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ON  CONVEX POWER SERIES  OF A

CONSERVATIVE  MARKOV  OPERATOR

S.   R.   FOGUEL  AND   B.   WEISS

Abstract. A. Brunei proved that a conservative Markov oper-

ator, P, has a finite invariant measure if and only if every operator

Q = 2"=0 a„P" where a„^0 and 2 an = l is conservative.

In this note we give a different proof and study related problems.

Introduction. We shall use the notation and definitions of [3]. Let us

quote some basic results:

The operator F is conservative if and only if for every O^fe Lx the sum

2 "=o Pnf assumes the values 0 or oo only.

The operator P is conservative if and only if whenever Oíí/e Lœ and

Pf^f then Pf=f. See [4, Corollary 1].
If F is conservative and Pf=f, then/is S,(F) measurable where 2¿(P) =

{A :PlA=lA}. See [3, Theorem A of Chapter III].

We shall study operators of the form ß = 2"=o <x-nP" where <x„^0 and

2«„=1. Such operators will be called convex power series of P, and

denoted by A(P) where A(z) = J_ñ=o *«**.

1. Conditions for Q to be conservative.

Theorem 1.1. Let P be a conservative operator and Q=A(P) a convex

power series of P. If 2«-i «oc„< co then Q is conservative too.

Proof.    Note first that

00 OO      /       OO V 00

2(i -«o — - °o=2( 2 a*) =2na«-
!j=0 n=0 \jc=n+l    I n=l

Put yn=l — (a0+ ' ' - +aJ then, by assumption, 2 ym<°°- Define K=

2 ynPn then Kis a positive bounded operator on L\. An easy computation

shows that I-Q = (I-P)K. Thus if 0^/e Lx and (7-0/^0 then

(I—P)Kfi^.O and (I—P)Kf=0 because P is conservative. By the character-

ization of conservative operators, given in the introduction, Q is conserv-

ative too.

Remark.    Every finite convex combination of Pk is conservative.
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For the rest of this section we shall assume that £ is ergodic and con-

servative and study 2¡¿(g). If A e 2,(g) or 1_¿=2 ^nP^A tnen whenever

aM#0 £"1 A<1 A (since P"1A<1) and thus £"l^=l,i since P" is conserv-

ative.

Let r be the maximal common divisor of« such that a„5^0. Then, on the

one hand, Q= 2«Lo anr£"r, and on the other hand there exist nx • • • n¡ with

xn #0 and nr=qxnx+ ■ ■ ■ +7¡«, withí7¿ positive integers and n^.N. Thus,

l^=P<-v+1)rlA=prpN\A=Pr\A. To summarize S,.(ß) = i:2(£0 for some

integer r.

Lemma 1.2.    £e/ £ be ergodic and conservative then  2¿(£r) is atomic.

Proof. Let us assume, to the contrary, that An e T,¡(Pr) where An\0.

Now 0=(/-£r)l..ln = (/-£)(/+£+• • •+Pr~1)l^„- Since £ is ergodic and

conservative (I+P+ ■ ■ • +Pr~1)lA is a constant but 1¿ (x)«l if x e^4„.

Thus (/+£+ • • • +PT-1)lAJl\ and this contradicts the continuity of £

on Lx.

Let us take an atom A, of 2¿(£r). Put P'\A=f, l^j^r-l. Note that

feZ^P") too. Put £E = {x:/(x)^e}, £0={x:/(jc)>0}; both sets are in

S,(£r). Now/^el^/thus \A=Pr-if^zePr-}\Be hence Pr-'1B,^1.¿. Let

e—>-0 to conclude Pr_il7i^l.,. Since ,4 is an atom and Pr~'\B is invariant

under Pr, we must have Pr~i\n=const 1^. Now£rl7i=lJS so the constant is

one. Thus P^'l^P^/but 1B^/. Therefore, 2PB(lz,-/)<co or/=l7i.

Theorem 1.3. 2¿(£,') = {/í0, • • • , Ak^} where the sets At are disjoint, k

divides r and 1< =£1 , , 1., =£1 - , • • ■ , 1.. =£1 4

Proof.    Let A0 be an atom of 2¿(£r). By the above argument P'\A = 1A

and /I, e S((Pr). Let fc be the first integer such that £^1^= L,0. Clearly £

divides i- and the sets A¡, l£j£sk—l, are disjoint: If B^A¡ and Be

2¿(£r) then P*_3'lJ:j<l ,,o and like the previous argument must be equal to

li0 or Pk~nn=Pk~nAi and B=A¡.

Now Uto Jj is invariant under £ and thus must be all of X. Clearly

each Ai is an atom of 2^t(Pr) and 2¿(£r) = {/l0, i4lf- • • , Ak_x).

Remark. Note that if n divides m then S,(£")<= 2,(£"')• Thus

V Si(P") = V 2¿(£"!) and £,(£*') is monotone in n.

Theorem 1.3 was proved by Moy in [7, Theorem 1] for a more general

case by a different method.

2. Conditions for Q to be dissipative.

Lemma 2.1. Let Px and P2 be commuting elements of a Banach algebra

with |PJ=:flJ»ill = l- Let Q = xPx+ßP2 where 0<x, /3<1 and x+ß=l.
Then ¡|ß"(Pi-P2)llaJ0^A/H) " a ' ß where K is a constant.
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Proof. First let us reduce the problem to the case where a=/?=-2-:

If a<i then 2=M-Pi+F2) where P'1=2aP1+(I-2a)P2 and P[-P2=

2a(P1-P2).

Following [8] we write

q\p, - f2) = ¿J Qpipr*(Pi - p

= 2n¿xLU- 1/ "' \k)

)

pkpn-k+l    i    _L pn+1  _ _J_
12 2"   1 2*

thus

We may assume that n is even. Since (k) increases as k increases from 0 to

m/2 and then decreases as k goes from n/2 to n the sum of absolute values is

bounded by (2/2")(n/2) which is, by Stirling's formula, bounded by K/^Jn,

and hence the lemma follows.

Let P be an operator and 2 = 2™=o Kn^"> a¿ = 0, 2 «¡=L Assume that

a¿ and x, (/</) are the first nonzero coefficients. Put 2=2 anFM^i where

piQ' = Q'pi=Q. Choose 0<y<min{a¿, a3, |}. Then

Q' = y(I + V-*) + 2 ßnPn = yO + P'-O + Ox.

Note   2ßn+2y=l,  ß„^0.  Thus   2' = M(2y + 2i)+(2}'Pí-i+2t)]   and
Ho'"(/-p^¿)ll^o. Therefore) ̂ »(/-pj-í)!^!!/»^'»^-^-*)!!-^).

Theorem 2.2. Let P be an operator with no invariant measure. Let Q =

A(P) be a convex power series of P such that A(z) has at least two nonzero

coefficients. There exists a set A, m(A)>0, such that \\QnlA\\a-J-^>-^.

Proof. Note first that, by a standard argument, Pj~' has no invariant

measure. By [3, Chapter IV, (4.9)] there exists a set A with m(A)>0, such

that if XPi~i = X then X(A)=0 (X e /_*). By the Hahn-Banach Theorem

lA e Range (/ - J*-*).

Thus \\QnlJ^O.

Remark. In [1, Lemma 1] Brunei proves that property for Q =

(l/e)expP.

Theorem 2.3. Let Q be a Markov operator such that, for some 0_A e

F.», 112" A||—»-0. Choose a sequence Nm such that 2m=o llß^^H < oo. The

operator R= 2 ««2™ is not conservative i/2m=o(2n=(T1 a„)m<°o.

Proof.    Put
Nm—1 00

R = RUm + R2,m =   2  *nQn +   2   «nQn-
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Then Rm = RT.m+SmQN«> where Sm is of the form  lßnQn,  2ß„<l,

ßnl>0. Thus

Rmh = R?Ji + SmQN"h ̂ RT.Jr + ||ßA-A|| .

Since 2™=ollôAm/'[l<oo it is enough to consider the first term:

(A"m-1 \m /Nm-1     \m

2 a„ß"    A^IIAII     2 a„)

and the sum over m of the right-hand side converges by assumption.

The Brunel Example.    Let  \\Qnh\\-+0 and  2 ||ßAW?||<oo. Choose

Pn = (\ln2y>\        n > 3,

then p„fl and 2p"<°°. Choose a„^0 such that ^«"o"1 «n<Pm and

2 a„=l and, by Theorem 2.3, 2 anô" ¡s not conservative.

3. Dissipating power series. Let us call a power series ^(z)=2i° a7>z"

dissipating if (1) a„^0, (2) .4(1)= 1, and (3) there is some conservative

operator £ with A(P) dissipative. Theorem 1.1 says simply that if A'(\)

is finite then A is not dissipating. The main purpose of this section is to

establish a converse: namely if A'(I) is infinite then A is dissipating. We

first make a slight detour to discuss renewal sequences. Recall that {un}^=l,

0_«„_1, is said to be a renewal sequence if there is a sequence {fn}n=i,

/„=0, 2f/ß^l suchthat

(O        W« =fn +/«-l«l +/n-2"2 +  * • •  +/l««-l (« =  1, 2, •  • ■)•

Equivalently, if U(z)=l + J_ unzn, F(z) = 2fnzn then

U(z) = F(z)U(z) + 1    or    U(z) =- .
1 - £(z)

If P=(Pij)?,j=i is a Markovian transition matrix with all states forming a

single ergodic class, the condition for recurrence or conservativeness is

simply 2™=o/'n) = + oo where p^ is the ij entry in P". It is well known that

{pii)n=i forms a renewal sequence. Here the/, of (1) represent the prob-

ability that first return to 1 takes place at time n. We shall need the simple

converse.

Lemma 3.1. If {un}„=1 is a renewal sequence then there is an ergodic

Markov matrix with un=p[1).

Proof. Let /„ be such that (1) holds and define px=fx, "'»£»=

/«/(l-/i-/i— • —fn-il Set now

Pu = Pi        if y = i.

= i -Pi  if j = i + i,

= 0 otherwise.
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The lemma now follows easily if one recalls the probabilistic interpre-

tation of the/'s, namely that they are the probability that the event occurs

for the first time at time n. The structure of piS is such that one easily

checks

Prob{return to 1 for the first time at time «¡start at 1}

=  (1   - />,)(1   - p2)-  ■ ■  (I   - Pn-l)Pn  =/»■       D

The existence of a plentiful supply of renewal sequences is assured by

Th. Kaluza's theorem [5] to the effect that if l^w„_0 and

w«/«B-i = "»+i/»».      » = 1,2, • • •       K = 1),

then {un} is a renewal sequence. Indeed as D. G. Kendall [6] has shown,

these are precisely the "infinitely divisible" renewal sequences. We shall

also need the following lemma, a proof of which may be found in [1].

Lemma 3.2. If x¡ is a sequence of nonnegative numbers that tend to zero

asj^-co then there is a renewal sequence {un}, in fact, an infinitely divisible

one, such that 2i° un= + oo but 2í° unbn<. oo.

Theorem 3.1. IfA(z) = 2i «»*", «»^0, ,4(1)=1 and A'(l)=oo then A

is dissipating.

Proof.    Let ßj he defined by

oo * oo

Then since ^'(1)=1 by the renewal theorem (see [2, Chapter XIII.3]) we

know that /?, tends to zero. Apply Lemma 3.2 to obtain a renewal sequence

with 2í°Mn=00 ar>d 2" Ujßj<<x>- By Lemma 3.1 there is a Markov

matrix with p[i} = u7l. Thus P is conservative. However, A(P) = Q is dissi-

pative since

CO ,co, ,co , ,co ,

2Qu=(lQn) =feW) = (2ß«pn)
0 \ 0 III \ 0 /ll \ 0 /ll

CO oo

0 0

The formal interchanges of summations is justified since all the terms are

nonnegative and the final result is a finite quantity.    □

It is worth remarking that even when a conservative operator P has no

finite invariant measure there are dissipating power series A(z) such that

A(P) is conservative. To see this it suffices to consider the special trans-

lation invariant Markov chains on the integers Z—the random walks
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defined by {p¡}, a probability distribution on Z. A necessary and sufficient

condition for recurrence is known here in terms of (p(v)='2,-00 pnetnv, the

characteristic function of 93, namely

i  *Re (--) dv = +00    [9, Chapter 11.81.
J-,        \1 - f(v)J

Picking p¡ with prescribed behavior at infinity and using a Tauberian

theorem to relate the behavior of <p(v) at v=0 one readily produces ex-

amples for the phenomenon described above.
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