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Abstract

We consider convex relaxations for the problem of minimizing a (possibly noncon-
vex) quadratic objective subject to linear and (possibly nonconvex) quadratic con-
straints. Let F denote the feasible region for the linear constraints. We first show
that replacing the quadratic objective and constraint functions with their convex lower
envelopes on F is dominated by an alternative methodology based on convexifying the

range of the quadratic form
(
1
x

)(
1
x

)T
for x ∈ F . We next show that the use of “αBB”

underestimators as computable estimates of convex lower envelopes is dominated by a
relaxation of the convex hull of the quadratic form that imposes semidefiniteness and
linear constraints on diagonal terms. Finally, we show that the use of a large class of
“D.C.” underestimators is dominated by a relaxation that combines semidefiniteness
with RLT constraints.

Keywords: Quadratically constrained quadratic programming, convex envelope, semidef-
inite programming, reformulation-linearization technique
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1 Introduction

In this paper we consider a quadratically constrained quadratic programming (QCQP) prob-

lem of the form

(QCQP) z∗ = min f0(x)

s.t. fi(x) ≤ di, i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where fi(x) = xT Qix+cT
i x, i = 0, 1, . . . , q, each Qi is an n×n symmetric matrix, and A is an

m × n matrix. In the case that Qi � 0 for each i, QCQP is a convex programming problem

that can be solved in polynomial time, but in general the problem is NP-Hard. QCQP is a

fundamental problem that has been extensively studied in the global optimization literature;

see for example [9, 20] and references therein.

A common approach to obtaining a lower bound for a nonconvex instance of QCQP is to

somehow convexify the problem. In this paper we compare several different convexification

techniques. Let F = {x ≥ 0 : Ax ≤ b} denote the feasible set for the linear constraints

of QCQP. We assume throughout that F is bounded. One methodology is to replace each

function fi(·) with its convex lower envelope f̂i(·) on F . We refer to the resulting convex

relaxation of QCQP as ̂QCQP. In Section 2 we compare ̂QCQP with an alternative relaxation

˜QCQP based on the convex set

C = Co

{(
1

x

)(
1

x

)T

: x ∈ F
}

, (1)

where Co{ } denotes the convex hull. We prove that ˜QCQP dominates ̂QCQP, although in

general neither of these problems is computationally tractable.

In Section 3 we compare two computable relaxations that can be viewed as tractable

approximations of the problems ̂QCQP and ˜QCQP. One relaxation utilizes “αBB” un-

derestimators [1] for the nonconvex quadratic functions of QCQP, and the other applies

semidefinite and diagonal constraints that must hold for matrices in C. We prove that

the latter convexification dominates the former, regardless of the choice of the parameters

used to define the underestimators. In Section 4 we consider a more general “D.C.” under-

estimation procedure suggested in [20], and a strengthened approximation of ˜QCQP that
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combines semidefiniteness with linear constraints from the reformulation-linearization tech-

nique (RLT). We again show that the second approach dominates the first, regardless of the

parameters used to create the underestimators.

In Section 5 we consider particular instances of QCQP that were used as computational

examples in [2]. The first of these are indefinite box-constrained QPs, corresponding to

QCQP with q = 0 and F = {x : 0 ≤ x ≤ e}. For these problems we obtain excellent

computational results by further strengthening the approximation of C through the addi-

tion of triangle inequalities related to the Boolean Quadric Polytope. For the second class

of QCQP problems, corresponding to planar circle-packing (or equivalently point-packing)

problems, we prove an interesting theoretical result that relates convex lower envelopes for

reverse convex constraints to the use of RLT constraints for C.

Notation We use X � 0 to denote that a symmetric matrix X is positive semidefinite. For

n×n matrices X and Y , X •Y denotes the matrix inner product X •Y =
∑n

i,j=1 XijYij. For

an n × n matrix X, diag(X) is the vector x with xi = Xii, i = 1, . . . , n, and Diag(x) is the

diagonal matrix with diag(Diag(x)) = x. We use e to denote a vector with each component

equal to one.

2 Two convex relaxations for QCQP

As described in Section 1, let ̂QCQP denote the problem where each function fi(·) in QCQP

is replaced by f̂i(·), its convex lower envelope on F . Let ẑ denote the solution value in

̂QCQP. In the global optimization literature it is sometimes suggested that ̂QCQP is the

“best possible” convex relaxation of QCQP, although ẑ may not be computable because the

required convex lower envelopes f̂i(·) may be impossible to obtain.

We will compare ̂QCQP with an alternative convexification that is based on linearizing

the problem by adding additional variables. Let X denote a symmetric n× n matrix. Then

QCQP can be written

(QCQP) z∗ = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di, i = 1, . . . , q

x ≥ 0, Ax ≤ b, X = xxT .
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Written in the above form, QCQP is a linear problem except for the quadratic equality

constraints X = xxT . A convexification of the problem can then be given in terms of the

set C defined in (1). Using C, we obtain a convex relaxation

( ˜QCQP) z̃ = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di, i = 1, . . . , q

Y (x, X) ∈ C,

where

Y (x, X) =


1 xT

x X


 .

In this section we will demonstrate that the convex relaxation ̂QCQP cannot be tighter

than ˜QCQP; in other words, it is always true that ẑ ≤ z̃. To do this we will show that

there is a simple relationship between the convex lower envelopes used in ̂QCQP and the

linearized representations of the objective and constraint functions used in ˜QCQP.

Theorem 1. For x ∈ F , let f(x) = xT Qx + cT x, and let f̂(·) be the convex lower envelope

of f(·) on F . Then f̂(x) = min{Q • X + cT x : Y (x, X) ∈ C}.

Proof. For x ∈ F , let g(x) = min{Q • X + cT x : Y (x, X) ∈ C}. Our goal is to show that

f̂(x) = g(x). To do this we first show that g(·) is a convex function with g(x) ≤ f(x), x ∈ F ,

implying that g(x) ≤ f̂(x).

Assume that for i ∈ {1, 2}, xi ∈ F and g(xi) = Q • X i + cT xi, where Y (xi, X i) ∈ C. For

0 ≤ λ ≤ 1, let

x(λ) = λx1 + (1 − λ)x2, X(λ) = λX1 + (1 − λ)X2.

Then Y (x(λ), X(λ)) = λY (x1, X1)+ (1−λ)Y (x2, X2) ∈ C, since C is convex. It follows that

g(x(λ)) ≤ Q • X(λ) + cT x(λ) = λg(x1) + (1 − λ)g(x2),

proving that g(·) is convex on F . The fact that g(x) ≤ f(x) follows immediately from

Y (x, xxT ) ∈ C and Q • xxT + cT x = f(x).

It remains to show that f̂(x) ≤ g(x). Assume that g(x) = Q•X+cT x, where Y (x, X) ∈ C.

From the definition of C, there exist xi, xi ∈ F , and λi ≥ 0, i = 1, . . . , k,
∑k

i=1 λi = 1 such
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that
k∑

i=1

λix
i = x,

k∑

i=1

λix
i(xi)T = X.

It follows that

g(x) = Q • X + cT x

= Q •
(

k∑

i=1

λix
i(xi)T )

)
+ cT

(
k∑

i=1

λix
i

)

=
k∑

i=1

λif(xi).

But f̂(·) is convex on F , and f̂(x) ≤ f(x) for all x ∈ F , so

f̂(x) = f̂

(
k∑

i=1

λix
i

)
≤

k∑

i=1

λif̂(xi) ≤
k∑

i=1

λif(xi) = g(x).

The claimed relationship between ˜QCQP and ̂QCQP is an immediate consequence of

Theorem 1. In particular, using Theorem 1, ̂QCQP could be rewritten in the form

( ̂QCQP) ẑ = min Q0X0 + cT x

s.t. Qi • Xi + cT
i x ≤ di, i = 1, . . . , q

Y (x, Xi) ∈ C, i = 0, 1, . . . , q,

so that ˜QCQP corresponds to ̂QCQP with the added constraints X0 = X1 = . . . = Xq.

Corollary 1. Let ẑ and z̃ denote the solution values in the convex relaxations ̂QCQP and

˜QCQP, respectively. Then ẑ ≤ z̃.

Corollary 1 indicates that the approach to convexifying QCQP taken in ˜QCQP has

theoretical advantages over the underestimation methodology used in ̂QCQP. However,

it is important to recognize that both of these approaches have practical limitations. In

particular, both the problem of computing an exact convex lower envelope f̂(·) for a quadratic

function f(·), and the problem of characterizing C, are intractable. It is, however, known
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that C can be exactly represented using the cone of completely positive matrices. To describe

this representation it is convenient to define

Y +(x, X) =




1 xT s(x)T

x X Z(x, X)

s(x) Z(x, X)T S(x, X)


 , (2)

where

s(x) = b − Ax,

S(x, X) = bbT − AxbT − bxT AT + AXAT ,

Z(x, X) = xbT − XAT .

The matrices S(x, X) and Z(x, X) relax s(x)s(x)T and xs(x)T , respectively. It can then be

shown [5] that

C = {Y (x, X) : Y +(x, X) ∈ CPm+n+1},

where CPk is the cone of k × k completely positive matrices (that is, matrices that can be

written in the form V V T where V is a nonnegative k × p matrix). Unfortunately, for k ≥ 5

there is no known complete description for CPk.

We close this section with an example that illustrates that the distinction between ˜QCQP

and ̂QCQP is already sharp for m = n = q = 1. Consider the problem

min x2
1

s.t. x2
1 ≥ 1

2

0 ≤ x1 ≤ 1.

Written in the form of QCQP, the constraint x2
1 ≥ 1

2
is −x2

1 ≤ −1
2
, and the convex lower

envelope of −x2
1 on [0, 1] is −x1. The relaxation ̂QCQP is then

min x2
1

s.t. −x1 ≤ −1
2

0 ≤ x1 ≤ 1,

with solution value ẑ = 1
4
. The solution value for ˜QCQP is z̃ = z∗ = 1

2
. The set C is depicted

in Figure 1. Note that for x1 = 1
2
, Y (x1, x11) ∈ C for x11 ∈ [1

4
, 1

2
]. The solution of ̂QCQP
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Figure 1: Set C for example

then corresponds to using x1 = 1
2

along with x11 = 1
4

for the objective, and x11 = 1
2

for the

single nonlinear constraint.

3 Two computable relaxations

As mentioned above, in general both ˜QCQP and ̂QCQP are intractable problems due to the

complexity of computing a convex lower envelope f̂(·), or the convex hull C. In this section

we consider the important special case where F is the box 0 ≤ x ≤ e, and describe two

further relaxations that are computable approximations of ˜QCQP and ̂QCQP.

For a quadratic function f(x) = xT Qx + cT x defined on F = {x : 0 ≤ x ≤ e}, the

well-known “αBB” underestimator [1] is

fα(x) = xT (Q + Diag(α))x + (c − α)T x,

where α ∈ ℜn
+ is chosen so that Q+Diag(α) � 0. It is worthwhile to note that although here

we restrict our attention to the convexification of quadratic functions, the αBB underesti-

mator applies to more general nonlinear functions. The same convexification procedure for

the quadratic case has appeared numerous times elsewhere in the literature; see for example

[4, 12].
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Since fα(·) is convex, it is immediate that fα(x) ≤ f̂(x), 0 ≤ x ≤ e. A further relaxation

of ̂QCQP is then given by the problem

(QCQPαBB) zαBB = min xT (Q0 + Diag(α0))x + (c0 − α0)
T x

s.t. xT (Qi + Diag(αi))x + (ci − αi)
T x ≤ di, i = 1, . . . , q

0 ≤ x ≤ e,

where each αi is chosen so that Qi + Diag(αi) � 0.

For the case of F = {x : 0 ≤ x ≤ e}, there are a variety of known constraints that are

valid for Y (x, X) ∈ C. These include:

1. The constraints from the Reformulation-Linearization Technique (RLT) [14],

xij ≥ 0,

xij ≥ xi + xj − 1,

xij ≤ xi,

xij ≤ xj.

2. The semidefinite programming (SDP) constraint Y (x, X) � 0 [17].

3. Constraints on the off-diagonal components of Y (x, X) coming from the Boolean

Quadric Polytope (BQP) [6, 19]; for example, the triangle inequalities for i 6= j 6= k,

xi + xj + xk ≤ xij + xik + xjk + 1,

xij + xik ≤ xi + xjk,

xij + xjk ≤ xj + xik,

xik + xjk ≤ xk + xij.

The relationship between the SDP and RLT constraints is discussed in [2]. In fact for

n = 2, the SDP and RLT constraints together give a full characterization of C [3]. For

n = 3 the triangle inequalities and RLT constraints fully characterize the BQP, but these

constraints combined with the SDP constraint do not give a complete characterization of C
[6]. For n = 3, an “extended-variable” description of C obtained via a triangulation of the

3-cube is given in [3].
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We will compare QCQPαBB with an approximation of ˜QCQP that imposes some of the

above constraints on C. In particular, we will apply the semidefiniteness condition Y (x, X) �
0 together with the diagonal RLT constraints diag(X) ≤ x. Note that these conditions

together imply the original bound constraints 0 ≤ x ≤ e. The resulting relaxation is

(QCQPSDP) zSDP = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di, i = 1, . . . , q

Y (x, X) � 0, diag(X) ≤ x.

The following theorem shows that there is a simple relationship between the convexifica-

tions used to construct QCQPαBB and QCQPSDP.

Theorem 2. For 0 ≤ x ≤ e, let fα(x) = xT (Q + Diag(α))x + (c − α)T x, where α ≥ 0 and

Q + Diag(α) � 0. Assume that Y (x, X) � 0, diag(X) ≤ x. Then fα(x) ≤ Q • X + cT x.

Proof. Let Q(α) = Q + Diag(α). Since Q(α) � 0,

fα(x) = (c − α)T x + min{Q(α) • X : X � xxT}

= (c − α)T x + min{Q(α) • X : Y (x, X) � 0, diag(X) ≤ x},

the last because diag(X) ≤ x holds automatically for X = xxT , 0 ≤ x ≤ e. But then

Y (x, X) � 0 and diag(X) ≤ x imply that

fα(x) ≤ Q(α) • X + (c − α)T x

= Q • X + cT x + αT (diag(X) − x)

≤ Q • X + cT x.

The following immediate corollary of Theorem 2 confirms a relationship between QCQPαBB

and QCQPSDP first conjectured by Jeff Linderoth (private communication).

Corollary 2. Let zαBB and zSDP denote the solution values in the convex relaxations QCQPαBB

and QCQPSDP, respectively. Then zαBB ≤ zSDP.

Note that the example at the end of Section 2 has F = {x1 : 0 ≤ x1 ≤ 1}, q = 1.

For this problem (α1 − 1)x2
1 is convex for α1 ≥ 1. Using α1 = 1, the problem QCQPαBB is

identical to ̂QCQP and has solution value zαBB = ẑ = 1
4
. The problem QCQPSDP is identical

to ˜QCQP, and has solution value zSDP = z∗ = 1
2
.
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4 Two stronger relaxations

In this section we consider a convexification procedure for QCQP suggested in [20] that

generalizes the αBB procedure described in the previous section. Consider a quadratic

function f(x) = xT Qx + cT x, and let vj ∈ ℜn, j = 1, . . . , k. Let F = {x ≥ 0 : Ax ≤ b}, and

assume that for x ∈ F we have lj ≤ vT
j x ≤ uj. It follows that for x ∈ F , (vT

j x−lj)(v
T
j x−uj) ≤

0, or (vT
j x)2 − (lj + uj)v

T
j x + ljuj ≤ 0. For α ∈ ℜk

+, define

Q(α) = Q +
k∑

j=1

αjvjv
T
j ,

c(α) = c −
k∑

j=1

αj(lj + uj)vj,

p(α) =
k∑

j=1

αjljuj,

and let fα(x) = xT Q(α)x+c(α)T x+p(α). Then if Q(α) � 0, fα(·) is a convex underestimator

for f(·) on F . In [20], functions of the form fα(·) are refereed to as “D.C.” underestima-

tors, and are applied to convexify the objective in QCQP problems with linear and convex

quadratic constraints. Note that the αBB underestimator on 0 ≤ x ≤ e from the previous

section corresponds to the case of vj = ej, lj = 0, uj = 1, j = 1, . . . , n. Additional possibli-

ties for vj suggested in [20] include eigenvectors corresponding to negative eigenvalues of Q,

and transposed rows of the constraint matrix A. Using underestimators of the form fα(·),
we obtain a convex relaxation

(QCQPDC) zDC = min xT Q0(α0)x + c0(α0)
T x + k(α0)

s.t. xT Qi(αi)x + ci(αi)
T x + k(αi) ≤ di, i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where each αi ∈ ℜk
+ is chosen so that Qi(αi) � 0.

We will compare QCQPDC to a relaxation of QCQP that combines the semidefiniteness

condition Y (x, X) � 0 with the RLT constraints on (x, X) that can be obtained from the

original linear constraints x ≥ 0, Ax ≤ b. The RLT constraints can be described very

succinctly using the the matrix Y +(x, X) from (2); in fact it is easy to see that these
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constraints correspond exactly to X ≥ 0, S(x, X) ≥ 0, Z(x, X) ≥ 0. It follows that the

RLT constraints and the condition that Y (x, X) � 0 together are equivalent to Y +(x, X)

being a doubly nonnegative (DNN) matrix. We therefore define the relaxation

(QCQPDNN) zDNN = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di, i = 1, . . . , q

Y +(x, X) ∈ DNNm+n+1,

where DNN k is the cone of k × k doubly nonnegative matrices. Note that the relaxation

QCQPDNN is entirely determined by the data from the original problem QCQP; in partic-

ular, QCQPDNN does not involve the vectors vj and bounds (lj, uj) used to construct the

convexifications in QCQPDC.

In order to compare QCQPDC and QCQPDNN we require a generalization of Theorem 2

that applies to the convexification fα(·) used in this section. This result naturally involves

the RLT constraints

vT
j Xvj − (lj + uj)

T x ≤ −ljuj, j = 1, . . . , k. (3)

that are obtained from lj ≤ vT
j x ≤ uj, j = 1, . . . , k.

Theorem 3. For x ∈ F , let fα(x) = xT Q(α)x + c(α)T x + p(α), where α ≥ 0 and Q(α) � 0.

Assume that Y (x, X) � 0 and (x, X) satisfy (3). Then fα(x) ≤ Q • X + cT x.

Proof. The proof is similar to that of Theorem 2. Since Q(α) � 0,

fα(x) = c(α)T x + p(α) + min{Q(α) • X : X � xxT}

= c(α)T x + p(α) + min{Q(α) • X : Y (x, X) � 0, (x, X) satisfy (3)},

the last because (3) are satisfied for any X = xxT , x ∈ F . But then if Y (x, X) � 0 and

(x, X) satisfy (3),

fα(x) ≤ p(α) + Q(α) • X + c(α)T x

≤ p(α) + Q • X + cT x − p(α)

= Q • X + cT x,

where the second inequality uses (3).
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Theorem 4. Let zDC and zDNN denote the solution values in the convex relaxations QCQPDC

and QCQPDNN, respectively. Then zDC ≤ zDNN.

Proof. Consider the convex relaxation

zV = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di, i = 1, . . . , q

vT
j Xvj − (lj + uj)

T x ≤ −ljuj, j = 1, . . . , k

x ≥ 0, Ax ≤ b, Y (x, X) � 0.

By Theorem 3 we immediately have zDC ≤ zV . However, the constraints lj ≤ vT
j x ≤ uj are

implied by the original constraints x ≥ 0, Ax ≤ b, and therefore by [14, Proposition 8.2],

the constraints (3) are implied by the RLT constraints X ≥ 0, S(x, X) ≥ 0, Z(x, X) ≥ 0. It

follows that zV ≤ zDNN.

In [20] it is shown that if all of the quadratic constraints of QCQP are convex, then for

a given set of {vj}k
j=1 the problem of choosing the vector α0 that gives the best value of zDC

can be formulated as a semidefinite programming problem. Theorem 4 states that regardless

of the vectors {vj}k
j=1 and {αi}q

i=0 used to construct the convexifications in QCQPDC, the

resulting lower bound zDC cannot be better than the bound zDNN obtained from QCQPDNN

when the upper and lower bounds l and u correspond to the feasible set for the linear

constraints F . However, in the presence of convex quadratic constraints, better values of lj

and/or uj can be obtained by minimizing or maximizing vT
j x over the set S corresponding to

the feasible region for the linear and convex quadratic constraints, as suggested in [20], and in

this case Theorem 4 would no longer apply. Of course obtaining such improved bounds could

entail substantial auxilliary computation. A different approach for utilizing convex quadratic

constraints to obtain improved RLT bounds based on the second-order cone representation

of the constraints is suggested in [7, Section 2.3].

5 Applications

In this section we describe applications of the convexifications described above to two partic-

ular classes of QCQP problems considered in [2]. The first application is to box-constrained
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indefinite QP problems of the form

(QPB) z∗ = min xT Q0x + cT
0 x

s.t. 0 ≤ x ≤ e,

corresponding to the general QCQP problem of Section 1 with q = 0 and F = {x : 0 ≤
x ≤ e}. Let ẑ and z̃ be solution values for the corresponding problems ̂QCQP and ˜QCQP

described in Section 2. It is then obvious from the definition of C that z̃ = z∗, and ẑ = z̃

follows immediately from Theorem 1, so a full description of either the convex lower envelope

f̂0(·) or the convex hull C would provide an exact solution of QPB. Several valid classes of

constraints for C for the case that F = {x : 0 ≤ x ≤ e} were described in Section 3. The

relaxation QCQPSDP, corresponding to imposing the semidefiniteness condition Y (x, X) � 0

along with the diagonal RLT constraints diag(X) ≤ x, was computationally evaluated on

a set of 15 QPB test problems with n = 30 in [2]. The results of [2] show that the bound

zSDP on these problems is much better than a bound based on imposing the RLT constraints

on Y (x, X), and the bound zDNN based on imposing both semidefiniteness and the RLT

constraints is much better still. (For the 15 problems considered, using semidefiniteness

and the RLT constraints together closed the gap to zero, up to numerical tolerances, on 8

problems and left an average gap of 0.88% on the remaining 7 problems.)

The QPB test problems used in [2] are from a larger set of 54 problems with n = 20,

30, 40, 50 and 60 that were solved using the finite branch-and-bound algorithm of [8]; 50 of

these problems were previously solved using the finite branch-and-bound algorithm of [18].

(The computational results in [18] omit the problems 50-050-1/2/3, and the problem 40-

100-3 was unsolved.) In Table 1 we report the results of applying several increasingly tight

approximations of C on the full set of 54 problems. The column labeled “SDP” gives the gap

to optimality for the bound zSDP, and the column labeled “SDP+RLT” gives the gap for the

bound zDNN that imposes both semidefiniteness and the RLT constriants on Y (x, X). For

29 of the 54 problems, the SDP+RLT bound is exact up to the numerical tolerances used

by the SeDuMi solver [15]; for these problems the solution matrix Y (x, X) is numerically

rank-one. For the remaining 25 problems we consider adding triangle inequalities coming

from the Boolean Quadric Polytope [6, 19]. For 24 of these 25 problems, adding triangle

inequalities closes the gap to zero up to numerical tolerances; a positive gap remains for
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Table 1: Comparison of bounds for indefinite QPB

Cuts Added Relative Gaps to Optimum
Problem Optimum RLT TRI SDP SDP+RLT SDP+RLT+TRI
20-100-1 706.50 197 55 4.655% 0.002% 0.000%
20-100-2 856.50 184 172 5.102% 0.171% 0.000%
20-100-3 772.00 168 1.750% 0.000%
30-060-1 706.00 371 777 8.799% 1.229% 0.000%
30-060-2 1377.17 381 3.614% 0.000%
30-060-3 1293.50 394 288 5.924% 0.368% 0.000%
30-070-1 654.00 369 784 14.133% 3.058% 0.000%
30-070-2 1313.00 449 4.727% 0.000%
30-070-3 1657.40 452 442 3.763% 0.010% 0.000%
30-080-1 952.73 365 718 10.290% 1.315% 0.000%
30-080-2 1597.00 376 1.616% 0.000%
30-080-3 1809.78 317 1.492% 0.000%
30-090-1 1296.50 370 4.009% 0.000%
30-090-2 1466.84 344 4.160% 0.000%
30-090-3 1494.00 420 1.527% 0.000%
30-100-1 1227.13 356 4.777% 0.000%
30-100-2 1260.50 427 465 8.316% 0.048% 0.000%
30-100-3 1511.05 377 265 6.622% 0.139% 0.000%
40-030-1 839.50 656 4.419% 0.000%
40-030-2 1429.00 889 4.747% 0.000%
40-030-3 1086.00 705 6.494% 0.000%
40-040-1 837.00 710 1966 14.228% 3.117% 0.000%
40-040-2 1428.00 600 1.718% 0.000%
40-040-3 1173.50 745 1427 8.209% 0.626% 0.000%
40-050-1 1154.50 797 1608 10.592% 0.515% 0.000%
40-050-2 1430.98 788 961 6.047% 0.354% 0.000%
40-050-3 1653.63 680 5.665% 0.000%
40-060-1 1322.67 696 1722 12.043% 2.287% 0.000%
40-060-2 2004.23 739 4.758% 0.000%
40-060-3 2454.50 701 2.207% 0.000%
40-070-1 1605.00 584 3.675% 0.000%
40-070-2 1867.50 650 3.418% 0.000%
40-070-3 2436.50 828 3.538% 0.000%
40-080-1 1838.50 615 5.312% 0.000%
40-080-2 1952.50 639 3.094% 0.000%
40-080-3 2545.50 755 742 3.647% 0.015% 0.000%
40-090-1 2135.50 763 5.948% 0.000%
40-090-2 2113.00 731 336 7.376% 0.035% 0.000%
40-090-3 2535.00 598 2.338% 0.000%
40-100-1 2476.38 673 3.265% 0.000%
40-100-2 2102.50 707 1251 5.428% 0.184% 0.000%
40-100-3 1866.07 664 1732 9.176% 2.257% 0.000%
50-030-1 1324.50 903 4.877% 0.000%
50-030-2 1668.00 831 233 5.257% 0.200% 0.000%
50-030-3 1453.61 830 180 7.715% 0.087% 0.000%
50-040-1 1411.00 1017 5.103% 0.000%
50-040-2 1745.76 868 509 7.766% 0.212% 0.000%
50-040-3 2094.50 1081 3.938% 0.000%
50-050-1 1198.41 723 1531 18.304% 8.664% 0.144%
50-050-2 1776.00 867 667 9.377% 0.765% 0.000%
50-050-3 2106.10 937 933 7.689% 0.752% 0.000%
60-020-1 1212.00 1199 7.048% 0.000%
60-020-2 1925.50 1319 4.418% 0.000%
60-020-3 1483.00 1040 735 8.200% 0.543% 0.000%
Average 5.969% 0.499%

14



only one problem (50-050-1, with a gap of 0.144%). In the “Cuts Added” columns we report

the number of RLT cuts required for problems solved to optimality using only added RLT

constraints, or the number of RLT cuts and triangle (TRI) inequalities added for problems

that could not be solved using RLT cuts alone. In both cases, violated constriants were

added in several “rounds” with a decreasing infeasibility tolerance to avoid adding a large

number of redundant inequalities, which would substantially degrade the performance of the

solver.

The results reported in Table 1 suggest that on QPB problems of these dimensions, the

approach based on approximating C is highly competitive with other methodologies. The

solution process for individual problems in [18] required the solution of up to approximately

28,000 linear programs, with a total of up to approximately 500,000 cuts generated. The

SDP relaxations used in [8] substantially reduce the amount of enumeration compared to

the algorithm of [18], but still required up to 104 CPU seconds on a 2.7 GHz Linux-based

computer to solve individual problems. Results for the general-purpose global optimiza-

tion solver BARON [13] on these problems were also reported in [18]. Of the 51 problems

considered, BARON was unable to solve 21 problems within 4000 CPU seconds on a 1.8

GHz Linux-based computer, and the problems that were solved required approximately 20

times more computation than that required using the algorithm of [18] running on a slower

machine. Good results using a methodology similar to that applied here for indefinite QPB

problems of similar dimensions were previously reported in [19]. (Yajima and Fujie [19]

consider additional valid inequalities for the BQP beyond the triangle inequalities, but only

approximate the semidefiniteness condition Y (x, X) � 0 by adding linear inequalities.)

The second example of QCQP that we consider is a circle-packing problem in the plane:

for a given n ≥ 2, find the maximum radius of n non-overlapping cicrles that all lie in the

unit box 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, i = 1, . . . , n. This geometric problem has been extensively

studied in the global optimization literature [10, 16]. Via a well-known transformation the

problem is equivalent to the “point packing” problem

PP : max θ

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ θ, 1 ≤ i < j ≤ n

0 ≤ x ≤ e, 0 ≤ y ≤ e.
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Obviously PP corresponds to an instance of QCQP with a linear objective and constraints

of the form fij(x, y, θ) ≤ 0, where

fij(x, y, θ) = −(xi − xj)
2 − (yi − yj)

2 + θ, 1 ≤ i < j ≤ n.

Note that these are all “reverse convex” constraints; i.e. each fij(·, ·, ·) is a concave quadratic

function. The variable θ represents the minimum squared distance separating n points in the

unit square; the corresponding radius for n circles that can be packed into the unit square

is
√

θ/[2(1 +
√

θ)].

In [2], bounds for the solution value of PP were computed using several combinations

of semidefiniteness and RLT constraints. Note that since PP involves no terms of the form

xiyj, all SDP and RLT constraints can be based on matrices X and Y relaxing xxT and yyT ,

respectively. In addition, it is clear that by symmetry one can assume that .5 ≤ xi ≤ 1,

i = 1, . . . , nx and .5 ≤ yi ≤ 1, i = 1, . . . , ny where nx = ⌈n/2⌉ and ny = ⌈nx/2⌉. We use

“SYM” to refer to any problem formulation that uses these more restricted bounds. (Section

5 of [2] considers more elaborate symmetry-breaking using order constraints, but we omit

discussion of this topic here.) The computational results obtained in [2] using the SDP, RLT

and SYM conditions are summarized in Conjecture 1. (As in Section 3, the SDP relaxation

includes the diagonal constraints diag(X) ≤ x and diag(Y ) ≤ y.) As described in [2], these

findings are stated as a conjecture since the solution values given were numerically obtained

for instances of size n ≤ 50.

Conjecture 1. [2] For n ≥ 2 consider the RLT and SDP relaxations of PP. Then:

1. The optimal value for the RLT relaxation is 2.

2. The optimal value for the SDP relaxation is 1 + 1
n−1

and adding the RLT constraints

does not change this value.

3. For n ≥ 5 the optimal value for the RLT+SYM relaxation is 1
2
.

4. For n ≥ 5 the optimal value for the SDP+SYM relaxation is 1
4

(
1 + 1

⌊(n−1)/4⌋

)
.

Note that the RLT bound of 2.0 is “worst possible” in that this is the maximum squared

distance between two points in the unit square. In Figure 2 we illustrate the various bounds
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Figure 2: Bounds on distance from relaxations of PP

described in Conjecture 1 for 2 ≤ n ≤ 30. (Figure 2 gives the square roots of the solution

values for the various relaxations, corresponding to bounds on the minimum distance bewteen

two points.) The “MAX” values correspond to high-precision estimates for the exact optimal

values of PP obtained by verified computing techniques [10].

Our interest here is to demonstrate a relationship between the bounds described in Con-

jecture 1 and bounds that correspond to replacing the quadratic constraints fij(x, y, θ) ≤ 0

with their convex lower envelopes. To do this we will utilize a specialization of Theorem 1

that applies when F = {x : 0 ≤ x ≤ e} and f(·) is concave.

Following the notation of [6], let BQPn denote the Boolean Quadric Polytope [11]

BQPn = Co{(x, {yij}1≤i<j≤n) : x ∈ {0, 1}n, yij = xixj, 1 ≤ i < j ≤ n}.

The definition of BQPn avoids duplication of variables due to the symmetry of xxT and the

fact that diag(xxT ) = x for binary x. For x ∈ ℜn, X ∈ ℜn×n it is then convenient to define

the projection operator

proj(x, X) = (x, {xij}1≤i<j≤n)

that deletes the components of X on and below the diagonal. Finally, define the convex set

Bn = {(x, X) : proj(x, X) ∈ BQPn, 0 ≤ diag(X) ≤ x}.
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We remark that the lower bounds 0 ≤ diag(X) are not actually required in the sequel, but

we prefer to include them so as to make Bn bounded.

Theorem 5. Let F = {x : 0 ≤ x ≤ e}. For x ∈ F , let f(x) = xT Qx + cT x, where

diag(Q) ≤ 0, and let f̂(·) be the convex lower envelope of f(·) on F . Then f̂(x) = min{Q •
X + cT x : (x, X) ∈ Bn}.

Proof. The proof is similar to that of Theorem 1, but since several steps require modifications

we include the details. For x ∈ F , let g(x) = min{Q • X + cT x : (x, X) ∈ Bn}. Our goal

is to show that f̂(x) = g(x). To do this we first show that g(·) is a convex function with

g(x) ≤ f(x), x ∈ F , implying that g(x) ≤ f̂(x).

Assume that for i ∈ {1, 2}, xi ∈ F and g(xi) = Q • X i + cT xi, where (xi, X i) ∈ Bn. For

0 ≤ λ ≤ 1, let

x(λ) = λx1 + (1 − λ)x2, X(λ) = λX1 + (1 − λ)X2.

Then (x(λ), X(λ)) ∈ Bn, since Bn is convex. It follows that

g(x(λ)) ≤ Q • X(λ) + cT x(λ) = λg(x1) + (1 − λ)g(x2),

proving that g(·) is convex on F . It is shown in [6, Proposition 5] that if x ∈ F , then

proj(x, xxT ) ∈ BQPn, and 0 ≤ diag(xxT ) ≤ x for x ∈ F . It follows that (x, xxT ) ∈ Bn for

any x ∈ F , and therefore g(x) ≤ Q • xxT + cT x = f(x).

It remains to show that f̂(x) ≤ g(x). Assume that g(x) = Q•X+cT x, where (x, X) ∈ Bn.

From the definition of Bn, there exist xi ∈ {0, 1}n, and λi ≥ 0, i = 1, . . . , k,
∑k

i=1 λi = 1

such that

proj

( k∑

i=1

λix
i,

k∑

i=1

λix
i(xi)T

)
= proj(x, X).

Define

X̄ =
k∑

i=1

λix
i(xi)T .

From the definition of Bn we then have

Xij = X̄ij, i 6= j

0 ≤ Xii ≤ X̄ii = xi, i = 1, . . . , n.
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Therefore

g(x) = Q • X + cT x

= Q • X̄ + cT x +
n∑

i=1

qii(Xii − xi)

≥ Q • X̄ + cT x

=
k∑

i=1

λif(xi).

But f̂(·) is convex on F , and f̂(x) ≤ f(x) for all x ∈ F , so

f̂(x) = f̂

(
k∑

i=1

λix
i

)
≤

k∑

i=1

λif̂(xi) ≤
k∑

i=1

λif(xi) ≤ g(x).

See [6, Proposition 9] for a result closely related to Theorem 5. Using Theorem 5 we

can prove an interesting relationship between bounds for PP obtained using convex lower

envelopes of the constraints versus bounds obtained using RLT constraints on (x, X) and

(y, Y ). Slightly abusing notation, we can write the constraint functions for PP in the form

fij(x, y, θ) = fij(x) + fij(y) + θ,

where fij(x) = −(xi − xj)
2, and therefore the convex lower envelope can be written in the

form

f̂ij(x, y, θ) = f̂ij(x) + f̂ij(y) + θ.

Theorem 6. For F = {(x, y) : 0 ≤ x ≤ e, 0 ≤ y ≤ e}, let ẑ be the solution value for

the relaxation of PP obtained by replacing the constraint functions with their convex lower

envelopes on F , and let zRLT be the solution value for the relaxation that imposes the RLT

constraints on (x, X) and (y, Y ). Then ẑ ≥ zRLT. Moreover this relationship continues to

hold if F is replaced by the tighter SYM bounds.

Proof. By Theorem 5,

fij(x) = min{2xij − xii − xjj : ((xi, xj), X[i,j]) ∈ B2},

where X[i,j] is the principal submatrix of X corresponding to row and column indeces i and

j. However, BQP2 is completely characterized by the RLT inequalities on xij [11], and the
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additional constraints 0 ≤ xii ≤ xi, 0 ≤ xjj ≤ xj of B2 are RLT constraints on the diagonal

elements of X. The result immediately follows. When applying the tighter SYM bounds,

we can apply an affine transformation to the variables to re-write the problem in terms of

transformed variables (x′, y′) with 0 ≤ x′ ≤ e, 0 ≤ y′ ≤ e, and use the fact that the convex

lower envelopes and RLT constraints [14, Proposition 8.4] are both invariant with respect to

affine transformations of the variables.

Since the RLT constraints on (x, X) and (y, Y ) are already sufficient to characterize the

convex lower envelopes of the quadratic constraints in PP, it would be natural to speculate

that adding the semidefiniteness conditions X � xxT and Y � yyT would have no effect on

bounds for the solution value. The values given in Conjecture 1 show that this is not the case.

Note, however, that each convex lower envelope f̂ij(x) requires only values of the variables

X[i,j], and the semidefiniteness condition Y (x, X) � 0 is stronger than the condition that all

principal submatrices of Y (x, X) corresponding to two variables are semidefinite.
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