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Abstract

It is well known that the analysis of the large-time asymptotics of
Fokker-Planck type equations by the entropy method is closely related
to proving the validity of convex Sobolev inequalities. Here we highlight
this connection from an applied PDE point of view.

In our unified presentation of the theory we present new results to the
following topics: an elementary derivation of Bakry-Emery type conditions,
results concerning perturbations of invariant measures with general admis-
sible entropies, sharpness of convex Sobolev inequalities, applications to
non-symmetric linear and certain non-linear Fokker-Planck type equations
(Desai-Zwanzig model, drift-diffusion-Poisson model).
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1 Introduction

One of the fundamental problems in kinetic theory and, more generally, in ther-
modynamics, is the analysis of the time decay (rate) of solutions of IVP models
towards their thermal equilibrium states. The maybe most often applied method-
ology in time asymptotics of PDE’s modeling thermodynamical systems is the
entropy method, where the convergence towards equilibrium is concluded using
the time monotonicity of the physical entropy of the system. A classical example
for this approach is provided by the spatially homogeneous Boltzmann equation,
where convergence to the Maxwellian equilibrium state has been proven in this
way (cf., e.g., [CeIlPu94], Theorem 6.4.1 and the references therein).

To illustrate the entropy approach we shall now present two simple (even explic-
itly solvable) kinetic model problems outlining the ideas which we will develop
in this paper.

At first we consider the Bhatnagar-Gross-Krook (BGK) model of gas dynamics,
which is a simplified version of the Boltzmann equation [BhGrKr54]. The IVP
for the space homogeneous version reads:

∂f

∂t
= J(f) := ν

(
Mf − f

)
, v ∈ IRn, t ≥ 0, (1.1a)

f(v, t = 0) = fI(v), v ∈ IRn (1.1b)

(of course, only the case n = 3 is of physical interest), with the normalization∫
IRnfIdv = 1. Here Mf = Mf (v) denotes the Maxwellian distribution function

Mf (v) = m (2πΘ)−n/2 exp

(
−|v − u|2

2Θ

)
(1.2)

with mass

m =

∫
IRn

fdv,
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mean velocity

u =

∫
IRn

vfdv/m

and temperature

Θ =

∫
IRn

(v − u)2f/nm.

The relaxation rate ν is assumed to be a positive constant. It is then an easy
exercise to show that m, u and Θ are left invariant under the temporal evolution
of (1.1), such that these quantities can be computed from the initial data fI , and
Mf(t) ≡MfI follows.

The exponential L1(IRn
v )-convergence of f(., t) to its equilibrium state MfI with

rate ν can be easily verified by explicitly solving (1.1).

For carrying out the entropy approach we consider the physical entropy (Boltz-
mann’s H-functional)

H(f) =

∫
IRn

f ln fdv (1.3)

and the entropy dissipation

I(f) =

∫
IRn

ln fJ(f)dv, (1.4)

with the easily verifiable relation

d

dt
H(f(t)) = I(f(t)). (1.5)

Since lnMf is quadratic in v and due to the conservation of mass, mean velocity
and temperature, we calculate

I(f(t)) = ν

∫
IRn

ln f(t)
(
Mf(t) − f(t)

)
dv

= −ν
∫
IRn

(
ln f(t) − lnMf(t)

) (
f(t) −Mf(t)

)
dv

= −ν
∫
IRn

ln

(
f(t)

Mf(t)

)
f(t)dv − ν

∫
IRn

ln

(
Mf(t)

f(t)

)
Mf(t)dv.

Since f(t) and Mf(t) have the same mass, Jensen’s inequality implies that both
terms are nonpositive. Thus we obtain the stronger version of Boltzmann’s H-
Theorem

−I(f(t)) ≥ νe(f(t)|Mf(t)) (1.6)

where the so called relative (to the Maxwellian) entropy is defined by

e(f |Mf) :=

∫
IRn

f ln

(
f

Mf

)
dv. (1.7)
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Note that e(f |Mf) = 0 iff f = Mf (Gibb’s Lemma). Again, since lnMf is
quadratic in v and since f(t) and Mf(t) have the same mass, velocity and tem-
perature, we have

e(f(t)|Mf(t)) = H(f(t)) −H(Mf(t)),

and since Mf(t) ≡MfI we conclude from (1.5), (1.6)

d

dt
e
(
f(t)|Mf(t)

)
=

d

dt
H(f(t)) = I(f(t)) ≤ −νe (f(t)|Mf(t)

)
.

Exponential convergence to zero of the relative entropy with rate ν follows im-
mediately (for initial data which have finite relative entropy)

e(f(t)|MfI ) ≤ e−νte(fI |MfI ), t ≥ 0. (1.8)

The Csiszár-Kullback inequality [Csi63],[Kul59]

‖f −Mf‖2
L1(IRn) ≤ 2e(f |Mf ) (1.9)

then gives L1(IRn)-convergence to equilibrium (at the suboptimal rate ν
2
).

Summing up, we used the lower bound (1.6) of the (negative) entropy dissipation
in terms of the relative entropy to explicitly control the convergence of the (rela-
tive and absolute) entropies and to control the strong convergence of the solution
to its equilibrium state. The second model problem, which is a two-velocity ra-
diative transfer model, demonstrates that the approach of the first example may
not be general enough. We consider the ODE in IR2:

dΦ

dt
= λ

( −1 1
1 −1

)
Φ, t ≥ 0 (1.10a)

Φ(0) =

(
uI
vI

)
(1.10b)

where Φ(t) =

(
u(t)
v(t)

)
and λ > 0. Since we consider (1.10) as a kinetic model,

we assume – for physical reasons only – uI , vI ≥ 0 which implies u(t), v(t) ≥ 0.
Obviously, u(t) and v(t) tend exponentially with rate 2λ to their equilibrium
state w∞ = (uI + vI)/2. To apply the entropy approach let ψ = ψ(s) be any
smooth strictly convex function, defined on IR+, with ψ(1) = 0. We introduce
the relative entropy generated by ψ:

eψ(Φ|Φ∞) :=

(
ψ(

u

w∞
) + ψ(

v

w∞
)

)
w∞ (1.11)
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where we denoted the steady state

Φ∞ =

(
w∞
w∞

)
.

Differentiating (1.11) with respect to t and using (1.10) gives the entropy equation

d

dt
eψ(Φ(t)|Φ∞) = Iψ(Φ(t)|Φ∞) (1.12)

with the dissipation term

Iψ(Φ|Φ∞) = −λ(u− v)

(
ψ′(

u

w∞
) − ψ′(

v

w∞
)

)
. (1.13)

Since ψ is strictly convex we have Iψ(Φ|Φ∞) ≤ 0 with equality iff Φ = Φ∞. Now
it is not immediate to bound the absolute value of the entropy dissipation (1.13)
from below directly by a multiple of the relative entropy (1.11). Therefore we
consider the time evolution of the entropy dissipation. Differentiating (1.13) gives

d

dt
Iψ(Φ(t)|Φ∞) = Rψ(Φ(t)|Φ∞) (1.14)

with the entropy dissipation rate

Rψ(Φ(t)|Φ∞) = −2λIψ(Φ(t)|Φ∞) + λ2 (u(t) − v(t))2

w∞

(
ψ′′(

u(t)

w∞
) + ψ′′(

v(t)

w∞
)

)
.

(1.15)
We can now bound the entropy dissipation rate from below by a multiple of the
negative entropy dissipation:

Rψ(Φ(t)|Φ∞) ≥ −2λIψ(Φ(t)|Φ∞)

and conclude exponential convergence with rate 2λ of the entropy dissipation
from (1.14)

|I(Φ(t)|Φ∞)| ≤ |I(ΦI |Φ∞)|e−2λt. (1.16)

Inserting Iψ(Φ(t)|Φ∞) from (1.15) into (1.12) and using (1.14) gives after integra-
tion from s = t to s = ∞ (using limt→∞ e(Φ(t)|Φ∞) = limt→∞ Iψ(Φ(t)|Φ∞) = 0)

eψ(Φ(t)|Φ∞) +

∫ ∞

t

λ(u(s) − v(s))2

2w∞

(
ψ′′(

u(s)

w∞
) + ψ′′(

v(s)

w∞
)

)
ds = −I(Φ(t)|Φ∞)

2λ
.

(1.17)
First of all, (1.17) gives the exponential decay with rate 2λ of the relative entropy
eψ, and hence again the suboptimal decay rate λ of Φ(t) towards Φ∞. Moreover,
(1.17) furnishes an inequality involving the strictly convex function ψ, i.e. we
obtain the Sobolev-type inequality(

ψ(
uI
w∞

) + ψ(
vI
w∞

)

)
w∞ ≤ 1

2
(uI − vI)

(
ψ′(

uI
w∞

) − ψ′(
vI
w∞

)

)
(1.18)
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for all uI , vI ≥ 0 by setting t = 0 in (1.17). Also, (1.17) implies that equality in
(1.18) holds iff u(t) ≡ v(t) for all t ≥ 0 which is equivalent to uI = vI = w∞.

The inequality (1.18) can also be obtained in a direct way (cp. Example 2.6 of
[Gro93], [GaMaUn97]), however, the presented approach allows generalization to
much more complex thermodynamical IVP’s (as will be the subject of the next
sections). Particularly, the second example shows that in some cases it is not
immediate to derive exponential decay of the relative entropy (and equivalently,
Sobolev-type inequalities) from the entropy equation only. It is often convenient
for the computations to consider the evolution of the entropy dissipation and to
find a lower bound of the entropy dissipation rate in terms of the absolute value
of the entropy dissipation.

This leads directly to the main subject of this paper. In the following sections
we shall consider the IVP for Fokker-Planck type equations (cf. (2.1)) and apply
the methodology presented above.

More specifically, Section 2 will be concerned with the decay of the relative en-
tropy as t→ ∞. There we shall obtain conditions on the entropy, the diffusion
matrix and on the velocity field which allows for exponential convergence under
weak conditions on the initial data (bounded relative entropy). Section 3 then is
concerned with the derivation of various forms of Sobolev-type inequalities and
with the analysis of conditions which guarantee that the inequalities ‘saturate’
non trivially. In Section 4 we apply the developed theory to nonlinear Fokker-
Planck models.

We conclude this introduction with a brief (and incomplete) discussion of the
relevant literature and of those issues where our approach differs from already
existing ones 1. Most importantly, our approach is based on the work by D. Bakry
and M. Emery (cf. e.g., [BaEm84], [Bak91], [Bak94]), which provides a very gen-
eral framework for hypercontractive semigroups and generalized Sobolev-type
inequalities using the so-called iterated gradient (Γ2) formalism [BaEm86]. We
rephrase the Γ2 approach in PDE-language and, in fact, some of our results are

1In the time period between the submission of the first version of this paper and the re-
submission of the revised version, the entropy-entropy dissipation method for the large-time
asymptotics of IVP’s with thermodynamical content and the field of generalized Sobolev in-
equalities blossomed and many papers were authored, some of which use and extend the results
and techniques of this work. For the convenience of the reader we give here an (incomplete) list
of related works of the above-mentioned time period: nonlinear Fokker-Planck type equations
(porous medium and fast diffusion type) [BiDo99], [BDM99] [CMU99], [CaTo98], [CJMTU99],
[DoDe99], [Ott99]; linear Fokker-Planck equations on phase space without x-dissipation / fric-
tion (cp. Section 2.4) [DeVi99], and non-symmetric equations (cp. Section 2.4) [ArCa99];
dissipative systems with slower than exponential decay including linear Fokker-Planck type
equations with non-uniformly convex (at |x| = +∞) confining potentials [ToVi99]; necessary
and sufficient conditions for a logarithmic Sobolev inequality in one dimension [BoGo99]. For
a review including very recent results we refer to [MaVi99].
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concretizations of the Bakry-Emery criterion (cf. the references cited above) to
Fokker-Planck type equations. However, in the Bakry-Emery formalism an ex-
plicit control of the remainder term in the Sobolev inequalities is not straightfor-
ward. Actually, this computation is much simpler to carry out in our PDE-style
approach. Let us explain this point in more detail. Careful reading of the radia-
tive transfer-type example presented above shows that the analysis of the time
decay of the entropy dissipation gives at the same time the “sharp” decay of
the relative entropy as well as the remainder in (1.17). The knowledge of this
remainder allows to identify in (1.18) the (unique) state saturating the Sobolev-
type inequality. Hence, the entropy approach gives at the same time a proof of
a “convex” inequality and all cases of equality. We believe that the latter is in
many cases rather difficult to extract from the Bakry-Emery approach.

As far as the classical Gross logarithmic Sobolev inequality is concerned [Gro75],
the identification of the cases of equality is due to Carlen [Car91] and, slightly
later, to Ledoux [Led92]. Carlen’s approach is based on a somewhat different
method, which relies on information-type inequalities, and ultimately requires a
deep investigation of properties of Gaussian functions. In the same paper, the
connection between Gross’ logarithmic Sobolev inequality and the linear Fokker-
Planck equation (with quadratic confinement potential and the identity as diffu-
sion matrix) , through the Fisher measure of information and the Blachman-Stam
inequality [Bla65], [Sta59] has been fruitfully developed. The entropy-entropy
dissipation approach for the same Fokker-Planck equation has been recently ad-
dressed in [Tos96b], [Tos97a]. There, the cases of equality follow easily from the
identification of the remainder. Physically speaking, the entropy approach put in
evidence that the remainder in this type of inequalities depends on the complete
dynamics in time of the solution of the (mass-conserving) linear problem that
generates the inequality itself. In other words, many Sobolev type inequalities
can be interpreted as a bound for the relative entropy of the initial state with re-
spect to the steady state of a linear mass conserving system (with thermodynamic
content) in terms of the absolute value of the corresponding entropy dissipation.

An excellent background reference for logarithmic Sobolev inequalities is the
overview paper [Gro93]. General linear homogeneous radiative transfer equa-
tions generating certain inequalities involving convex functions are analyzed in
[GaMaUn97]. A calculation of the logarithmic Sobolev constant for non-symmetric
ODEs in IR2 (generalizing our second example above) is presented in the appendix
of [DiSC96]. Entropy dissipation arguments for the decay of the solution of the
heat equation in IRn towards the fundamental solution were used in [Tos96a]. A
further application in kinetic theory is to be found in the asymptotic analysis
of the spatially homogeneous Boltzmann equation [ToVi99], and in its so called
‘grazing collisions limit’ given by the Landau-Fokker-Planck equation [DeVi97a],
[DeVi97b]. In particular, the paper [ToVi99] gives a satisfactory answer to the
problem of finding a lower bound for the absolute value of the entropy dissipation
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associated with the spatially homogeneous Boltzmann equation.

2 Decay to the thermal equilibrium state as t→ ∞
We now consider the IVP for the Fokker-Planck type equation

ρt = div(D(∇ρ+ ρ∇A)), x ∈ IRn, t > 0, (2.1a)

ρ(t = 0) = ρI ∈ L1(IRn). (2.1b)

with the sufficiently regular confinement potentialA = A(x) (i.e.A ∈W 2,∞
loc (IRn; IR)

and e−A ∈ L1(IRn). We assume that the symmetric diffusion matrix D = D(x) =
(dij(x)) is locally uniformly positive definite on IRn and dij ∈ W 2,∞

loc (IRn; IR),
i, j = 1, . . . , n. Obviously we have the conservation property∫

IRn

ρ(x, t)dx =

∫
IRn

ρI(x)dx. (2.2)

In a kinetic context, the independent variable x in (2.1) stands for the velocity.

In this Section we assume (without restriction of generality)∫
IRn

ρI(x)dx = 1.

One easily sees that (2.1a) has the steady state

ρ∞(x) = e−A(x) ∈ L1
+(IRn), (2.3)

assuming (w.r.o.g.) A to be normalized as
∫
IRne−A(x)dx = 1. We remark that

(by a simple minimum principle) ρI(x) ≥ 0 (and ρI not identically zero) implies
ρ(x, t) > 0 for all x ∈ IRn, t > 0.

In this Section we shall investigate the convergence of ρ(t) towards the steady
state ρ∞ in various norms and in relative entropy. In particular we are concerned
with equations (2.1a) which exhibit an exponential decay to the steady state
(2.3).

2.1 Spectral gap of the symmetrized equation - “linear
methods”

We transform equation (2.1) to symmetric form (on L2(IRn)). Therefore we set

z := ρ/
√
ρ∞,
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which satisfies the IVP

zt = div(D∇z) − V (x)z, x ∈ IRn, t > 0,

z(t = 0) = zI := ρI/
√
ρ∞ on IRn. (2.4)

Here, V (x) denotes the potential

V (x) = −1

2
[Tr(D

∂2A

∂x2
)− 1

2
(∇A)�D∇A+ (divD) · ∇A], x ∈ IRn, t > 0. (2.5)

∂2A
∂x2 is the Hessian of A(x) and the superscript “�” denotes transposition. Now
define the Hamiltonian

Hz = −div(D∇z) + V z (2.6)

on the domain
DQ := {z ∈ L2(IRn)|Q(z, z) <∞}

of the quadratic form Q(z1, z2) := (Hz1, z2)L2(IRn) given by

Q(z1, z2) :=

∫
IRn

∇�
(

z1√
ρ∞

)
D(x)∇

(
z2√
ρ∞

)
ρ∞(dx)

(obtained from (2.6) by a simple calculation). For the following we shall assume
that the diffusion matrix D(x) and the potential A(x) are such that H generates
a C0-semigroup on L2(IRn) (for various sufficient conditions see [ReSi86]). Note
that H satisfies

Hz =
√
ρ∞N

(
z√
ρ∞

)
, z ∈ DQ,

where N is the Dirichlet form-type operator on L2(IRn, dρ∞) defined by

(Nu, v)L2(IRn,dρ∞) :=

∫
IRn

∇�uD∇v ρ∞(dx)

(see [Gro93]). For future reference we also remark that

−
∫
IRn

ρ2

ρ∞
Lρ1 dx = Q

(
ρ1√
ρ∞

,
ρ2√
ρ∞

)
;

ρ1√
ρ∞

,
ρ2√
ρ∞

∈ DQ. (2.7)

Here L denotes the appropriate extension of the Fokker-Planck type operator

Lρ := div (D (∇ρ+ ρ∇A)) .

Obviously the spectrum σ(H) is contained in [0,∞). Since Q(z) = 0 iff z =
const.

√
ρ∞ we conclude that the ground state z∞ = exp(−A/2) of H is non-

degenerate and that ρ∞ is the unique normalized steady state of (2.1a).
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The solution of (2.4) can be written as

z(t) =
√
ρ∞ +

∫
(0,∞)

e−λtd(Pλ
ρI√
ρ∞

), (2.8)

where Pλ is the projection valued spectral measure of H . Of course, we assume
here ρI/

√
ρ∞ ∈ L2(IRn). From this spectral representation we immediately con-

clude the convergence of z(t) to
√
ρ∞ in L2(IRn) as t→ ∞. Let us now consider

a Hamiltonian H with a positive spectral gap λ0 (i.e. distance of σ(H)\{0} from
the eigenvalue 0). For the case D(x) ≡ I, the identity matrix, a simple sufficient
condition for a positive spectral gap is given by V ∈ L1

loc(IR
n; IR), V (x) bounded

below and V (x)→ ∞ for |x|→ ∞ (see e.g. [ReSi87a, Th. XIII.67]). In this case
we obtain exponential convergence:

‖z(t) −√
ρ∞‖L2(IRn) ≤ ‖zI −√

ρ∞‖L2(IRn)e
−tλ0 , (2.9)

which implies exponential convergence of ρ(t) to ρ∞ in L1(IRn):∫
IRn

|ρ(t) − ρ∞|dx =

∫
IRn

√
ρ∞

|ρ(t) − ρ∞|√
ρ∞

dx

≤ ‖ρ∞‖
1
2

L1(IRn)‖z(t) −
√
ρ∞‖L2(IRn) = O(e−tλ0). (2.10)

Example 2.1. Take A ∈ C2 (IRn; IR) such that, for some α > 0, c > 0, L > 0

A(x) = c|x|2α, |x| > L

and
D(x) = I on IRn.

Then we compute

V (x) = c2α2|x|2(2α−1) − cα (n+ 2α− 2) |x|2(α−1), |x| > L.

Clearly, the above mentioned growth assumptions on V , which are sufficient for
a positive spectral gap at 0, are satisfied if and only if α > 1/2.

We shall later on see that, if the diffusion matrix is the identity, at least quadratic
growth of A(x) at |x| = +∞ is necessary to carry out the entropy-entropy dissi-
pation approach giving exponential convergence to zero of the relative entropy.

The simple spectral approach of course only holds under the restrictive assump-
tion ρI/

√
ρ∞ ∈ L2(IRn). Also, as can be seen from the above, conditions for a

positive spectral gap at 0 of the Hamiltonian (2.6) are usually phrased in D, V
and are by no means intuitive in terms of D and A. In order to remedy this issue
and to better illustrate the convergence of ρ(t) towards ρ∞ we below investigate
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the decay in relative entropy e(ρ(t)|ρ∞) defined by (1.7). In fact, we shall not
only consider this logarithmic “physical entropy”, but a wider class of relative
entropies which essentially lie ‘between’ this physical entropy and the quadratic
functional ‖ρ(t) − ρ∞‖2

L2(IRn,ρ−1∞ (dx))
. The entropy approach shall use a uniform

convexity condition on the confining potential A, which is much easier to verify
than typical conditions on the existence of a spectral gap of the Hamiltonian H .

For future reference we also consider a second symmetrization of (2.1) (on L2(IRn, dρ∞))
which is more commonly used in the probabilistic literature on this subject. We
set

μ := ρ/ρ∞,

which satisfies the IVP

μt = ρ−1
∞ div(ρ∞D∇μ) = div(D∇μ) − (∇A)�D∇μ =: L̃μ, x ∈ IRn, t > 0,

μI := ρI/ρ∞ ∈ L1(IRn, dρ∞). (2.11)

In terms of this symmetrized problem we shall extend the allowed initial data μI
from L2(IRn, dρ∞) to the Orlicz space L1 logL(IRn, dρ∞).

2.2 Admissible relative entropies and their generating
functions

We now introduce the relative entropies, which we shall use in the sequel, and
discuss their analytical properties.

Definition 2.2. Let J be either IR or IR+ := (0,∞) . Let ψ ∈ C(J) ∩ C4(J)
satisfy the conditions

ψ(1) = 0, (2.12a)

ψ′′ ≥ 0, ψ′′ �≡ 0 on J, (2.12b)

(ψ′′′)2 ≤ 1

2
ψ′′ψIV on J. (2.12c)

Let ρ1 ∈ L1(IRn), ρ2 ∈ L1
+(IRn) with

∫
ρ1dx =

∫
ρ2dx = 1 and ρ1/ρ2 ∈ J ρ2(dx)−

a.e. Then

eψ(ρ1|ρ2) :=

∫
IRn

ψ(
ρ1

ρ2

) ρ2(dx) (2.13)

is called an admissible relative entropy (of ρ1 with respect to ρ2) with generating
function ψ.

Note that
eψ(ρ1|ρ2) ≥ 0 (2.14)

follows from Jensen’s inequality.
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Remark 2.3. The condition (2.12c) is equivalent to(
1

ψ′′

)′′

≤ 0 (2.15)

whenever ψ′′ > 0. Since (2.15) excludes positive poles of 1
ψ′′ we conclude ψ′′ > 0

on J . Thus admissible entropies are generated by strictly convex functions ψ.

Remark 2.4. If ψ satisfies the conditions (2.12a)–(2.12c), so does its ”normal-

ization” ψ̃(σ) = ψ(σ) − ψ′(1)(σ − 1), and they both generate the same relative
entropy: eψ̃(ρ1|ρ2) = eψ(ρ1|ρ2). In the sequel we will therefore assume that the
generator ψ of eψ be normalized as

ψ′(1) = 0. (2.13d)

This implies that the relative entropies eψ and their generators ψ are bijectively
related. Due to the convexity of ψ we have

ψ ≥ 0 on J. (2.16)

Our class of generating functions ψ coincides with those considered in [BaEm84]
(up to the normalizations (2.12a), (2.13d)).

We now list some typical examples of admissible relative entropies on J = IR+:
The physical relative entropy (1.7) is generated by χph(σ) = σ lnσ−σ+1 rather
than by ψ(σ) = σ ln σ. It is a special case of the admissible relative entropies
generated by

χ(σ) = α(σ + β) ln
σ + β

1 + β
− α(σ − 1), σ > 0; α > 0, β ≥ 0, (2.17a)

with continuous extension to σ = 0. For 1 < p < 2

ξp(σ) = α
[
(σ + β)p − (1 + β)p − p(1 + β)p−1(σ − 1)

]
, σ ≥ 0; α > 0, β ≥ 0,

(2.17b)
and for p = 2

ϕ(σ) = α(σ − 1)2, σ ≥ 0; α > 0, (2.17c)

generate admissible relative entropies. In the last example we clearly have eϕ(ρ1|ρ2) =
α(‖ρ1‖2

L2(IRn,ρ−1
2 (dx))

− 1).

In the above definition we excluded linear entropy functionals as they would be
zero due to the assumed normalizations of ρ1 and ρ2.

In the following Lemmata we derive important properties of admissible entropies:

Lemma 2.5. For J = IR all admissible entropies are generated by (2.17c).
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Proof: Let g(σ) := 1
ψ′′(σ)

, σ ∈ IR. g′′ ≤ 0 and g > 0 on IR imply g(σ) = const
> 0, and the assertion follows.

For the following we shall assume J = IR+ and ρI ≥ 0. Except being reasonable
from a kinetic and probabilistic viewpoint this case allows for a richer mathemat-
ical structure since only quadratic admissible entropies exist for J = IR.

The above examples (2.17a), (2.17c) of admissible entropies include the two lim-
iting cases for the asymptotic behavior (as σ → ∞) of the generating function ψ.
An admissible relative entropy eψ(ρ1|ρ2) can be bounded below by a logarithmic
subentropy eχ and bounded above by a quadratic superentropy eϕ:

Lemma 2.6. Let ψ generate an admissible relative entropy with J = IR+. Then
there exists a logarithmic-type function χ (2.17a) and a quadratic function ϕ
(2.17c) such that

χ(σ) ≤ ψ(σ) ≤ ϕ(σ), σ ∈ J, (2.18a)

and hence
0 ≤ eχ(ρ1|ρ2) ≤ eψ(ρ1|ρ2) ≤ eϕ(ρ1|ρ2). (2.18b)

χ and ϕ both satisfy (2.12) and thus generate, respectively, an admissible sub-
and superentropy for eψ.

Proof: Since J = IR+, the function g from the proof of Lemma 2.5 satisfies

g > 0, g′ ≥ 0, g′′ ≤ 0 on J. (2.19)

Now denote the derivatives of the given function ψ by

ψ(1) = 0, ψ′(1) = 0, ψ′′(1) =: μ2 > 0, ψ′′′(1) =: μ3 ≤ 0. (2.20)

From (2.19) we readily get the estimate

σμ−1
2 , 0 < σ < 1

μ−1
2 , σ > 1

}
≤ g(σ) ≤ γσ + δ, σ > 0,

with γ := −μ3μ
−2
2 ≥ 0, δ := (μ2 + μ3)μ

−2
2 ≥ 0. Integrating the corresponding

estimate for ψ′′ = 1
g
,

(γσ + δ)−1 ≤ ψ′′(σ) ≤
{
μ2/σ, 0 < σ < 1
μ2, σ > 1

(2.21)

we obtain with (2.20) the upper bound for ψ:

ψ(σ) ≤
{
μ2(σ ln σ − σ + 1), 0 < σ < 1

μ2

2
(σ − 1)2, σ > 1

}
≤ μ2(σ − 1)2 =: ϕ(σ), σ > 0. (2.22)
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To derive the lower bound of ψ one integrates (2.21) twice to show χ(σ) ≤ ψ(σ).
For γ > 0 the function χ(σ) is given by (2.17a) with α = 1

γ
, β = δ

γ
.

If γ = 0 we set

χ(σ) =
μ2

2
(σ − 1)2. (2.23)

The sub- and superentropies are certainly the most important ones from both the
physical and mathematical point of view. Via their exponential decay they cor-
respond, resp., to hypercontractivity and (strict) contractivity of the semigroup
generated by (2.11). However, we shall here in a unified treatment consider all
admissible entropies in order to clarify the mathematical picture by also deriv-
ing the interpolating Sobolev inequalities of Beckner (see (3.8) below) and decay
results in Orlicz spaces between L1 logL(IRn, dρ∞) and L2(IRn, dρ∞).

The well-known Csiszár-Kullback inequality ([Csi63], [Kul59]) shows that the
logarithmic relative entropy (1.7) e = eχph

is a ‘measure’ for the distance between
two normalized L1

+(IRn)-functions ρ1, ρ2 with
∫
IRnρ1dx =

∫
IRnρ2dx = 1:

1

2
‖ρ1 − ρ2‖2

L1(IRn) ≤ e(ρ1|ρ2). (2.24)

In a simple calculation using the subentropy eχph
and Lemma 2.6 this inequality

can be extended to any admissible entropy eψ: For γ > 0, and χ hence given
by (2.17a) we introduce the normalized function ρ̃ := γρ1+δρ2

γ+δ
≥ 0, and estimate

using (2.24):

1

2
‖ρ1 − ρ2‖2

L1(IRn) =
μ2

2

2μ2
3

‖ρ̃− ρ2‖2
L1(IRn) ≤

μ2
2

μ2
3

e(ρ̃|ρ2) =
1

μ2
eχ(ρ1|ρ2). (2.25)

With (2.18b) this gives

1

2
‖ρ1 − ρ2‖2

L1(IRn) ≤
1

μ2
eψ(ρ1|ρ2), (2.26)

with the notation μ2 = ψ′′(1) = χ′′(1). If γ = 0, (2.26) is easily derived with
the estimate (2.10) and with (2.23). A detailed analysis of Csiszár-Kullback
inequalities is the topic of [AMTU00].

Remark 2.7. The physical relative entropy e = eχph
can be written as difference

e(ρ|ρ∞) = F (ρ|A) − F (ρ∞|A); F (ρ|A) :=

∫
IRn

(ρ ln ρ+ A(x)ρ)dx.

In thermodynamics ([Ell85]), F (ρ|A) is referred to as free energy of the state ρ
under the action of the potential A. F is the sum of the physical entropy and the
(potential) energy.
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In our subsequent analysis we shall need the continuity of the relative entropy:

Lemma 2.8. Let the sequence ρj → ρ (as j → ∞) in L2
+(IRn, ρ−1

∞ (dx)) with the
normalization

∫
ρjdx =

∫
ρdx =

∫
ρ∞dx = 1. Then for all admissible entropies

ψ with J = IR+:
eψ(ρj |ρ∞) → eψ(ρ|ρ∞) as j→ ∞. (2.27)

Proof: Since ψ ∈ C[0, 1] there exists for any ε > 0 a positive δ = δ(ε) such that

|ψ(σ1) − ψ(σ2)| < ε for 0 ≤ σ1,2 ≤ δ(ε). (2.28)

Integrating (2.21) we readily obtain the estimate:

∃C1(δ) such that |ψ′(σ)| ≤ C1(δ)(1 + σ) for σ ≥ δ. (2.29)

We shall first derive estimates on |ψ(a) − ψ(b)|; a, b ∈ J , for three different cases
of a and b. For a, b ≥ δ we use the mean value theorem and the monotonicity of
ψ′ to estimate:

|ψ(a) − ψ(b)| ≤ |a− b|(|ψ′(a)| + |ψ′(b)|) ≤ |a− b|C1(δ)(2 + a+ b). (2.30)

For the next case assume a ≥ δ, b < δ (or vice versa). With (2.30) this yields

|ψ(a) − ψ(b)| ≤ |ψ(a) − ψ(δ)| + |ψ(δ) − ψ(b)|
≤ (a− δ)C1(δ)(2 + a+ δ) + (δ − b)C2(δ)

≤ |a− b| [C1(δ)(2 + a + b+ δ) + C2(δ)] , (2.31)

with C2(δ) := supc∈[0,δ)
|ψ(δ)−ψ(c)|

δ−c <∞.

Finally, for a, b < δ we have |ψ(a) − ψ(b)| < ε from (2.28).

Using these three estimates we can now control the difference of relative entropies.
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For arbitrarily small ε we estimate:

|eψ(ρj|ρ∞) − eψ(ρ|ρ∞)|
≤

∫
{ ρj

ρ∞≥δ or ρ
ρ∞≥δ}

∣∣∣∣ψ( ρj
ρ∞

)
− ψ

(
ρ

ρ∞

)∣∣∣∣ ρ∞dx (2.32)

+

∫
{ ρj

ρ∞ , ρ
ρ∞<δ}

∣∣∣∣ψ( ρj
ρ∞

)
− ψ

(
ρ

ρ∞

)∣∣∣∣ ρ∞dx
≤ [C1(δ)(2 + δ) + C2(δ)]

∫
IRn

|ρj − ρ|dx (2.33)

+ C1(δ)

∫
IRn

|ρj − ρ|√
ρ∞

ρj + ρ√
ρ∞

dx+ ε

∫
IRn

ρ∞dx

≤ [C1(δ)(2 + δ) + C2(δ)] ‖ρj − ρ‖L1(IRn)

+ C1(δ)‖ρj − ρ‖L2(IRn,ρ−1∞ (dx))‖ρj + ρ‖L2(IRn,ρ−1∞ (dx)) + ε. (2.34)

As j→ ∞ this last term converges to ε, since L2(IRn, ρ−1
∞ (dx))-convergence implies

L1(IRn)-convergence. This finishes the proof.

For future reference we state the following elementary result for generators of
admissible relative entropies:

Lemma 2.9. The generator ψ of every admissible relative entropy eψ satisfies:

a)

ψ(σ)

σ
+ μ2

(
1 − 1

σ

)
≤ ψ′(σ) ≤ 2ψ(σ)

σ
+ μ2

(
1 − 1

σ

)
, σ > 0, (2.35)

with the notation μ2 = ψ′′(1) > 0,

b)

ψ(σ) ≤ ψ(σ0)

(
σ

σ0

)2

+ μ2

(
σ

σ0
− 1

)
(σ − 1), σ ≥ σ0 > 0, (2.36)

ψ(σ) ≤ ψ(σ0)
σ

σ0
+ μ2

(
σ

σ0
− 1

)
(σ − 1), σ0 ≥ σ > 0. (2.37)

Proof: a) For the right inequality of (2.35) we have to show that G1(σ) :=
2ψ + μ2(σ − 1) − σψ′ ≥ 0. But this follows from G1(1) = G′

1(1) = 0, G′′
1(σ) =

−σψ′′′ ≥ 0, σ > 0 (see (2.20)).
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For the left inequality of (2.35) we have to show that G2(σ) := ψ + μ2(σ − 1) −
σψ′ ≤ 0. Like before we have G2(1) = G′

2(1) = 0 and it remains to show

G′′
2(σ) = −ψ′′ − σψ′′′ ≤ 0, σ > 0. (2.38)

Since ψ generates an admissible entropy we have ψ′′′(σ) ≤ 0, ψIV (σ) ≥ 0 (see
(2.19), (2.12c)). Thus there exists a unique σ1 ∈ [0,∞] such that ψ′′′(σ) < 0 on
(0, σ1) and ψ′′′(σ) = 0 on [σ1,∞).

In the case σ ∈ [σ1,∞) we have G′′
2(σ) = −ψ′′(σ) < 0.

In the case σ ∈ (0, σ1) we rewrite (2.12c) as

1 ≤ −
(
ψ′′

ψ′′′

)′

and integrate over the interval (ε, σ), 0 < ε < σ1:

σ − ε ≤ − ψ′′(σ)

ψ′′′(σ)
+
ψ′′(ε)
ψ′′′(ε)

≤ − ψ′′(σ)

ψ′′′(σ)
.

Letting tend ε → 0 we obtain G′′
2 = −ψ′′ − σψ′′′ ≤ 0, and this finishes the proof

of (2.35).

b) Applying the Gronwall lemma to the right inequality of (2.35) (with fixed σ0)
gives

ψ(σ) ≤ ψ(σ0)

(
σ

σ0

)2

+ μ2

(
σ

σ0
− 1

)(
σ − σ/σ0 + 1

2

)
, σ ≥ σ0 > 0,

and (2.36) follows from σ
σ0

≥ 1.

For the proof of (2.37) we use the left inequality of (2.35) and estimate:

ψ′(σ) ≥ ψ(σ)

σ
+ μ2

(
1 − 1

σ

)
≥ ψ(σ)

σ
+ μ2

(
1

σ
− 1

σ2

)
, σ > 0. (2.39)

Applying the Gronwall lemma to (2.39) gives

ψ(σ) ≤ ψ(σ0)
σ

σ0

+ μ2(σ ln
σ

σ0

+ 1 − σ

σ0

), 0 < σ ≤ σ0,

and (2.37) follows with the estimate ln x ≤ x− 1.

Remark 2.10. For future reference we state that, due to (2.38), the function
σψ′′(σ) is increasing on [0,+∞). Therefore 0 ≤ limσ→0+ σψ′′(σ) < +∞.
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2.3 Exponential decay of the entropy dissipation and the
relative entropy

With our notion of superentropies we can now show the convergence of ρ(t) to
ρ∞ in relative entropy.

Lemma 2.11. Let eψ be an admissible relative entropy and assume
zI = ρI/

√
ρ∞ ∈ L2(IRn). Then eψ(ρ(t)|ρ∞) → 0 as t→ ∞.

Proof: With the notation μ2 = ψ′′(1) we estimate using (2.18b), (2.22):

0 ≤ eψ(ρ(t)|ρ∞) ≤ eϕ(ρ(t)|ρ∞) =

∫
IRn

ϕ
(ρ(t)
ρ∞

)
ρ∞(dx) = μ2‖z(t) −√

ρ∞‖2
L2(IRn),

(2.40)
and the assertion follows from (2.8).

If the Hamiltonian H in (2.6) has a spectral gap λ0 > 0, then the exponential
decay from (2.9) of course carries over to the relative entropy.

In the above lemma, the assumption ρI/
√
ρ∞ ∈ L2(IRn) is unnaturally restrictive.

The subsequent analysis (i.e. the entropy-entropy dissipation method) aims at
considering initial data which only have finite relative entropy and at proving
explicit decay bounds for the relative entropy in terms of the initial relative
entropy. The ‘price’ for this extension will be a condition on the evolution problem
(2.1a) (see (A3) below) that is stronger than assuming H to have a spectral gap
(as we shall see below).

We remark that the entropy-entropy dissipation method is -contrary to the spec-
tral analysis carried out above- inherently nonlinear and, thus, sufficiently robust
to be applied to nonlinear problems as in Section 4.

We now proceed similarly to [Tos96b] and to example 2 of the introduction.
Consider the entropy dissipation

Iψ(ρ(t)|ρ∞) :=
d

dt
eψ(ρ(t)|ρ∞) (2.41)

and the entropy dissipation rate

Rψ(ρ(t)|ρ∞) :=
d

dt
Iψ(ρ(t)|ρ∞). (2.42)

Eq. (2.41) is referred to as entropy equation. To facilitate the computations we
rewrite (2.1a) in the following form:

ρt = div(ρ∞Du) (2.43)
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with the notation u = ∇( ρ
ρ∞ ). Differentiating the relative entropy eψ(ρ(t)|ρ∞)

gives

Iψ(ρ(t)|ρ∞) =

∫
IRn

ψ′
( ρ

ρ∞

)
ρt dx. (2.44)

By using (2.43) we obtain after an integration by parts

Iψ(ρ(t)|ρ∞) = −
∫
IRn

ψ′′
( ρ

ρ∞

)
u�Duρ∞ dx ≤ 0, (2.45)

due to the positivity of D. Using (2.43) we compute (2.42):

Rψ(ρ(t)|ρ∞) = −
∫
IRn

ψ′′′
( ρ

ρ∞

)
div(Duρ∞)u�Du dx

− 2

∫
IRn

ψ′′
( ρ

ρ∞

)
u�Dutρ∞dx. (2.46)

Clearly, the computations which lead to (2.45) and (2.46) are formal. However,
they can easily be justified for initial data ρI ∈ L2(IRn; ρ−1

∞ (dx)) and for entropy
generators without singularity at σ = 0 by taking into account the semigroup
property of the Hamiltonian H , the partial integration formula (2.7) and the fact
ρ > 0 on IRn, t > 0. General admissible entropies can easily be dealt with by a
local cut-off at σ = 0.

We now return to proving the exponential decay of eψ(ρ(t)|ρ∞) under additional
assumptions on A and D. At first we shall derive an exponential decay rate for
the entropy dissipation Iψ by using the special form of the entropy dissipation
rate (2.46).

Remark 2.12. For the following we shall have to give a meaning to Iψ(ρ|ρ∞)
even when ρ becomes zero (which may be the case at the initial state). Since, for
f positive and differentiable:

ψ′′(f)(∇f)�D∇f =

(
∇
∫ f

1

√
ψ′′(s) ds

)�
D∇

∫ f

1

√
ψ′′(s) ds (2.47)

we set for ρ ≥ 0

Iψ(ρ|ρ∞) = −
∫
IRn

(∇w)�D∇wρ∞(dx), w = Fψ

(
ρ

ρ∞

)
, (2.48)

if w ∈ H1
loc(IR

n) with

Fψ (μ) =

∫ μ

1

√
ψ′′(s) ds, μ > 0. (2.49)

Note that due to (2.21) Fψ is Hölder continuous with exponent 1/2 locally at
μ = 0.
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At first we consider the case of a scalar diffusion, i.e. D(x) = ID(x).

Lemma 2.13. Let the initial condition ρI ∈ L2(IRn; ρ−1
∞ (dx)) satisfy |Iψ(ρI |ρ∞)| <

∞ for the admissible entropy eψ. Assume that the scalar coefficients A(x) and
D(x) of (2.1a) satisfy the condition

(A1) ∃λ1 > 0 such that(1

2
− n

4

) 1

D
∇D ⊗∇D +

1

2
(ΔD −∇D · ∇A)I

+D
∂2A

∂x2
+

∇A⊗∇D + ∇D ⊗∇A
2

− ∂2D

∂x2
≥ λ1I

(in the sense of positive definite matrices) ∀x ∈ IRn. Then the entropy dissipation
converges to 0 exponentially:

|Iψ(ρ(t)|ρ∞)| ≤ e−2λ1t|Iψ(ρI |ρ∞)|, t > 0. (2.50)

Proof: After an integration by parts (which can be justified as mentioned above)
the first term of the entropy dissipation rate (2.46) reads

R1 =

∫
IRn

ψIV(eAρ)D2|u|4e−Adx

+2

∫
IRn

ψ′′′(eAρ)D2e−Au�
∂u

∂x
udx+

∫
IRn

ψ′′′(eAρ)e−AD|u|2u · ∇Ddx.

We set
ut = ∇(eAdiv(De−Au))

in the second term of (2.46), which becomes

R2 = −2

∫
IRn

ψ′′(eAρ)De−A[u·∇(Ddivu)+u�∇⊗(∇D−∇AD)u+u�
∂u

∂x
(∇D−∇AD)]dx.

We differentiate u · ∇(Ddivu) = (u · ∇D)divu + Du · ∇(divu), and we express
Du · ∇(divu) according to

1

2
Δ(D|u|2) =

1

2
|u|2ΔD + 2∇D�∂u

∂x
u+D

∑
i,j

(
∂ui
∂xj

)2

+Du · ∇(divu).

We rewrite R2 as R2 = S1 + S2 with

S1 = −
∫
IRn

ψ′′(eAρ)div[D∇(D|u|2)e−A]dx

=

∫
IRn

ψ′′′(eAρ)
(
D2u · ∇(|u|2) +D∇D · u|u|2) e−Adx,
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S2 = 2

∫
IRn

ψ′′(eAρ)De−A
[
u�∇⊗ (∇AD −∇D)u

+
1

2
ΔD|u|2 − 1

2
|u|2∇D · ∇A+

1

D

2 − n

4
(u · ∇D)2

]
dx

+2

∫
IRn

ψ′′(eAρ)e−A
[
n− 2

4
(u · ∇D)2 −D(u · ∇D)divu

+2D∇D�∂u
∂x
u+D2

∑
i,j

(
∂ui
∂xj

)2

+
1

2
|u|2|∇D|2

]
dx

= T1 + T2.

The second integral in S2 can be written as

T2 = 2

∫
IRn

ψ′′(eAρ)e−A
∑
i,j

(
D
∂ui
∂xj

+
1

2

∂D

∂xi
uj +

1

2
ui
∂D

∂xj
− 1

2
δij∇D · u

)2

dx

and (A1) allows to estimate the first term in S2 by

T1 ≥ 2λ1

∫
IRn

ψ′′(eAρ)De−A|u|2dx.

All in all we have

R1 +R2 = R1 + S1 + S2 = (R1 + S1 + T2) + T1

≥
∫
IRn

[
ψIV(eAρ)D2|u|4 + ψ′′′(eAρ)(4D2u�

∂u

∂x
u+ 2D|u|2u · ∇D)

+2ψ′′(eAρ)
∑
i,j

(
D
∂ui
∂xj

+
1

2

∂D

∂xi
uj +

1

2
ui
∂D

∂xj
− 1

2
δij∇D · u

)2
]
e−Adx

+2λ1

∫
IRn

ψ′′(eAρ)De−A|u|2dx.

The first integral can be written as∫
IRn

tr(XY )e−Adx,

where X and Y are the 2 × 2-matrices

X =

(
2ψ′′(eAρ) 2ψ′′′(eAρ)
2ψ′′′(eAρ) ψIV(eAρ)

)
and, resp.,

Y =

(
α D2u� ∂u

∂x
u+ 1

2
D|u|2u · ∇D

D2u� ∂u
∂x
u+ 1

2
D|u|2u · ∇D D2|u|4

)
,
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with

α =
∑
i,j

(
D
∂ui
∂xj

+
1

2

∂D

∂xi
uj +

1

2
ui
∂D

∂xj
− 1

2
δij∇D · u

)2

.

X is non-negative definite since ψ generates an admissible entropy (cf. Definition
2.2). A simple calculation shows that Y is also nonnegative definite. Thus,∫

IRn

tr(XY )e−Adx ≥ 0

and we have for the entropy dissipation rate (2.46):

Rψ(ρ(t)|ρ∞) ≥ 2λ1

∫
IRn

ψ′′(eAρ)De−A|u|2dx = −2λ1Iψ(ρ(t)|ρ∞).

The assertion now follows from

d

dt
|Iψ(ρ(t)|ρ∞)| ≤ −2λ1|Iψ(ρ(t)|ρ∞)|. (2.51)

In a special case of equation (2.1a) the condition (A1) has a simple geometric
interpretation:

Remark 2.14. For D(x) ≡ I condition (A1) simply requires the uniform con-
vexity of A(x) on IRn, i.e.

(A2) ∃λ1 > 0 such that
(
∂2A(x)
∂xi∂xj

)
i,j=1,...,n

≥ λ1I ∀x ∈ IRn.

The condition (A1) is a special case of the well-known Bakry-Emery condition for
logarithmic Sobolev-inequalities [BaEm84], [Bak91], [Bak94]. In fact, the proof of
Lemma 2.13 is a concretization of the approach of Bakry and Emery and was given
here mainly for the sake of clarity. For general (symmetric and uniformly positive
definite) diffusion matrices D(x) an ‘excursion’ into basic differential geometry
(see, e.g. [Boo75], §7, 8) is, however, in order to understand the Bakry-Emery
condition. Therefore we consider the Riemannian manifold M= (IRn;D−1), with
D(x)−1 =: (dij(x)) as covariant metric tensor.

The symmetrized Fokker–Planck operator in Equation (2.11) acting on μ = ρ/ρ∞
can be decomposed as

L̃ = ΔD +X,

where

ΔDμ = (detD)
1
2

n∑
i,j=1

∂

∂xi

(
dij(detD)−

1
2
∂μ

∂xj

)
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is the Laplace–Beltrami operator on M (cf. [Cha84], §1).

X =
n∑
i=1

X i ∂

∂xi

is a vector field (or, equivalently, a directional derivative) on M, with the com-
ponents

X i(x) = −
n∑
j=1

dij
∂

∂xj

(
A(x) − 1

2
ln detD(x)

)
. (2.52)

The Christoffel symbols are defined as the elements of the 3-tensor:

Γlij =
1

2

n∑
k=1

dkl
(
∂djk
∂xi

+
∂dki
∂xj

− ∂dij
∂xk

)
. (2.53)

The Riemann curvature tensor of M then reads

Rki
l
j =

∂

∂xi
Γljk −

∂

∂xj
Γlik +

n∑
m=1

ΓlimΓmjk −
n∑

m=1

ΓljmΓmik (2.54)

and the (symmetric) Ricci-tensor of M is (cf. [Tay96], §C.3)

ρij =

n∑
k=1

Rik
k
j . (2.55)

The covariant derivative of a vector field X = (X1, . . . , Xn) is given by

∇iX
j =

∂Xj

∂xi
+

n∑
k=1

ΓjikX
k. (2.56)

We define the symmetric covariant derivative (2-tensor) of X

(∇SX
)
ij

=
1

2

n∑
l=1

(djl∇iX
l + dil∇jX

l). (2.57)

The Ricci tensor of the Fokker-Planck operator is defined in [Bak94] as

Ricij(x) =

n∑
k,l=1

dikdjl
[
ρkl −

(∇SX
)
kl

(x)
]

(2.59)

with the components of X defined in (2.52). Then the Bakry-Emery condition
for a general symmetric positive definite diffusion matrix reads (cf. Prop. 6.6 of
[Bak94]):

∃λ1 > 0 and m ∈ [n,∞] such that
1

m
X(x) ⊗X(x) ≤ m− n

m
(Ric(x) − λ1D(x)) ∀x ∈ IRn. (2.60)
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In the above cited reference the constants λ1 and m are called, respectively, the
curvature and dimension of the Fokker–Planck operator L. Setting m = ∞ gives
the simpler condition

(A3) ∃λ1 > 0 such that Ric(x) ≥ λ1D(x) ∀x ∈ IRn,

which in the case of a scalar diffusion reduces to (A1). From the r.h.s of (2.59)
we see that there are two possible mechanisms responsible for satisfying (A3):
the first one stems from the positive definiteness of the dual Ricci-tensor (ρkl) of
M and the second one from the uniform convexity of the potential A w.r.t. the
geometry of M. The interplay of these two effects is discussed in Theorem (3.4)
for the 1D case.

If D(x) ≡ I, condition (2.60) simplifies to

1

m
∇A⊗∇A ≤ m− n

m

(
∂2A

∂x2
− λ1I

)
∀x ∈ IRn. (2.61)

This differential inequality only admits a global solution A(x), x ∈ IRn, if m = ∞,
i.e. if (A2) holds.

We have

Lemma 2.13’. If A = A(x),D = D(x) satisfy (A3) then the estimate (2.50)
holds.

Proof: See [BaEm84], [Bak94].

Remark 2.15. To better understand the Bakry-Emery condition (A3) we con-
sider a transformation of the Fokker-Planck type equation under an x− y diffeo-
morphism

y = y(x) ⇐⇒ x = x(y)

on IRn. We denote J(y) = det ∂x
∂y

(y), assume J > 0 on IRn and set

ρ′(y, t) = J(y)ρ(x(y), t).

A lengthy calculation (cf. also [Ris89]) gives

ρ′t = divy(D̃(∇yρ
′ + ∇y(Ã− ln J)ρ′)) (2.62a)

where

D̃(y) =
∂y

∂x
(x(y))D(x(y))

(
∂y

∂x
(x(y))

)�
, (2.62b)

Ã(y) = A(x(y)). (2.62c)
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Assume now that the Riemann curvature tensor (2.54) vanishes. Then the geom-
etry produced by D as contravariant metric tensor on IRn is Euclidean and there
exists a transformation y = y(x) such that D̃(y) ≡ I [Ris89]. The condition (A3)
applied to (2.1a) reduces to (A2) applied to (2.62a), i.e. we need to assume the
uniform convexity of Ã− ln J in the y-coordinates.

In one dimension (n = 1) the Riemann curvature tensor always vanishes and the
transformation which yields a Fokker-Planck equation with diffusion coefficient 1
can be constructed explicitly. It is given by

y(x) =

∫ x

0

dz√
D(z)

, x ∈ IR. (2.63)

Note that the range of y = y(x) is IR iff∫ 0

−∞

dz√
D(z)

=

∫ ∞

0

dz√
D(z)

= ∞.

For arbitrary n > 1 an analogous transformation works, if D = diag(d1(x1), ..., d
n(xn))

or if D is a constant matrix. In the latter case we set

y(x) =
(√

D
)−1

x. (2.64)

Then the transformed equation has the identity matrix as diffusion matrix.

In general (i.e. for a non-vanishing Riemann curvature tensor) the metric tensor
cannot be transformed to the identity by a coordinate transformation. It can be
transformed to the form D̃(y) = ID̃(y), where D̃ is a scalar function, if isothermal
coordinates exist on the manifold corresponding to D. Locally at least, this is
always the case for n = 2 (cf. [BeGo87], p.421).

From the exponential decay of the negative entropy dissipation Iψ (Lemma 2.13)
we shall now derive the exponential decay of the relative entropy eψ:

Theorem 2.16. Let eψ be an admissible relative entropy and assume that
eψ(ρI |ρ∞) <∞. Let the coefficients A(x) and D(x) satisfy condition (A3). Then
the relative entropy converges to 0 exponentially:

eψ(ρ(t)|ρ∞) ≤ e−2λ1teψ(ρI |ρ∞), t > 0. (2.65)

Proof: We proceed in two steps and first derive (2.65) for ρI ∈ S := {ρ ∈
L2

+(IRn, ρ−1
∞ (dx))

∣∣∣ |Iψ(ρ|ρ∞)| <∞}.
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From the Lemmata 2.11, 2.13’ we then know that eψ(ρ(t)|ρ∞) → 0 and Iψ(ρ(t)|ρ∞) →
0 as t → ∞. Hence, integrating (2.51) (which also holds under condition (A3) -
see [BaEm84], [Bak94]) over (t,∞) gives

Iψ(t) =
d

dt
eψ(t) ≤ −2λ1eψ(t), t ≥ 0 (2.66)

which proves the assertion for sufficiently regular initial data.

For the general case we use a density argument to approximate ρI in two steps: ρ∞
is given in L1

+(IRn), and ρI is a normalized (i.e.
∫
ρIdx =

∫
ρ∞dx = 1) L1

+(IRn)–

function with finite relative entropy, ρI ∈ {ρ ∈ L1
+(IRn)

∣∣∣eψ(ρ|ρ∞) <∞}.
We first approximate ρI by ρN ∈ L1

+(IRn) with
∫
ρNdx = 1(N ∈ IN):

ρN(x) := αN ρI(x)1l{ρI/ρ∞≤N}

with the monotonously decreasing normalization constants αN =

[ ∫
{ρI/ρ∞≤N}

ρIdx

]−1

↘ 1 for N→ ∞. By construction we have | ρN

ρ∞ | ≤ NαN , which implies ρN ∈
L2(IRn, ρ−1

∞ (dx)).

ρN converges to ρI a.e., and also in L1(IRn):

‖ρI − ρN‖L1(IRn) = |1 − αN |
∫
{ρI/ρ∞≤N}

ρIdx+

∫
{ρI/ρ∞>N}

ρIdx
N→∞−→ 0.

Now we construct a uniform bound for ψ( ρN

ρ∞ )ρ∞, N ∈ IN : we consider the convex,

monotonously increasing function ψR(σ), σ > 0 defined by ψR(σ) = ψ(R) for
0 < σ ≤ R and ψR(σ) = ψ(σ) for R < σ, with R > 1 sufficiently large such that
ψR ≥ ψ on IR+. This implies

ψR(σ) ≤ ψ(σ) + ψ(R), σ > 0. (2.67)

From Lemma 2.9b we easily conclude with σ
σ0

= 2:

ψR(2σ) ≤ 4ψR(σ) + 2μ2σ, σ ≥ 0. (2.68)

Since αN → 1 we have ρN ≤ 2ρI (for large N) and we estimate using (2.68),
(2.67):

ψ(
ρN
ρ∞

)ρ∞ ≤ ψR(
ρN
ρ∞

)ρ∞ (2.69)

≤ ψR(
2ρI
ρ∞

)ρ∞ ≤ 4ψR(
ρI
ρ∞

)ρ∞ + 2μ2ρI ≤ 4ψ(
ρI
ρ∞

)ρ∞ + 4ψ(R)ρ∞ + 2μ2ρI =: ζ(σ).
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Our assumptions on ρI show
∫
IRnζ(σ)dσ < ∞, and Lebesgue’s dominated con-

vergence theorem gives

lim
N→∞

eψ(ρN |ρ∞) = eψ(ρI |ρ∞). (2.70)

In the second approximation step we shall approximate ρN in L2
+(IRn, ρ−1

∞ (dx))
by the normalized (i.e.

∫
ρN,Mdx = 1) sequence {ρN,M}M∈IN , having finite en-

tropy dissipation. We choose ρN,M ∈ C∞
0+(IRn) which denotes non-negative C∞–

functions with compact support in IRn.

We shall now show that

C∞
0+(IRn) ⊆ S = {√ρ ∈ L4

+(IRn, ρ−1
∞ (dx))

∣∣∣ |Iψ(ρ|ρ∞)| <∞}. (2.71)

We consider ρ with
√
ρ ∈ C∞

0+(IRn) and compact support Ω̄ = suppρ ⊆ IRn. Since
A ∈ L∞

loc(IR
n), so is 1/

√
ρ∞ = eA/2 and hence ρ/

√
ρ∞ ∈ L2(IRn) follows.

Using

ψ′′(σ) ≤ μ2(1 +
1

σ
), σ > 0,

which follows from (2.21), we estimate the entropy dissipation (2.48):

|Iψ(ρ|ρ∞)| (2.72)

≤ 4μ2‖D‖L∞(Ω)

∫
Ω

(ρ+ ρ∞)

∣∣∣∣∇√ ρ

ρ∞

∣∣∣∣2 dx
≤ 2μ2‖D‖L∞(Ω)

∫
Ω

(1 +
ρ

ρ∞
)(4|∇√

ρ|2 + ρ|∇A|2)dx, (2.73)

which is finite since D(x), ρ−1
∞ (x) and ∇A(x) ∈ L∞

loc(IR
n). Note that we used the

l.h.s. of (2.47) in the entropy dissipation on Ω, where ρ > 0. Hence
√
ρ ∈ S.

Since C∞
0 (IRn) is dense in L4(IRn, ρ−1

∞ (dx)), ρN can indeed be approximated by
{ρN,M} ⊆ S in L2(IRn, ρ−1

∞ (dx)). Lemma 2.8 then shows

lim
M→∞

eψ(ρN,M |ρ∞) = eψ(ρN |ρ∞). (2.74)

From these two approximations we extract a normalized ‘diagonal’ sequence
{ρN,M(N)} ⊆ S with

ρN,M(N)
N→∞−→ ρI in L1(IRn), (2.75a)

lim
N→∞

eψ(ρN,M(N)|ρ∞) = eψ(ρI |ρ∞). (2.75b)

For the approximations ρN,M(N) we can apply (2.65):

eψ(ρN,M(N)(t)|ρ∞) ≤ e−2λ1teψ(ρN,M(N)|ρ∞), t > 0, (2.76)
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where ρN,M(N)(t) denotes the solution of (2.1a) with initial data ρN,M(N).

From the entropy bound (2.76) and from the Dunford-Pettis theorem [Ger87] we
easily conclude

ρN,M(N)(t)

ρ∞
N→∞−→ ρ(t)

ρ∞
in L1(IRn, ρ∞(dx)) weakly.

We now use the lower semi-continuity of eψ(.|ρ∞) to finish the proof:∫
IRn

ψ

(
ρ(t)

ρ∞

)
ρ∞(dx) ≤ lim inf

N→∞

∫
IRn

ψ

(
ρN,M(N)(t)

ρ∞

)
ρ∞(dx)

≤ e−2λ1teψ(ρI |ρ∞), t > 0.

Due to the above density argument we do not have to make the “algebra hy-
pothesis” of [BaEm84] and §2 of [Bak94]: there one assumes that there exists a
core for L that is stable under the evolution eLt and under composition with C∞

functions. Using different techniques such a density argument was also given in
§6 of [DeSt84].

The desired L1–convergence of ρ(t) to ρ∞ is now a direct consequence of Theorem
2.16 and the Csiszár-Kullback inequality (2.24), (2.26):

Corollary 2.17. Let eψ be an admissible relative entropy and assume that
eψ(ρI |ρ∞) <∞. Let the coefficients A(x) and D(x) satisfy condition (A3). Then
the solution of (2.1) satisfies

‖ρ(t) − ρ∞‖L1(IRn) ≤ e−λ1t

√
2

μ2
eψ(ρI |ρ∞), t > 0, (2.77)

with the notation μ2 = ψ′′(1).

Also, as a by-product of the t → ∞ asymptotics of the Fokker-Planck type
equation, we obtain the entropy version of a convex Sobolev inequality:

Corollary 2.18. The inequality∫
IRn

ψ

(
ρ

ρ∞

)
ρ∞(dx) ≤ 1

2λ1

∫
IRn

∇�Fψ

(
ρ

ρ∞

)
D∇Fψ

(
ρ

ρ∞

)
ρ∞(dx) (2.78a)

holds

∀ρ ∈ L1
+(IRn) with

∫
IRn

ρdx =

∫
IRn

ρ∞dx. (2.78b)
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This inequality, of course, does not require our usual normalization
∫
ρ(x)dx = 1.

The relation of (2.78) to other versions of this inequality will be discussed in §3.

Note that L1
+(IRn) in (2.78b) can be replaced by L1(IRn) if ψ is quadratic.

Proof: Evaluating (2.66) at t = 0 and setting ρ = ρI gives (2.78a) under the
assumptions

ρ ∈ L2
+(IRn, ρ−1

∞ (dx)) and |Iψ(ρ|ρ∞)| <∞,

which were used in the proof of Theorem 2.16. We shall now employ a simple
density argument to conclude (2.78) for all ρ ≥ 0 with |Iψ(ρ|ρ∞)| < ∞. Clearly,
F−1
ψ (cf. Remark 2.12) exists since ψ is strictly convex. We have

∫
IRn

w2ρ∞(dx) =

∫
IRn

(∫ μ(x)

1

√
ψ′′(s)ds

)2

ρ∞(dx), μ =
ρ

ρ∞

and estimate (∫ μ

1

√
ψ′′(s)ds

)2

≤
{

4μ2(1 − μ1/2)2 , 0 ≤ μ ≤ 1
(μ− 1)ψ′(μ) , μ > 1

using (2.21) for 0 ≤ μ ≤ 1 and the Cauchy-Schwartz inequality for μ > 1. (2.35)
then gives (∫ μ

1

√
ψ′′(s)ds

)2

≤ 2ψ(μ) + const. (μ+ 1)

and ∫
IRn

w2ρ∞(dx) ≤ 2eψ(ρ|ρ∞) + const. <∞

follows. Clearly w = α+
∫ μ

0

√
ψ′′(s)ds ≥ α holds with α = − ∫ 1

0

√
ψ′′(s)ds ∈ IR.

Now let w̃k ∈ C∞(IRn) be a sequence of functions with w̃k −α ≥ 0 and w̃k −α ∈
C∞

0 (IRn) such that w̃k
k→∞−→ w in the norm

|||w|||2 :=

∫
IRn

w2ρ∞(dx) +

∫
IRn

∇w�D(x)∇wρ∞(dx).

Obviously, μ̃k := F−1
ψ (w̃k) ≥ 0 and μk has compact support in IRn, which implies

ρ∞μ̃k ∈ L2
+(IRn; ρ−1

∞ (dx)). Now define

μk :=
μ̃k∫

IRn μ̃kρ∞(dx)

and ρk := ρ∞μk. It is easy to show that also wk
k→∞−→ w in the |||.|||–norm (using

the already proven properties of ψ and (3.20)).
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By convexity

eψ(ρ|ρ∞) ≤ lim inf
k→∞

eψ(ρk|ρ∞)

≤ lim inf
k→∞

1

2λ1

∫
IRn

∇w�
k D(x)∇wkρ∞(dx)

=
1

2λ1

∫
IRn

∇w�D(x)∇wρ∞(dx) =
1

2λ1
|Iψ(ρ|ρ∞)|.

2.4 Non-symmetric Fokker-Planck equations

At the end of this Section we extend the above analysis to the following class of
Fokker-Planck type equations with certain rotational perturbations to the con-
servative drift. We consider

ρt = div(D(∇ρ+ ρ(∇A + �F ))), x ∈ IRn, t > 0, (2.79)

ρ(t = 0) = ρI , (2.80)

with the above conditions on ρI , D and A. Additionally we assume for �F =
�F (x, t) sufficient local regularity and

div(D�Fρ∞) = 0 on IRn × (0,∞), (2.81)

such that ρ∞ = e−A is still a stationary state of (2.79). Our objective is again to
analyze the rate of convergence of ρ(t) towards ρ∞. For the symmetric problem
(2.1) we proceeded in §2.3 by deriving a differential inequality for the entropy
dissipation (see (2.51)). In contrast, we shall here only apply the convex Sobolev
inequality (2.78), which was obtained for the corresponding symmetric problem

(i.e. (2.79) with �F = 0), to the entropy equation corresponding to (2.79). There-
fore we remark that, in physical terms, the convex Sobolev inequality (2.78)
represents an upper bound for the relative entropy in terms of the absolute value
of the entropy dissipation. Thus, an a-priori knowledge of a convex Sobolev in-
equality allows to directly obtain the exponential decay of the relative entropy
from the entropy equality (2.41) without involving the entropy dissipation rate.
We shall use this fact below and in Section 4.

With the transformation μ = ρ/ρ∞ (cf. (2.11)) (2.79) may be rewritten as

μt = ρ−1
∞ div(Dρ∞∇μ) + �F�D∇μ,

where the second term of the r.h.s. is skew-symmetric in L2(IRn, dρ∞).
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We first calculate:
d

dt
eψ(ρ(t)|ρ∞) = Iψ(ρ(t)|ρ∞) + T,

with Iψ as in (2.45) and

T =

∫
IRn

ψ′
(
ρ

ρ∞

)
div(D�Fρ)dx.

We use (2.81) in the form

div(D�F )ρ = −(D�F )∇ρ∞ ρ

ρ∞

to obtain

T =

∫
IRn

ψ′
(
ρ

ρ∞

)
(D�F )∇

(
ρ

ρ∞

)
ρ∞dx =

∫
IRn

∇�ψ
(
ρ

ρ∞

)
D�Fρ∞dx.

An integration by parts finally gives

T = −
∫
IRn

ψ

(
ρ

ρ∞

)
div(D�Fρ∞)dx = 0.

By the convex Sobolev inequality (2.78) we obtain

d

dt
eψ(ρ(t)|ρ∞) ≤ −2λ1eψ(ρ(t)|ρ∞)

and
eψ(ρ(t)|ρ∞) ≤ e−2λ1teψ(ρI |ρ∞)

follows.

As an example of (2.79) we consider the Fokker-Planck-type equation on (x, v)-
phase space for the distribution function f(x, v, t):

ft + {A, f} = div(x,v)[e
−A(x,v)∇x,v(e

A(x,v)f)], t > 0, (2.82a)

f(t = 0) = fI ∈ L1
+(IR2n), (2.82b)

with the position variable x ∈ IRn and the velocity variable v ∈ IRn. Here

{A, f} := ∇vA · ∇xf −∇xA · ∇vf

denotes the Poisson bracket. For the sake of simplicity we set D ≡ I. With the
choice �F = (∇vA, −∇xA)� the exponential convergence in relative entropy of
f(t) to its steady state f∞(x, v) = e−A(x,v) follows from the above calculations,
after a density argument as in the proof of Theorem 2.16:
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Theorem 2.19. Let fI ∈ L1
+(IR2n), A ∈W 2,∞

loc (IR2n) and 1 =
∫
IR2n fI(x, v)dxdv =∫

IR2n e−A(x,v)dxdv. Let eψ be an admissible relative entropy and assume that
eψ(fI |f∞) <∞. Let A(x, v) be strictly convex, i.e.

∃λ1 > 0 such that
∂2A

∂(x, v)2
≥ λ1I ∀x, v ∈ IRn.

Then the relative entropy converges to 0 exponentially:

eψ(f(t)|f∞) ≤ e−2λ1teψ(fI |f∞), t > 0. (2.83)

Example 2.20. In kinetic theory A(x, v) = |v|2
2

+V (x) is a typical example for a
phase-space potential (kinetic plus potential energy). Then the equation (2.82a)
reads

ft + v · ∇xf −∇xV (x) · ∇vf = divv(∇vf + fv) + divx(∇xf + f∇xV (x)).

This equation without the second term on the r.h.s. is the classical kinetic in-
homogeneous Fokker–Planck equation, which is not covered by the theory in this
paper.

3 Sobolev Inequalities

3.1 Three versions of convex Sobolev inequalities

We shall now discuss in detail the convex Sobolev inequality (2.78). In particular
we shall rewrite (2.78) in various equivalent forms and discuss its relation to other
known inequalities. At first we set μ = ρ/ρ∞. Then (2.78) becomes∫

IRn

ψ(μ)ρ∞(dx) ≤ 1

2λ1

∫
IRn

∇�Fψ (μ)D∇Fψ (μ) ρ∞(dx) (3.1a)

for all μ ∈ L1
+(IRn) (L1(IRn) if ψ is quadratic) which satisfy∫

IRn

μρ∞(dx) =

∫
IRn

ρ∞(dx). (3.1b)

Assume for the following
∫
IRnρ∞(dx) = 1.

Hence setting μ = v/
∫
IRnvρ∞(dx), we obtain∫

IRn

ψ

(
v∫

IRnvρ∞(dx)

)
ρ∞(dx)

≤ 1

2λ1

∫
IRn

∇�Fψ

(
v∫

IRnvρ∞(dx)

)
D∇Fψ

(
v∫

IRnvρ∞(dx)

)
ρ∞(dx) (3.2)
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for all nontrivial v ∈ L1
+(dρ∞) := L1

+(IRn, ρ∞(dx)) (v ∈ L1(dρ∞) if ψ is quadratic).

The most common form of convex Sobolev inequalities is obtained by setting
v = f 2 in (3.2). This gives the so called steady state measure version:∫
IRn

ψ

(
f 2

‖f‖2
L2(dρ∞)

)
ρ∞(dx) ≤ 2

λ1

∫
IRn

f 2

‖f‖4
L2(dρ∞)

ψ′′
(

f 2

‖f‖2
L2(dρ∞)

)
∇�fD∇f ρ∞(dx)

(3.3)
for all nontrivial f ∈ L2(dρ∞). Note that the right-hand side of (3.3) makes sense
even if f assumes the value 0 (cf. Remark 2.10).

The inequalities (3.1)–(3.3) hold for all functions ρ∞ = e−A (with L1(dx)-norm
equal 1), ρ∞ > 0 on IRn and symmetric positive definite matrices D = D(x),
which are sufficiently smooth (cf. Section 2) and which satisfy (A1) (if D(x) =
D(x)I), or (A2) (if D(x) ≡ I), or (A3).

Remark 3.1. Assume that D(x) is pointwise in IRn bounded below by a symmet-
ric positive definite matrix D1(x), i.e.

D1(x) ≤ D(x), x ∈ IRn

(in the sense of positive-definite matrices) and that the Fokker-Planck operator

L1(ρ) := div(D1(∇ρ+ ρ∇A))

satisfies the Bakry-Emery condition (A3) (with D replaced by D1). Then the
convex Sobolev inequality (2.78) holds with D replaced by D1. We have∫

IRn

∇�Fψ

(
ρ

ρ∞

)
D1∇Fψ

(
ρ

ρ∞

)
ρ∞(dx)

≤
∫
IRn

∇�Fψ

(
ρ

ρ∞

)
D∇Fψ

(
ρ

ρ∞

)
ρ∞(dx) (3.4)

and (2.78) follows. Since the convex Sobolev inequality applied directly to 2.41
gives exponential decay of the relative entropy, the statements in Lemma 2.13’,
Theorem 2.16 and Corollary 2.17 and the mass gap argument of Section 3.2 hold
for L, too.

Note that this settles the case

0 < D(x)I ≤ D(x), x ∈ IRn,

where D(x) and A(x) satisfy (A1). In particular, for a uniformly positive definite
diffusion matrix

dI ≤ D(x), x ∈ IRn

(with d ∈ IR+) and a uniformly convex potential A ((A2) holds) we obtain the
Sobolev inequality (2.78), where 1/(2λ1) has to be replaced by 1/(2dλ1).
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If D(x) = I, ρ∞(x) = Ma(x) := 1
(2πa)n/2 exp(− |x|2

2a
) for some a > 0 then (A2) holds

with λ1 = 1/a and we obtain the celebrated Gross logarithmic Sobolev inequality
[Gro75]: ∫

IRn

f 2 ln

(
f 2

‖f‖2
L2(dMa)

)
Ma(dx) ≤ 2a

∫
IRn

|∇f |2Ma(dx) (3.5)

for all f ∈ L2(dMa), where we set ψ(σ) = σ ln σ − σ + 1 (see also (3.15)).

A second example is provided by the same choices of ρ∞ and D setting ψ(σ) =
(σ − 1)2. We then have∫

IRn

v2Ma(dx) −
(∫

IRn

vMa(dx)

)2

≤ a

∫
IRn

|∇v|2Ma(dx) (3.6)

for all v ∈ L1(dMa). This is an old inequality, and as remarked by Beckner [Bec89]
in one dimension was probably known to both mathematicians and physicists in
the 1940’s [Wey49]. It has been a useful tool in different subjects, like partial
differential equations [Nas58] and statistics [Che81].

Finally let ψ = ξp(σ) = σp − 1 − p(σ − 1), see (2.17b). Then we obtain the
inequality∫

IRn

vpMa(dx) −
(∫

IRn

vMa(dx)

)p
≤ 2a

p− 1

p

∫
IRn

|∇(vp/2)|2Ma(dx) (3.7)

for all v ∈ L1
+(dMa), 1 < p < 2 (v ∈ L1(dMa) for p = 2). Setting |u| = vp/2 gives

the generalized Poincaré-type inequality by Beckner [Bec89]:

p

p− 1

[∫
IRn

u2Ma(dx) −
(∫

IRn

|u|2/pMa(dx)

)p]
≤ 2a

∫
IRn

|∇u|2Ma(dx) (3.8)

for all u ∈ L2/p(dMa), 1 < p ≤ 2.

We remark that the inequalities (3.8) interpolate in a very sharp way between the
Poincaré-type inequality (3.6) and the logarithmic Sobolev inequality (3.5), which
is obtained from (3.8) in the p→ 1 limit. (3.5) and (3.8) represent a hierarchy of
convex Sobolev inequalities, with the logarithmic Sobolev inequality (3.5) being
the ‘strongest’. This, however, cannot be seen directly from (3.5), (3.8) and
requires a more involved line of argument (see [Bak94], p.51, where the spectral
gap inequality (3.6) is compared to the logarithmic Sobolev inequality (3.5)). In
[Led92] this interpolation is discussed for the Ornstein–Uhlenbeck process on IRn

and for the heat semigroup on spheres.

Note that the inequalities (3.5), (3.6), (3.7), (3.8) also hold when the Gaussian
measure Ma is replaced by a general steady state ρ∞ = e−A, such that (A,D)
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satisfies the Bakry–Emery condition (A3). The quadratic form on the r.h.s. is
then replaced by 2

λ1

∫ ∇u�D∇uρ∞(dx).

Let us now discuss briefly some consequences of inequalities (3.5), (3.6), (3.7),
(3.8).

In spite of the fact that the class of admissible entropies and steady state measures
which generate inequalities (3.5), (3.6), (3.7), (3.8) is very wide, Sobolev inequal-
ities with respect to the Lebesgue measure follow only if ψ(σ) = σ ln σ − σ + 1.
Actually, in this case the choice g2 = f 2Ma leads to the inequality∫

IRn

g2 ln

(
g2

‖g‖2
L2(dx)

)
dx+

(
n +

n

2
ln 2πa

)
‖g‖2

L2(dx) ≤ 2a

∫
IRn

|∇g|2 dx (3.9)

for all g ∈ L2(IRn), a > 0 (cf. [Car91]). Inequality (3.9) is the logarithmic Sobolev
inequality for the heat kernel H0 = −Δ. In Davies’ book [Dav87] inequality (3.9)
is contained in the more restrictive Sobolev inequalities framework of ultracon-
tractive operators (see Theorem 2.2.3 and the rest of the Chapter). To obtain
Davies’ form, we rewrite (3.9) as a family of logarithmic Sobolev inequalities for
ε > 0:∫

IRn

g2 ln g dx ≤ ε

∫
IRn

|∇g|2 dx+MG(ε)‖g‖2
L2(dx) + ‖g‖2

L2(dx) ln ‖g‖L2(dx) (3.10)

for all 0 ≤ g ∈ L2(IRn). As will be shown in Theorem 3.11 below MG(ε) =
−1

2

(
n+ n

2
ln 2πε

)
is the sharp constant for all ε > 0. Now, let us compare the

function MG of (3.10) with the analogous one given by Davies’ conditions. In his
framework, inequality (3.10) follows if∥∥e−H0tg

∥∥
L∞(dx)

≤ ‖g‖L2(dx)e
M(t), t > 0, (3.11)

where M(t) is a monotonically decreasing continuous function of t. In the present
case, H0 = −Δ,

e−H0tg = Kt ∗ g, (3.12)

where Kt(x) is the Gaussian (4πt)−n/2exp
{
− |x|2

4t

}
. Then Young’s inequality gives∥∥e−H0tg

∥∥
L∞(dx)

≤ ‖g‖L2(dx)‖Kt‖L2(dx) (3.13)

and we obtain M(t) = −n
4

ln 8πt. Thus

M(ε) −MG(ε) =
n

2
(1 − ln 2) > 0, (3.14)

and the function M(ε) is not optimal.

In the above example we were able to rewrite (3.5) as (3.10) with arbitrarily
small principal coefficient ε. For general potentials A(x) that satisfy (A2), the
possibility of doing so is deeply connected to the difference between hypercon-
tractivity and ultracontractivity (see §5 of [Gro93], §2 of [Dav87]). As the heat
kernel example shows, the entropy approach of §2 could lead to better constants.
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3.2 A convex Sobolev inequality implies a positive spec-
tral gap

For the sake of (relative) completeness we shall in brevity present the well-know
result saying that the Hamiltonian H has a spectral gap if A and D satisfy
(A3) (which implies the logarithmic Sobolev inequalities (2.78) for any admissible
relative entropy eψ). We start by rewriting the Sobolev-inequality (2.78) for
ψ(σ) = σ ln σ − σ + 1 by setting√

ρ

ρ∞
=

|g|
‖g‖L2(IRn,ρ∞(dx))

(cf. also §3). We obtain after a simple calculation∫
IRn

|g|2 ln |g|ρ∞(dx) ≤ 1

λ1

∫
IRn

∇g�D∇gρ∞(dx)+‖g‖2
L2(IRn,ρ∞(dx)) ln ‖g‖L2(IRn,ρ∞(dx))

(3.15)
for all g ∈ L2(IRn, ρ∞(dx)). The well-known Rothaus–Simon mass gap theorem
([Rot81], [Sim76], [Gro93]) gives∫

IRn

∇g�D∇gρ∞(dx) ≥ λ1‖g‖2
L2(IRn,ρ∞(dx)) (3.16a)

if ∫
IRn

gρ∞(dx) = 0. (3.16b)

Simple calculations show that

H =
1√
ρ∞

L
√
ρ∞• : DQ ⊆ L2(IRn, dx) → L2(IRn, dx)

where H is given by (2.6) and∫
IRn

∇g�D∇gρ∞(dx) =

∫
IRn

√
ρ∞gH(

√
ρ∞g)dx.

Using the spectral theorem it is easy to conclude that the spectral gap λ0 of H
satisfies λ0 ≥ λ1, i.e.:

σ(H) ∩ (0, λ1) = ∅.
In many cases the logarithmic Sobolev constant λ1 is indeed smaller than the
spectral gap λ0 (see, e.g., example (1.10), §4 of [DiSC96], and the discussions in
[Rot81], [Bak94], [DeSt90]).

37



3.3 Perturbation lemmata for the potential A(x)

In Section 2 we derived the convex Sobolev inequality (2.78) corresponding to
Fokker-Planck operators Lρ = −div(D(∇ρ+ρ∇A)) that satisfy the Bakry-Emery
condition (A3). Next we will present two perturbation results to extend this
inequality to a larger class of operators.

First we shall consider bounded perturbations of the ‘potential’ A(x). Our result
generalizes the perturbation lemma of Holley and Stroock [HolSto87], [Gro90]
from the logarithmic entropy to all admissible relative entropies eψ from Defini-
tion 2.2:

Theorem 3.2. Let ρ∞(x) = e−A(x), ρ̃∞(x) = e−Ã(x) ∈ L1
+(IRn) with

∫
IRnρ∞dx =∫

IRn ρ̃∞dx = 1 and

Ã(x) = A(x) + v(x),

0 < a ≤ e−v(x) ≤ b <∞, x ∈ IRn. (3.17)

Let the symmetric locally uniformly positive definite matrix D(x) be such that the
convex Sobolev inequality (3.3) (with the admissible entropy generator ψ) holds
for all f ∈ L2(dρ∞).

Then, a convex Sobolev inequality also holds for the perturbed measure ρ̃∞ :∫
IRn

ψ

(
f 2

‖f‖2
L2(dρ̃∞)

)
ρ̃∞(dx) (3.18)

≤ 2

λ1
max(

b

a2
,
b2

a
)

∫
IRn

f 2

‖f‖4
L2(dρ̃∞)

ψ′′
(

f 2

‖f‖2
L2(dρ̃∞)

)
∇�fD∇f ρ̃∞(dx)

for all nontrivial f ∈ L2(dρ̃∞) = L2(dρ∞).

Proof: We introduce the notations

σ0(x) :=
f 2(x)

‖f‖2
L2(dρ∞)

, σ1(x) :=
f 2(x)

‖f‖2
L2(dρ̃∞)

, α :=
σ1

σ0
=

‖f‖2
L2(dρ∞)

‖f‖2
L2(dρ̃∞)

,

and because of (3.17) we have

1

b
≤ α ≤ 1

a
. (3.19)

Below we shall need the estimate

ψ′′(σ0) ≤
{

ψ′′(σ1), σ1 < σ0, (3.20a)
ψ′′(σ1)

σ1

σ0
, σ1 ≥ σ0. (3.20b)
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The first line follows from ψ′′′ ≤ 0 (see (2.20)), and the second line follows from
(2.38).

We shall now first prove the assertion (3.18) for the case α ≥ 1. In the following
chain of estimates we use, in this sequence, (2.36), (3.17), (3.3), (3.17), (3.20),
(3.19):∫

IRn

ψ(σ1)ρ̃∞(dx) ≤
∫
IRn

[
ψ(σ0)α

2 + μ2(α− 1)(σ − 1)
]
ρ̃∞(dx)

= α2

∫
IRn

ψ(σ0)ρ̃∞(dx) ≤ bα2

∫
IRn

ψ(σ0)ρ∞(dx)

≤ bα2 2

λ1

∫
IRn

f 2

‖f‖4
L2(dρ∞)

ψ′′(σ0)∇�fD∇fρ∞(dx) (3.21)

≤ b

a

2

λ1

∫
IRn

f 2

‖f‖4
L2(dρ̃∞)

ψ′′(σ0)∇�fD∇fρ̃∞(dx)

≤ b

a

2

λ1

α

∫
IRn

f 2

‖f‖4
L2(dρ̃∞)

ψ′′(σ1)∇�fD∇fρ̃∞(dx)

≤ b

a2

2

λ1

∫
IRn

f 2

‖f‖4
L2(dρ̃∞)

ψ′′(σ1)∇�fD∇fρ̃∞(dx),

which is the result if σ1 ≥ σ0.

In the case α < 1 we proceed similarly and first apply (2.37) to obtain:∫
IRn

ψ(σ1)ρ̃∞(dx) ≤
∫
IRn

[ψ(σ0)α+ μ2(α− 1)(σ − 1)] ρ̃∞(dx) = α

∫
IRn

ψ(σ0)ρ̃∞(dx).

(3.22)

Now we again use (3.17), (3.3), (3.17), (3.20a), (3.19) and finally obtain the result∫
IRn

ψ(σ1)ρ̃∞(dx) ≤ b2

a

2

λ1

∫
IRn

f 2

‖f‖4
L2(dρ̃∞)

ψ′′(σ1)∇�fD∇fρ̃∞(dx). (3.23)

We remark that the ‘perturbation constant’ in (3.18) is not as good as the one
in the proof of [HolSto87] (max( b

a2
, b

2

a
) versus b

a
). This is due to the fact that the

proof of Holley and Stroock exploits homogeneity properties of ψ and ψ′, in the
case ψ(σ) = σ ln σ−σ+1. Thus, their original proof (with the constant b

a
) can be

extended to entropy generators of the form ψ(σ) = σp− 1− p(σ− 1), 1 < p ≤ 2,
but not to the general case of Theorem 3.2.

Example 3.3. Set D(x) = I and consider the ‘double well potential’ A(x) =
c1|x|4 − c2|x|2(c1,2 > 0). Then, the perturbation theorem 3.2 yields convex Sobolev
inequalities as A(x) can be written as a bounded perturbation of a uniformly
convex potential that satisfies (A2).
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Next we shall specialize our discussion to the one-dimensional situation and derive
convex Sobolev inequalities under very mild assumptions on the potential A(x).
In particular we shall prove that an appropriate choice of the diffusion coefficient
D compensates lack of convexity of the potential A.

Theorem 3.4. Let A ∈W 2,∞
loc (IR) be bounded below and satisfy ρ∞(x) = e−A(x) ∈

L1
+(IR) with

∫
IR
ρ∞(dx) = 1, and let ψ generate an admissible relative entropy.

Then there exists a λ1 > 0 and a function D = D(x) with D(x) ≥ D0, x ∈ IR,
for some constant D0 > 0, such that:∫

IR

ψ

(
ρ

ρ∞

)
ρ∞(dx) ≤ 1

2λ1

∫
IR

D

∣∣∣∣(Fψ ( ρ

ρ∞

))
x

∣∣∣∣2 ρ∞(dx), (3.24)

∀ρ ∈ L1
+(IR) with

∫
IR

ρdx = 1.

The idea of the proof is to construct a bounded–below function D(x) such that
(A,D) satisfies (A1). To this end we need the following

Lemma 3.5. Let A(x) satisfy the conditions of Theorem 3.4. Then there exists
a λ > 0 such that the ODE

1

4

D2
x

D
− 1

2
Dxx +

1

2
DxAx +DAxx = λ (3.25)

admits at least one global solution that satisfies D(x) ≥ D0, x ∈ IR, for some
constant D0 > 0.

Note that the left hand side of (3.25) is the 1− d version of the left hand side of
(A1) such that Theorem 3.4 follows.

Proof: We transform D(x) = y(x)2 in (3.25) and solve the IVP

yxx = Axxy + Axyx − λ

y
, x ∈ IR, (3.27)

y(0) = eA(0), y′(0) = Ax(0)eA(0), (3.28)

where we added convenient initial conditions. The (possibly only local) solution
of (3.26) satisfies

y(x) = eA(x) − λeA(x)

∫ x

0

[
e−A(z)

∫ z

0

y(ξ)−1dξ

]
dz ≤ eA(x). (3.29)

Due to this upper bound, y(x) can only break down at a finite x0 if y(x0) =
0. Locally, y(x) can be obtained through a fixed point iteration starting with
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y0(x) := eA(x) :

yk+1(x) = eA(x) − λeA(x)

∫ x

0

[
e−A(z)

∫ z

0

yk(ξ)
−1dξ

]
dz (3.30)

≥ eA(x)

(
1 − λ‖e−A‖L1(IR)

∣∣∣∣∫ x

0

yk(ξ)
−1dξ

∣∣∣∣) , k ≥ 0.

Starting with y0(x) ≥ eA(x), an iterative application of the estimate (3.30) yields

y(x) ≥ τeA(x) > 0 (3.31)

with

τ = 1 − λ

1 − λ

1 − λ
. . .

=
1

2
+

√
1

4
− λ,

whenever λ ≤ 1
4
.

By induction one shows that (yk) is decreasing. Hence, (3.30) converges to
y(x) ∀x ∈ IR. From (3.31) we obtain D(x) ≥ τ 2e2A0 =: D0, x ∈ IR, with
A0 denoting the lower bound of A(x).

Note that D = e2A satisfies (3.25) with λ = 0. Hence the couple (A,D = e2A) vio-
lates the Bakry-Emery condition (A1), nevertheless the convex Sobolev inequality
(3.24) holds with D = e2A and λ1 = 1

4
(due to the estimate (3.29)).

Obviously, for A uniformly convex, D can be chosen as a constant (cf. (A2)).
We shall now show that for non uniformly convex A, in general (A1) cannot be
satisfied with a uniformly bounded function D.

Lemma 3.6. Let A(x) satisfy the conditions of Theorem (3.4), and let (A,D)
satisfy the Bakry-Emery condition (A1).

a) If 0 < D(x) ≤ D1 <∞, x ∈ IR, then limx→±∞Ax(x) = ±∞.

b) If 0 < D0 ≤ D(x) ≤ D1 < ∞, x ∈ IR, then A(x) grows at least quadrati-
cally.

Proof: a) Using D = y2 we rewrite the differential inequality (A1) as

yxx +
λ

y
+ f = (Axy)x

for some f(x) ≥ 0. Solving for A gives

Ax(x) =
1

y(x)

[
C + λ

∫ x

0

dz

y(z)
+

∫ x

0

f(z)dz + yx(x)

]
, (3.32)
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for some C ∈ IR. Since y is bounded on IR we have limx→∞yx(x) > −∞. The
result follows from ∫ x

0

dz

y(z)
≥ x√

D1

, x ≥ 0.

b) Integrating (3.32) gives

A(x) = A(0) +
λ

2

(∫ x

0

dz

y(z)

)2

+ C

∫ x

0

dz

y(z)
+ ln

y(x)

y(0)
+

∫ x

0

1

y(z)

∫ z

0

f(ξ)dξdz,

and the result follows from the boundedness assumptions on D.

Closely related results have been obtained for the case that a logarithmic Sobolev
inequality (i.e. (3.24) with ψ(σ) = σ ln σ − σ + 1, D ≡ 1) holds. Then A
necessarily has to satisfy a certain growth condition, namely a Herbst inequality
(see [GrRo97]).

We now finish our discussion of perturbation results on convex Sobolev inequali-
ties with an example. It demonstrates that the diffusion coefficient D constructed
in the proof of Lemma 3.5 in many cases has a much stronger growth at x = ±∞
than necessary to satisfy the Bakry-Emery condition (A1).

Example 3.7. Let A ∈ C2(IR) satisfy A(x) = c|x|2α for |x| > L and 0 < α ≤ 1.
Then a pair (D, λ), λ > 0 satisfying (A1) can be constructed such that

D(x) =

{ (
c+1 + c+2 x

1−α)2 , x > L1(
c−1 + c−2 |x|1−α

)2
, x < −L1

, (3.33)

for some c±1 ∈ IR, c±2 > 0, L1 > L. The construction of D proceeds as follows:
On the interval (−L1, L1), where L1 will be determined later, we choose D = y2,
where y is the solution (3.29) of the IVP (3.26). Outside of this interval we
extend D by (3.33) in a C1-way, thus fixing c±1,2 (in dependence of λ and L1). By
a perturbation argument around λ = 0 one easily sees that λ > 0 can be chosen
small enough and L1 large enough such that ±yx(x)(±L1) > 1 and such that (A1)
holds for |x| > L1.

3.4 Poincaré-type inequalities

As an application of Theorem 3.2 we shall now derive Poincaré-type inequalities.

Remark 3.8. Poincaré-type inequalities on bounded, uniformly convex domains
are readily obtained from convex Sobolev inequalities. For simplicity’s sake, let
B = {x ∈ IRn| |x| < 1} be the unit ball in IRn and let ρ0 = ρ0(x), ρ ≤ ρ0(x) ≤ ρ
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on B, be the density of a probability measure on B. We define the C1-function
Ãε = Ãε(|x|) on IRn for ε > 0 by

d2

dr2
Ãε(r) =

{
1, 0 < r < 1
1
ε
, r > 1

, Ãε(0) =
d

dr
Ãε(0) = 0.

We set

Aε(x) =

{
Ãε(|x|) − |x|2

2
− ln ρ0(x), x ∈ B

Ãε(|x|), x /∈ B

and

ρε∞(x) = exp(−Aε(x))/
∫
IRn

exp(−Aε(y))dy.

Obviously,

ρε∞(x)
ε→0−→

{
ρ0(x), x ∈ B

0, x /∈ B
.

Since − ln ρε∞ is an L∞- perturbation (uniformly as ε → 0) of the uniformly
convex function Ãε(|x|), which satisfies

∂2Ãε

∂x2
≥ I on IRn,

we can apply the perturbation result Theorem 3.2 and obtain the convex Sobolev
inequality (with D ≡ I)∫

IRn

ψ

(
v∫

IRnvdρε∞

)
dρε∞ ≤ c

∫
IRn

∣∣∣∣∇Fψ ( v∫
IRnvdρε∞

)∣∣∣∣2 dρε∞
for all admissible entropies ψ and all nontrivial functions v ∈ L1

+(IRn, dρε∞) (v ∈
L1(IRn, dρε∞) if ψ is quadratic on IR). Here c is independent of ε.

Passing to the limit ε→ 0 gives the Poincaré-type inequality∫
B

ψ

(
v∫

B
vdρ0

)
dρ0 ≤ c

∫
B

∣∣∣∣∇Fψ ( v∫
B
vdρ0

)∣∣∣∣2 dρ0

for all nontrivial v ∈ L1
+(B, dρ0) (v ∈ L1(B, dρ0) if ψ is quadratic on IR). In

the latter case ψ(σ) = (σ − 1)2 with ρ0 = 1
vol(B)

we obtain the classical Poincaré
inequality ∫

B

(
v − 1

vol(B)

∫
B

vdx

)2

dx ≤ 2c

∫
B

|∇v|2dx, v ∈ L1(B).

Obviously, the above limit argument can easily be carried over to general uniformly
convex domains.
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3.5 Sharpness results

We now turn to the analysis of the saturation of the convex Sobolev inequalities,
i.e. we shall answer the question for which function ρ the inequality (2.78) becomes
an equality. In particular we shall find necessary and sufficient conditions on
the entropy generator ψ and on ρ∞, which imply the existence of an admissible
function ρ �= ρ∞ such that (2.78) (under the assumption D = I) becomes an
equality. We remark that this question was completely answered in [Car91] for
the Gross logarithmic Sobolev inequality (i.e. ψ(σ) = σ ln σ − σ + 1, ρ∞ = Ma)
by a technique different from the one presented in the sequel. The same problem
was treated in [Tos97a] and [Led92] using a method which we shall generalize
below.

At first we observe that the derivation of the convex Sobolev inequalities given
in Section 2 is based on writing the entropy equation

d

dt
eψ(ρ(t)|ρ∞) = Iψ(e(t)|ρ∞), (3.34)

the equation for the entropy dissipation

d

dt
Iψ(ρ(t)|ρ∞) = −2λ1Iψ(ρ(t)|e∞) + rψ(ρ(t)) (3.35)

and proving rψ(ρ(t)) ≥ 0. Explicitly, we obtain by inserting (3.34) into the right
hand side of (3.35) and by integrating with respect to t:

eψ(ρI |ρ∞) = − 1

2λ1
Iψ(ρI |ρ∞) − 1

2λ1

∫ ∞

0

rψ(ρ(s))ds (3.36)

where ρ(t) in the Fokker-Planck trajectory which ‘connects’ the initial state ρI
with the steady state ρ∞. rψ ≥ 0 then gives the convex Sobolev inequality

eψ(ρI |ρ∞) ≤ 1

2λ1
|Iψ(ρI |ρ∞)|,

which becomes an equality iff∫ ∞

0

rψ(ρ(s))ds = 0 ⇐⇒ rψ(ρ(t)) = 0 a.e. in IR+
t . (3.37)

The precise form of the remainder rψ can easily be extracted from the proof of
Lemma 2.13. Assuming henceforth

D ≡ I (3.38)
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we obtain

rψ(ρ) =

∫
IRn

(
ψIV(eAρ)|u|4 + 4ψ′′′(eAρ)u�

∂u

∂x
u+ 2ψ′′(eAρ)

n∑
l,m=1

(
∂ul
∂xm

)2

)
e−Adx

+2

∫
IRn

ψ′′(eAρ)u�
(
∂2A

∂x2
− λ1I

)
u e−Adx, (3.39)

where we recall u = ∇(eAρ). Obviously, rψ(ρ) = 0 if u ≡ 0, which (taking
into account the normalization) implies ρ ≡ ρ∞ and gives the trivial case of
equality in the convex Sobolev inequality. Thus, assume u �≡ 0. Then, using the
admissibility conditions (2.12) for the entropy generator ψ and (A2), we conclude
that rψ(ρ) = 0 holds iff the subsequent four conditions are satisfied:

ψ′′′(eAρ)2 =
1

2
ψ′′(eAρ)ψIV(eAρ), (3.40a)

|u|2
(

n∑
l,m=1

(
∂ul
∂xm

)2

) 1
2

= |u�∂u
∂x
u|, (3.40b)

ψ′′(eAρ)u�
∂u

∂x
u = −ψ′′′(eAρ)|u|4, (3.40c)

u�
(
∂2A

∂x2
− λ1I

)
u = 0. (3.40d)

Since μ(t) := eAρ(t) satisfies (2.11) we have by the maximum-minimum principle

0 ≤ inf
IRn

eAρI ≤ eA(x)ρ(x, t) ≤ sup
IRn

eAρI ≤ +∞

a.e. in IRn × IR+
t . We conclude from (3.40a):

Lemma 3.9. If the Sobolev inequality (2.78) with D ≡ I becomes an equality for
ρ �≡ ρ∞, then ψ(σ) = χ(σ) or ψ(σ) = ϕ(σ) holds for σ ∈ [infIRn eAρI , supIRn eAρI ],
where χ and ϕ are given by (2.17a) and (2.17c) resp.

Nontrivial saturation can therefore only occur for the “minimal” and “maximal”
entropies.

At first we investigate the case of the maximal (quadratic) entropy. Note that
now any ρ ∈ L1(IRn, dx) is admissible. Positivity is not required.

Theorem 3.10. The convex Sobolev inequality (2.78) with D ≡ I and ψ(σ) =
(σ − 1)2 becomes an equality iff the following two conditions hold:
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(i) there exist Cartesian coordinates y = (y1, . . . , yn)
� = y(x) on IRn such that

for some β ∈ IR

A(x(y)) =
λ1

2
y2

1 + βy1 +B(y2, . . . , yn), (3.41)

(ii) ρ satisfies for some ξ ∈ IR:

ρ(x(y)) = (1 + ξy1)e
−A(x(y)). (3.42)

Proof: Since ψ′′′ ≡ 0 we conclude from (3.40b) and (3.40c):

∂ul
∂xm

= 0; l,m = 1, . . . , n (3.43)

(u �≡ 0 !). Thus u(x, t) = ∇x(e
A(x)ρ(x, t)) ≡ C(t), where C(t) is constant in

x. Then ρ(x, t) = (C(t) · x+ C1(t)) e
−A(x) follows with C1 real valued. Inserting

into the Fokker-Planck equation gives Ċ · x + Ċ1 = −∇A · C and Ċ = −∂2A
∂x2C

follows. (3.40d) gives C(t)�
(
∂2A
∂x2 − λ1I

)
C(t) = 0 and since ∂2A

∂x2 − λ1I ≥ 0

we conclude ∂2A
∂x2C(t) = λ1C(t). We obtain Ċ = −λ1C and C(t) = C0e

−λ1t.

Therefore
(
∂2A
∂x2 − λ1I

)
C0 = 0 and we have ∇A·C0−λ1C0 ·x ≡ α ∈ IR. We insert

C(t) = C0e
−λ1t into Ċ ·x+ Ċ1 = −∇A ·C and find C1(t) = α

λ1
e−λ1t+C2, C2 ∈ IR.

This gives

ρ(x, t) =

(
C0 · x+

α

λ1

)
e−λt−A(x) + C2e

−A(x)

and t→ ∞ implies C2 = 1. Summing up, we found, for some C0 ∈ IRn, α ∈ IR:

ρ(x, t) =

(
C0 · x+

α

λ1

)
e−λ1t−A(x) + e−A(x) (3.44a)

and

∇(A− λ1

2
|x|2) · C0 = α. (3.44b)

Note that C0 = 0 implies α = 0 and ρ(x, t) ≡ e−A(x) follows. We therefore assume
C0 �= 0 from now on.

Set ω1 = C0

|C0| , choose orthonormed vectors ω2, . . . , ωn ∈ {ω1}⊥ and define the

change of coordinates x ↔ y by x = y1ω1 + . . . + ynωn. We have ∇xf(x) · C0 =
∂f(x(y))
∂y1

|C0| and thus

A(x(y)) =
λ1

2
y2

1 +
α

|C0|y1 +B(y2, . . . , yn)

follows from (3.44b), and this finishes the proof.

Next we treat the “minimal” entropy case.
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Theorem 3.11. The convex Sobolev inequality (2.78) with D = I and ψ(σ) =
σ ln σ − σ + 1 becomes an equality iff the following two conditions hold:

(i) there exist Cartesian coordinates y = (y1, . . . , yn) = y(x) on IRn such that
for some β ∈ IR

A(x(y)) =
λ1

2
y2

1 + βy1 +B(y2, . . . , yn),

(ii) ρ satisfies for some ξ ∈ IR

ρ = exp

(
−A(x(y)) + ξy1 − ξ2

2λ1
+
βξ

λ1

)
. (3.45)

Proof: We set z = ∇ ln(ρeA) in (3.39) and calculate (using the specific form of
ψ):

rψ(ρ) = 2

∫
IRn

ρ
n∑

l,m=1

(
∂zl
∂xm

)2

dx+ 2

∫
IRn

ρz�
(
∂2A

∂x2
− λI

)
zdx.

Assume z �≡ 0. Then ∂z
∂x

≡ 0 follows and z(x, t) ≡ C(t) ∈ IRn. This gives

ρ(x, t) = C1(t) exp(C(t) · x−A(x))

with C1(t) > 0. Inserting into the Fokker-Planck equation and proceeding as in
the proof of the previous Theorem implies

ρ(x, t) = exp
(
(C0 · xe−λt +

α

λ
)e−λt − A(x)

)
(3.46)

where α and C0 satisfy (3.44b). Setting t = 0 in (3.46) proves the assertion.

Note that ρ in (3.45) is obtained by a shift in the y1-coordinate of ρ∞ (cf. [Car91]).

In one dimension (n = 1) or for constant matrices D the analogous result to
the Theorems 3.10 and 3.11 is obtained by the coordinate transformation of
Remark 2.15. For D(x) �≡ I, however, nontrivial saturation of the convex Sobolev
inequality (2.78) is not always possible for any A(x): even for scalar diffusion
D(x) = D(x)I, the analogue of (3.43) implies an integrability condition on D(x),
which is not satisfied in general.

4 Nonlinear Model Problems

We conclude this paper with an application of the theory presented in the previous
Sections to nonlinear Fokker-Planck type equations. The first example is based
on an application of the proof methods of Sections 2, 3 and the second example
is a more direct application of the results of those Sections.
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4.1 Desai-Zwanzig type models

Firstly, consider the following model describing the interaction of a system of
coupled oscillators in the thermodynamic limit:

ρt = Ddivx(∇xρ+ ∇xA(x, ξ; ρ(t))ρ), t > 0, (4.1a)

ρ(t = 0) = ρI(x, ξ), (4.1b)

where x ∈ IRn and the parameter vector ξ = (ξ1, . . . , ξM) ∈ IRM . D is a positive
diffusion constant, ξ presents noise in the oscillator interaction and the oscillator
ensemble potential A is given by

A(x, ξ; ρ(t)) (4.1c)

=
1

D

(
W (x) +

Θ

2
|zρ(t) − x|2 − x ·

M∑
l,m=1

sρ,m(t)Elmξl +
1

2

M∑
l,m=1

Elmsρ,l(t) · sρ,m(t)

)
.

Here W is the single oscillator potential (which we assume to be purely determin-
istic, i. e. without noise), Θ is a nonnegative parameter (interaction strength)
and E = (Elm)l,m=1,...,M is a symmetric real matrix, on whose largest eigenvalue
e0 we will impose conditions later. We have

(C1) E ≤ e0I

( in the sense of p.d. matrices). The nonlinearity in the model stems from the
occurrence of the moments

zρ(t) :=

∫
IRM

ξ

∫
IRn

x

xρ(x, ξ, t)dxdP (ξ), (4.1d)

sρ,m(t) :=

∫
IRM

ξ

∫
IRn

x

ξmxρ(x, ξ, t)dxdP (ξ). (4.1e)

The probability measure P represents the distribution of the noise ξ.

For the following we shall assume

ρI ∈ L1
+(IRM

ξ × IRn
x; dxdP (ξ)) and

∫
IRM

ξ

∫
IRn

x

ρIdxdP = 1.

For more information on the physics of the problem, an extensive list of references
and a preliminary asymptotic analysis we refer to [ArBoMa95].

We start the analysis by defining

ρ0(x, ξ; ρ(t)) := exp(−A(x, ξ; ρ(t))) (4.2)
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and rewrite (4.1a) in the usual way

ρt = Ddivx

(
ρ0∇x(

ρ

ρ0
)

)
. (4.3)

We set up the relative entropy-type functional

e(ρ|ρ0) :=

∫
IRM

ξ

∫
IRn

x

ρ ln(
ρ

ρ0

)dxdP (ξ). (4.4)

Note that, strictly applying Definition 2.2, e(ρ|ρ0) is not a relative entropy since
ρ0 is not necessarily normalized to 1 in L1(dxdP (ξ)). Actually, the normalization
of ρ0 was chosen such that

d

dt
e(ρ|ρ0) = I(ρ|ρ0) (4.5)

with the entropy dissipation

I(ρ|ρ0) = −4D

∫
IRM

ξ

∫
IRn

x

∣∣∣∣∇x

√
ρ

ρ0

∣∣∣∣2 ρ0(dx)dP (ξ) ≤ 0 (4.6)

(cf. [ArBoMa95]). We now proceed as in the linear case in Section 2 and compute
the entropy dissipation rate

d

dt
I(ρ|ρ0) = −2λI(ρ|ρ0) + 2D2

∫
IRM

∫
IRn

ρ

M∑
l,m=1

(
∂zl
∂xm

)2

dxdP (4.7)

+2DΘ

(∫
IRM

∫
IRn

ρ|z|2dxdP − |
∫
IRM

∫
IRn

ρzdxdP |2
)

+2D

∫
IRM

∫
IRn

ρz�
(
∂2W

∂x2
− λI

)
zdxdP

−2D

M∑
l,m=1

Elm

∫
IRM

∫
IRn

ξlρzdxdP ·
∫
IRM

∫
IRn

ξmρzdxdP,

where z := ∇x ln( ρ
ρ0

). We remark that this computation follows the lines of the
proof of Lemma 2.13, where, in addition, the terms which come from the time
dependence of ρ0, have to be taken care of (cf. [ArBoMa95] for details). To
determine λ in (4.7) appropriately we assume that W is uniformly convex

(C2) ∃a > 0 : ∂
2W
∂x2 (x) ≥ aI ∀x ∈ IRn.

Since ∣∣∣∣∫
IRM

∫
IRn

ξlρzdxdP

∣∣∣∣2 ≤ ∫
IRM

ξ2
l dP (ξ)

∫
IRM

∫
IRn

ρ|z|2dxdP
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we can bound the last term on the right hand side of (4.7) (from below) by

−2De0γ

∫
IRM

∫
IRn

ρ|z|2dxdP

assuming on the second moment of P:

(C3)
∫
IRM |ξ|2dP (ξ) = γ <∞.

Altogether we have
d

dt
I(ρ|ρ0) = −2λI(ρ|ρ0) + f(t) (4.8)

where f(t) ≥ 0 if λ exists such that

(C4) a− e0γ ≥ λ > 0.

Clearly, this is the case if either e0 = 0 (i. e. E is negative semi-definite) or, if
e0 > 0, then the product e0γ has to be smaller than the convexity bound a.

Assume now that λ satisfies (C4). Then (4.8) implies

|I(ρ|ρ0)(t)| ≤ e−2λt|I(ρI |ρ0(t = 0))|. (4.9)

Since

żρ(t) = −D
∫
IRM

∫
IRn

ρzdxdP, ṡρ,m(t) = −D
∫
IRM

∫
IRn

ξmρzdxdP

we estimate (using I(ρ|ρ0) = −D ∫
IRM

∫
IRn ρ|z|2dxdP ):

|żρ(t)| ≤ e−2λt|I(ρI |ρ0(t = 0))|, (4.10a)

|ṡρ,m(t)| ≤ γe−2λt|I(ρI |ρ0(t = 0))|. (4.10b)

Now we normalize ρ0:

ρ∞(x, ξ; ρ(t)) :=
ρ0(x, ξ; ρ(t))∫

IRnρ0(y, ξ; ρ(t))dy

∫
IRn

ρI(y, ξ)dy (4.11)

assuming

(C5)
∫
IRM eδ|ξ|

2
dP (ξ) <∞ for some δ sufficiently large.
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Obviously we have
I(ρ|ρ0) = I(ρ|ρ∞).

Since
∫
IRn

x
ρ(x, ξ, t)dx is conserved by the equation (4.1a) we can apply the loga-

rithmic Sobolev-inequality (2.78) (with ψ(σ) = σ ln σ−σ+1 and a+Θ
D

as convexity
constant): ∫

IRn

ρ ln

(
ρ

ρ∞

)
dx ≤ D

2(a+ Θ)

∫
IRn

1

ρ
|∇(

ρ

ρ∞
)|2dx.

After integration with respect to dP (ξ), −I(ρ|ρ∞) appears on the right hand side
and the relative entropy of ρ(t) with respect to ρ∞(t) on the left hand side. Thus

e(ρ(t)|ρ∞(t)) ≤ De−2λt

2(a+ Θ)
|I(ρI |ρ0(t = 0))| (4.12)

follows and the Csiszár-Kullback inequality gives:

‖ρ(t) − ρ∞(t)‖L1(dxdP (ξ)) ≤ 2

(
D|I(ρI |ρ0(t = 0))|

2(a+ Θ)

) 1
2

e−λt. (4.13)

The estimates (4.10) imply that zρ(∞) := limt→∞ zρ(t) and sρ,m(∞) := limt→∞ sρ,m(t)
exist and

|zρ(t) − zρ(∞)| ≤ 1

2λ
|I(ρI |ρ0(t = 0))|e−2λt, (4.14a)

|sρ,m(t) − sρ,m(∞)| ≤ γ

2λ
|I(ρI |ρ0(t = 0))|e−2λt. (4.14b)

Using these estimates we can ‘eliminate’ the t-dependence of ρ∞(x, ξ; ρ(t)) asymp-
totically and prove

Theorem 4.1. Let (C1)–(C5) hold and assume |I(ρI |ρ0(t = 0))| < ∞. Then a
steady state ρ̃∞ ∈ L1

+(dxdP (ξ)) of (4.1) exists and there is a constant K > 0,
only depending on ρI and on the parameters of the problem (4.1) such that

‖ρ(t) − ρ̃∞‖L1(dxdP (ξ)) ≤ Ke−λt ∀t > 0.

Clearly, ρ̃∞ is a solution of the equation

ρ̃∞(x, ξ) =
ρ0(x, ξ; ρ̃∞)∫

IRnρ0(y, ξ; ρ̃∞)dy

∫
IRn

ρI(y, ξ)dy. (4.15)

If W (x) = W (−x) ∀x ∈ IRn holds, then a solution of (4.15) can be easily con-
structed. We set zρ = sρ,m = 0 and

ρ̃∞(x, ξ) = N exp

(
− 1

D
(W (x) +

Θ

2
|x|2)

)∫
IRn

ρI(y, ξ)dy, (4.16)
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where N =
(∫
IRn exp

(− 1
D

(W (y) + Θ
2
|y|2)) dy)−1

. It is immediately verified that
this function solves the equation (4.15).

We remark that convergence of ρ(t) to a steady state ρ̃∞ without a convergence
rate can still be shown if the single oscillator potential W (x) is not uniformly
convex but satisfies only certain mild growth conditions (cf. [ArBoMa95]). Then

it was shown in [ArBoMa95] that I(t)
t→∞−→ 0 still holds (without a rate). The

method used above implies immediately

e(ρ(t)|ρ∞)
t→∞−→ 0

and ρ(t)
t→∞−→ ρ̃∞ in L1(dxdP (ξ)) follows.

4.2 The drift-diffusion-Poisson model

Secondly, we consider the drift-diffusion model with Poisson-coupling for an elec-
tron gas [Mar86], [MaRiSc90]

ρt = div

(
∇ρ+ ∇

( |x|2
2

+ V

)
ρ

)
, x ∈ IRn, t > 0, (4.17a)

ρ(t = 0) = ρI ≥ 0 on IRn,

∫
IRn

ρI(x)dx = 1, (4.17b)

−ΔV = ρ. (4.17c)

Here |x|2
2

acts as a confining potential. For the sake of simplicity we only consider
the case of at least 3 dimensions, i.e. n ≥ 3 and take the Newtonian solution of
(4.17c):

V (x, t) =
1

(n− 2)Sn

∫
IRn

ρ(y, t)

|x− y|n−2
dy, (4.17d)

with Sn being the surface area of the unit sphere in IRn. An existence-uniqueness
result (for a global solution) of (4.17) is easily obtained by proceeding in analogy
to the bounded domain case (cf. e.g. [Gaj85]). The steady state of (4.17) is the
unique solution of the mean-field equation

ρ∞(x) := exp

(
−|x|2

2
− V∞(x)

)/∫
IRn

exp

(
−|y|2

2
− V∞(y)

)
dy, (4.18a)

V∞(x) =
1

(n− 2)Sn

∫
IRn

ρ∞(y)

|x− y|n−2
dy. (4.18b)

A detailed analysis of equations of the type (4.18) can be found in [Dol91].
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We shall now show that ρ(t) converges exponentially to ρ∞ by using logarithmic
Sobolev inequalities. We start by defining the relative entropy type functional

e :=

∫
IRn

ρ ln

(
ρ

ρ∞

)
dx+

1

2

∫
IRn

|∇(V − V∞)|2dx (4.19)

(cf. [Gaj85]). A simple calculation shows that e can be written as

e = F (ρ) − F (ρ∞),

where F is the free energy of the electron gas:

F (ρ) =

∫
IR

(
ρ ln ρ+

x2

2
ρ+

V

2
ρ

)
dx.

Note that the potential energy density of the external confinement potential
Vext = |x|2/2 is Vextρ (see Remark (2.7)), while it is 1

2
V ρ for the self-consistent

Coulomb potential V (x, t). The time-derivative of e is given by:

d

dt
e(t) = −

∫
IRn

ρ(t)|∇ ln

(
ρ(t)

N(t)

)
|2dx (4.20)

where we denoted the t-local state

N(t) = exp

(
−|x|2

2
− V (x, t)

)/∫
IRn

exp

(
−|y|2

2
− V (y, t)

)
dy. (4.21)

We remark that the calculation which leads to (4.20) is completely analogous to
[Gaj85] making appropriate use of the Poisson equations (4.17d), (4.18b).

Assume now that V (t) is in L∞(IRn) uniformly in t, i.e. there is a K > 0 such
that

‖V (t)‖L∞(IRn) ≤ K, t ≥ 0 (4.22)

(which shall be proven later on under additional assumptions on ρI). Then the
logarithmic Sobolev inequality (2.78) and the perturbation result of Theorem 3.2
imply the existence of λ1 > 0 (independent of t) such that∫

ρ ln
( ρ
N

)
dx ≤ 1

2λ1

∫
ρ|∇ ln(

ρ

N
)|2dx, t ≥ 0. (4.23)

We use (4.23) in (4.20) and obtain

d

dt
e(t) ≤ −2λ1

∫
IRn

ρ ln
( ρ
N

)
dx = −2λ1

∫
IRn

ρ ln

(
ρ

ρ∞

)
dx− 2λ1

∫
IRn

ρ ln
(ρ∞
N

)
dx.

Since

ln

(
ρ∞
N(t)

)
= V (t) − V∞ + ln

(∫
IRn

eV∞−V (t)ρ∞dx
)
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we have

d

dt
e(t) ≤ −2λ1

∫
IRn

ρ ln

(
ρ

ρ∞

)
dx−2λ1

∫
IRn

(V (t)−V∞)ρdx+2λ1

(
− ln(

∫
IRn

eV∞−V (t)ρ∞dx)
)

(using
∫
IRnρ(y, t)dy = 1 ∀t > 0). The convexity of f(u) = − ln u implies

− ln

(∫
IRn

eV∞−V (t)ρ∞dx
)

≤
∫
IRn

(V (t) − V∞)ρ∞dx

and

d

dt
e(t) ≤ −2λ1

∫
IRn

ρ ln

(
ρ

ρ∞

)
dx− 2λ1

∫
IRn

(V (t) − V∞)(ρ(t) − ρ∞)dx

follows. Now we use
ρ(t) − ρ∞ = −Δ(V (t) − V∞)

such that

d

dt
e(t) ≤ −2λ1

∫
IRn

ρ(t) ln

(
ρ(t)

ρ∞

)
dx− 2λ1

∫
|∇(V (t) − V∞)|2dx

≤ −2λ1e(t).

We conclude exponential convergence in relative entropy:∫
IRn

ρ(t) ln

(
ρ(t)

ρ∞

)
dx+

1

2

∫
IRn

|∇(V (t) − V∞)|2dx

≤ e−2λ1t

(∫
IRn

ρI ln

(
ρI
ρ∞

)
dx+

1

2

∫
IRn

|∇(VI − V∞)|2dx
)

(4.24)

(where, obviously, VI is the Newtonian solution of −ΔVI = ρI) and exponential
L1(IRn)-convergence of ρ(t) to ρ∞ follows from the Csiszár-Kullback inequality.

We are left with proving the bound (4.22). Therefore we proceed as in [FaStr86]
and multiply (4.17a) by ρq, q ∈ IN. Integration by parts and using (4.17c) gives

1

q + 1

d

dt

∫
IRn

ρq+1dx = − 4q

q + 1

∫
IRn

|∇(ρ
q+1
2 )|2dx+ qn

q + 1

∫
IRn

ρq+1dx− q

q + 1

∫
IRn

ρq+2dx.

Applying the Nash-inequality [Nas58](∫
IRn

f 2dx

)1+ 2
n

≤ an

(∫
IRn

|f |dx
) 4

n
∫
IRn

|∇f |2dx

for some an > 0 to the first term on the right hand side (with f = ρ
q+1
2 ) gives

d

dt
zq+1 ≤ −4q

an

(zq+1)
1+ 2

n

(z q+1
2

)
4
n

+ nqzq+1,
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where we set

zq :=

∫
IRn

ρqdx.

It is easy to conclude that zq+1(t) is uniformly bounded for t > 0 if zq+1(0) <∞.
By interpolation we find ρ(t) ∈ Lp+(IRn) uniformly for t > 0 if ρI ∈ Lp+(IRn) ∩
L1

+(IRn).

Since the Newtonian potential of a function in Lp(IRn) is in L∞(IRn) if p > n
2

we
obtain

Theorem 4.2. Let ρI ∈ L1
+(IRn) ∩ Lp+(IRn) for some p > n

2
. Then there is

a constant λ1 > 0 such that the exponential convergence (4.24) of the relative
entropy holds for the solution (ρ(t), V (t)) of (4.17).

We refer to [ArMaTo98] for a detailed analysis of bipolar models of the form
(4.17) (i.e. with two types of carriers).
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[Tos97a] G. Toscani, Sur l’inégalité logarithmique de Sobolev, C.R. Acad.
Sc. Paris, 324: 689–694, 1997.

59



[ToVi99] Toscani, G., and Villani, C. Sharp entropy dissipation bounds and
explicit rate of trend to equilibrium for the spatially homogeneous
Boltzmann equation. Comm. Math. Phys. 203, 3 (1999), 667–706.

[ToVi99] Toscani, G., and Villani, C. On the Trend to Equilibrium for
some Dissipative Systems with Slowly Increasing A Priori Bounds,
Preprint ENS 99-24 1999 (in press on J. Stat. Phys.).

[Wey49] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover
Publications, New York, 1949.

60


