\Pi) \leq h+k+2 p \leq 8$, and since $c(\Pi) \geq 1, f(\Pi)=b(\Pi)-2 c(\Pi) \leq 6$.

Case 3. $p \geq 4$ and $h+k \leq 3$. Let Π meet supporting lines $y=0, y=p$ in points P, R respectively, and supporting lines $x=0, x=p^{\prime} \quad\left(p^{\prime} \geq p\right)$ in points Q, S respectively.

As before, $b(\Pi) \leq h+k+2 p$. Consider now the effect of transforming $I I$ using an integral, unimodular shear having the x-axis as invariant line. This transformation leaves $A(\Pi), b(\Pi), p, h+k$ unchanged, and preserves the convexity of Π. It may decrease p^{\prime} to a value less than p; if this happens, we simply interchange the roles of p and p^{\prime}. (There can be at most a finite number of such interchanges, since at each step the positive integer $p+p^{\prime}$ is reduced by at least one.) A further effect of this shear is that all points on the line $y=p$ are translated through some multiple of p. Hence by the lemma, it is possible to shear I and choose the points P, R so that the x-coordinates of these points differ by u, where

$$
0 \leq u \leq \frac{3}{2}(p-h-k)
$$

FIGURE 3
Now since Π is convex,

$$
\begin{aligned}
A(I I) & \geq A(P Q R S) \\
& \left.=\frac{1}{2} q\left(r_{1}+r_{2}\right) \quad \text { (see Figure } 3\right) \\
& \geq \frac{1}{2} p\left(p^{\prime}-u\right) \\
& \geq \frac{1}{2} p(p-u) \quad \text { since } \quad p^{\prime} \geq p \\
& \geq \frac{2}{4} p(p+h+k) \quad,
\end{aligned}
$$

substituting the upper bound for u. Hence

$$
\begin{aligned}
f(\Pi) & =2 b(\Pi)-2 A(\Pi)-2 \\
& \leq 2(h+k+2 p)-\frac{3}{2} p(p+h+k)-2 \\
& =\frac{3}{2}(h+k)(4-p)+\frac{3}{2} p(8-p)-2 \\
& \leq 6
\end{aligned}
$$

since $p \geq 4$ and $p(8-p)$ assumes its maximum value of 8 for $p=4$.
Hence in all cases $f(\Pi) \leq 7$. For equality here we require $p=3$, $h+k=3, b(\Pi)=9$, and $A(\Pi)=\frac{9}{2}$; it is easily verified that Π is equivalent to Δ. The lower value $f(I I)=6$ is attained for a number of lattice polygons Π, for example lattice rectangles with $p=2$.

This completes the proof of the theorem.
Finally, we observe that if $c(\Pi)=0$, then $f(\Pi)$ is unbounded. This is illustrated by the triangle with vertices (0,1), (1, 1), and $(n, 0)$ (n integral), for which $f(\Pi)=n+1$.

References

[1] M. Nosarzewska, "Évaluation de la différence entre l'aire d'une région plane convexe et le nombre des points aux coordonnées entières couvertes par elle", ColZoq. Math. 1 (1947/1948), 305-311.
[2] G. Pick, "Geometrisches zur Zahlenlehre", Sitzungsber Lotos Prag. (2) 19 (1900), 311-319. [Quoted from [3], p. 324, and Zentralblatt über die Fortschmitte der Mathematik 31 (1899), p. 215.]
[3] H. Steinhaus, Mathematical snapshots, new edition, revised and enlarged (Oxford University Press, Oxford, London, New York, 1960).
[4] J.M. Wills, "Über konvexe Gitterpolygone", Comment. Math. HeZv. 48 (1973), 188-194.

Department of Pure Mathematics, University of Adelaide, Adelaide, South Australia.

