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On convex lattice polygons

P.R. Scott

Let II be a convex lattice polygon with b boundary points and

c (5 1) interior points. We show that for any given a , the

number b satisfies b 5 2e + 7 , and identify the polygons for

which equality holds.

A lattice polygon II is a simple polygon whose vertices are points of

the integral lattice. We let A = 4(11) denote the area of II , b{U)

the number of lattice points on the boundary of II , and e(II) the number

of lattice points interior to II .

In 1899, Pick [2] proved that

A(n) = %2)(n) + c(n) - 1 .

Nosarzewska [7] and more recently Wills L41, have established inequalities

relating the area, perimeter, and number of interior points of a convex

lattice polygon. It is our purpose here to establish a simple necessary

condition for II to be convex.

We set /(II) = Z>(II) - 2c(II) . Using Pick's formula we can obtain

alternative expressions for f(T[) :

%/(H) = b{Ti) - A{Jl) - 1

and

= 4(n) -

Lattice polygons which can be obtained from one another using integral

unimodular transformations or translations are said to be equivalent. The

property of convexity, and the quantities A, b, a , and f are easily

seen to be invariant under equivalence.
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The illustrated triangle, A (Figure l) is a

lattice polygon of special interest. We observe that

4(A) = | , 2>(A) = 9 , e(A) = 1 ,

and
FIGURE 1

/(A) = 7 •

THEOREM. Let U be a convex lattice polygon with at least one
interior point. If II is equivalent to A , then /(II) = 7 . Otherwise
f(n) s 6 .

In the proof of this theorem, we shall make use of the following

lemma.

LEMMA. Let AB, CD be segments lying along the x-axis, having

integral endpoints, and lengths h, k respectively. Let p be a positive

integer such that p > h + k . Then there exist points P, R on AB, CD

respectively having integral coordinates, and such that distance PR

satisfies

PR = mp + u (m a non-negative integer) where \u\ £ %(p-h-k) .

Proof. Let AB be the segment [0, h] , and let A'B' be the

setment [p, p+h] obtained by translating AB through p . We may

translate CD through integral multiples of p to the position [t, t+k] ,

where 0 £ t < p . In fact, we may assume that h < t < p - k , else CD

overlaps one of the segments AB, A'B' , and we have our result with

u = 0 .

Hence we may assume that points A, B, C, D, A', B' lie in this order

along the x-axis. Let BC = x , DA' = y . Then

(BA' =) p - h = x + k + y ;

that is,

Clearly it is impossible for both x and y to be greater than

%(p-h-k) , and the result follows.

Proof of the theorem. Let II meet supporting lines y = 0 , y = p

in segments of length h, k (possibly zero) respectively (Figure 2).
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Since II contains interior points, p 2 2 .

Because II is convex, each

horizontal line between y = 0 and

y = p cuts the boundary of II in two

points. We deduce that

2>(n) ̂  h + k + 2p .

We now distinguish between several

different cases.

Case 1. p = 2 , o r h + k > h , or p = ft + fc = 3 . Since II is

convex, II contains the convex hull of the two given segments. Hence

and

f(n) = - 24(n) - 2

p(fe+fe)

) + 6

- 2

2 7

andCase 2. p = 3 and ft + H 2 . Now fc(II) 2 h + fe + 2 p 5

since c(n) 2 1 , /(II) = 6(11) - 2c(n) £ 6 .

Case 3. p > h and h + k < 3 • Let IT meet supporting lines

2/ = 0 , y = p in points P, i? respectively, and supporting lines

a; = 0 , x = p' (p' 2: p) in points Q, S respectively.

As before, 2?(IT) 5 7z + k + 2p . Consider now the effect of transform-

ing II using an integral, unimodular shear having the x-axis as invariant

line. This transformation leaves A(Tl), ZJ(H), p, h + k unchanged, and

preserves the convexity of IT . It may decrease p' to a value less than

p ; if this happens, we simply interchange the roles of p and p1 .

(There can be at most a finite number of such interchanges, since at each

step the positive integer p + p' is reduced by at least one.) A further

effect of this shear is that all points on the line y = p are translated

through some multiple of p . Hence by the lemma, it is possible to shear

II and choose the points P, R so that the x-coordinates of these points

differ by u , where

0 5 u 5 h{p-h-k) .
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y

A(PQES) =

FIGURE 3

Now since II i s convex,

A(H) > A(PQES)

= %q{r^*r^) (see Figure 3)

2 %p{p'-u)

- %p(p-u) since p' > p

2 %p(p+h+k) ,

substituting the upper bound for u . Hence

= 2Z>(n) - a i ( n ) - 2

( - %p(p+fe+fe) - 2

) + %p(8-p) - 2

< 6

since p > U and p(8-p) assumes its maximum value of 8 for p = h .

Hence in all cases /"(H) £ 7 • For equality here we require p = 3 ,

h + k = 3 , fc(II) = 9 , and 4(11) = \ ; it is easily verified that n is

equivalent to A . The lower value /(II) = 6 is attained for a number of

lattice polygons II , for example lattice rectangles with p = 2 .
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This completes the proof of the theorem.

Finally, we observe that if e(II) = 0 , then /(H) is unbounded.

This is illustrated by the triangle with vertices (0, 1 ) , (l, 1) , and

(«, 0) (n integral), for which /(II) = n + 1 .
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