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Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

ON CONVEXITIES O F d-GROUPS 

JAN JAKUBIK, Kosice 

(Received July 8, 1992) 

The notion of a d-group was introduced by Kopytov and Dimitrov [4]; a d-group 
is defined to be a directed group with two additional operations A and V satisfying 
certain conditions. This notion was investigated also in [3]. 

Convexities of lattices were defined by Fried in [5] (p. 255). In the same way we 

can define convexities also for other types of ordered algebraic structures. 

In [5] the question was proposed what is the "number" of convexities of lattices. 
In [2] it was shown that no such number exists; convexities of lattices form a proper 
class. 

In the present paper it will be proved that an analogous result is valid for convex
ities of d-groups. Namely, we shall construct an injective mapping of the class of all 
infinite cardinals into the collection ^ of all convexities of d-groups. 

Next we shall investigate the properties of the partial order on ^ which is defined 
by inclusion. 

Some relations between convexities of d-groups and varieties of lattice ordered 
groups will also be dealt with. 

1. PRELIMINARIES 

The group operation in a directed group G will be denoted additively. Let x and 
y be elements of G. If x and y are incomparable, then we write x \\ y. The notation 
x <y means that x is covered by y (i.e., x < y and there is no z in G with x < z <y). 

We recall the definition of a d-group (cf. [3]). 
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1.1. Definition. Let C7bea directed group with two additional binary commu
tative operations A and V such that the following conditions are satisfied: 

(i) If x ^ y, then x A y = x and x\/ y = y. 

(ii) If x || y, then xAy<t<xVyfor each t G {x, y}. 

(iii) x A y = — ((—x) V (—?/)), and dually. 

(iv) a + (x V y) + b = (a + x + b) V (a + y + b), and dually. 

Under these assumption G is said to be a d-group. 

(The expression "dually" means that the symbols A and V are interchanged in the 

corresponding condition.) 

For d-groups we define the notions of homomorphism, direct product and d-

subgroup in the usual way. 

Let $ be the class of all d-groups. 

1.2. Definition. A nonempty subset of f̂  will be said to be a convexity of 
d-groups (or shortly, a convexity) if it is closed under homomorphic images, convex 
d-subgroups and direct products. 

Let us denote by *€ the collection of all convexities of d-groups. We consider ^ 
to be partially ordered by inclusion. Then ._? is the largest element of ^ ; the least 
element of ^ is the class X0 consisting of all one-element d-groups. 

For X C S> we denote by 

HX —the class of all homomorphic images of elements of X; 

CX —the class of all convex d-subgroups of elements of X; 

PX —the class of all direct products of elements of X. 

1.3. Lemma. Let 0 7- X C @. Then HCPX is the least convexity containing 

X as a subclass. 

The proof is routine; it will be omitted. For an analogous result concerning con
vexities of lattices cf. [6]. 

The convexity HCPX will be said to be generated by X. 

A d-subgroup if of a d-group G will be called a d-ideal of G if it is a kernel of 
a homomorphism. For conditions characterizing d-ideals cf. [5] and [3]. If K is a 
d-ideal of G, then the factor d-group G/K is defined in the usual way. 
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2. T H E d-GROUPS Ha 

Let a be an infinite cardinal. We construct a d-group Ha as follows. 
There exists an abelian group Ga with cardG a = a. Let G1 be the additive group 

of all integers with the natural linear order. We consider Ga to be trivially partially 
ordered and let Ha be the partially ordered group G1 o Ga, where o denotes the 
operation of the lexicographic product. 

Next we define a binary operation V on Ha. Let g G Ha, g = (x,y). We put 
0 V 0 = 0 and 0 V (0,y) = (l,y) if y ?- 0. For x ^ 0 we set 0 V g = max{0,#}. If 
g' eG and g' ^ 0, then we define g' V g = g' + (0 V (g - g')). 

Now we put gi Ag2 = -((—gi) V (—g2)) for each g\ and g2 in Ha. Then Ha turns 
out to be a d-group. 

If /3 is an infinite cardinal with /3 < a, then without loss of generality we can 
assume that Gp is a subgroup of Ga. Hence Hp is a d-subgroup of Ha. Let us 
remark that Hp fails to be a convex subset of Ha. 

Let I be a nonempty set of indices and for each i G I let A{ = Ha. Put A = [ ] ^ 
i€1 

(the direct product of d-groups A{). Let B be a convex d-subgroup of A and If a 
d-ideal of B. 

2.1 . Lemma. Let a and (3 be infinite cardinals, /3 < a. Then (under the above 

introduced notation) Hp is not isomorphic to B/K. 

P r o o f . By way of contradiction, suppose that there exists an isomorphism (D 
of Hp onto B/K. For each g G B we denote g = g + K. 

If / G A, i G I and f(i) = (x,y) with x G G1 and a/ G G a , then we denote 
f(il) =x and f(z2) =y. 

In view of the isomorphism ^ there exists g G H such that g || 0. Then g || 0. Put 
g v 0 = IV Hence for each i G I we have either /i0(i) = 0 or An fa'1) ̂  1- There is 
h e A such that, for each i G I, 

h(il) = h0(i
l) and A(z2)=0. 

Then 0 < A < 2A0, whence A G H. 
Since g V 0 = h0, by applying the isomorphism <p we obtain that A0 7-= 0. Further 

we have 0 < h0 < 2h and thus h 7-= 0. 
There are A' and A" in A such that, for each i G I, 

/./(i1) = 1 if .Mi1) = 1, and ti{il) = 0 otherwise , 

h"(il) = h(il) if h(il) > 1, and ^"(z1) = 0 otherwise , 

ti(i2) = A"(z2) = 0. 
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Clearly 0 ^ ti ^ h and 0 ^ h" ^ h. Hence ti and h" belong to 5 . Next, ti + /i" = /i, 

thus either /i' £ If or h" £ K. 

First suppose that ti belongs to K. Then h" does not belong to K. There is 

ti £ A such that, for each i £ I, the following conditions are satisfied: 

(a) if h"(i) = 0, then h*(i) = 0, 
(b) if h"(i) 7- 0, then ti(ix) is the least positive integer which is greater than or 

equal to ^ " ( i 1 ) ; 
(c) h*(i2) = 0 for each i £ I. 

Hence 0 < h < h* < h" and thus h* £ B. 

In view of the isomorphism <D the relation 0 -< ho is valid. This yields that 0 ^ / i 

also holds; therefore 0 -< h". Since 0 ^ ti ^ /i", we must have either 

(ai) 0 = 7i* 

or 

(a2) 7^ = 7^. 

In view of the definition of h* we infer that 

(bi) / i "^2 / i* , 

(b2) h" ^ 3(/i" - /**). 

If (ai) holds, then (bi) yields that h" = 0, which is a contradiction. If (a2) is valid, 
then applying (b2) we again obtain the relation h" = 0, which is impossible. 

We conclude that ti does not belong to K. Thus 0 < ti ^ h. Since 0 -< /i, the 
relation ti = h holds. Therefore 0 -< 77 and h" = 0. Put Ii = {i G I : ti(i) ^ 0}. 
Thus Ii 7- 0. 

We denote by Q the set of all z £ Ha with z || 0. For each z £ Q there exists tz in 
A such that £2(i) = z if 2 G Ii and i2(i) = 0 otherwise. Then —ti < tz < ti, hence 
tz £ B. Put Q0 = {tz:z£ Q}. 

Let £2 G Qo. Then 0 V t 2 = /i' and hence 0Vtz = ti = h. This yields that i7 7- 0 
and that the relation tz < 0 cannot hold. It is clear that —z £ Q and £_2 = — tz. 

Since rTJ < 0 cannot be valid we infer that T~z is not greater than 0. Therefore Tz || 0 
for each z £ Q. 

If z(l) and z(2) are distinct elements of Q, then 2 = z(l) — z(2) belongs to Q as 
well; thus 

*z(l) - **(2) = ^( l)-z(2) =tz ^0. 

Therefore the number of those elements of the c/-group B/K which are incomparable 

with 0 is greater than or equal to a. Thus in view of the isomorphisms ip we arrived 

at a contradiction. • 

For each infinite cardinal a let Xa be the convexity of d-groups which is generated 
by the one-element set {Ha}. 
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2.2. Theorem. The mapping tft defined by tp(a) -= Xa is an injection of the 

class of all infinite cardinals into the collection ¥> of all convexities of d-groups. 

P r o o f . If a and 0 are infinite cardinals with (3 < a, then in view of 2.1 the 
d-group Hp does not belong to the class HCP{Ha}. Thus according to 1.3 the 
convexities Xa and Xp are distinct. D 

The above result shows that the collection ^ is a proper class. 

3. T H E LATTICE ^ 

As we already remarked above, we consider ^ to be partially ordered by inclusion. 
We shall apply to <& the usual order-theoretic terminology (though ^ is a proper 
collection). 

3.1. Lemma. Let {Ki};G/ be a nonempty subcollection offf. Then the meet 

/\ Xi in <€ is equal to f] Xi. 
iei iei 

This is an immediate consequence of the definition of #'. 

Since ^ possesses the greatest and the least element, 3.1 yields 

3.2. Corollary. ^ is a complete lattice. 

3.3. Lemma. Let {Xi}i<zi be as in 3.L Then the join \J Xi in ^ is equal to 
iei 

HCP |J X{. 
iei 

P r o o f . In view of 3.2, the join V Xi does exist in <€. Then from 1.3 we 
iei 

conclude that \/ X{ = HCP IJ X{ is valid. D 
iei iei 

3.4. Lemma. Let {X}iei be as in 3.1 and let G be a d-group. Then the 
following conditions are equivalent: 

(a) G belongs to V X{. 
iei 

(b) There is a set 1(1) C I and d-groups G{(i G 1(1)) with G{ e X{ such that 
GeHC n Gi. 

»€/(i) 

P r o o f . This is a consequence of 1.3, 3.3 and of the fact that each Xi is closed 
under direct products. D 
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3.5. Lemma. Let {Xi}ieI be as in 3.L Suppose that for each i G I there exists 

a d-group Di such that X\ is generated by {Di}. Let G be a d-group. Then the 

condition (a) from 3.4 is equivalent to the following condition: 

(bi) There is a set 1(1) C I such that G G EC f] A -
t€ / ( l ) 

P r o o f . Let SB be the class of all d-groups satisfying the condition (bi). Then 
in view of 3.4, 38 C \J Xi. Next, $ is closed under homomorphisms, convex d-

iei 
subgroups and direct products; moreover, Di; G SS for each i G I. Thus according to 
1.3 the relation V X{ C ^ holds. D 

The direct product of two d-groups A and 5 will be denoted by Ax B. If <D is an 
isomorphism of a d-group G onto AxB, then we denote A0 = {g e G : (p(g)(B) = 0} 
and B° = {g G G : ip(g)(A) = 0}. (ip(g)(A) is the component of <p(g) in A, and 
similarly for (p(g)(B).) 

We need some auxiliary results on direct products with two factors (Lemmas 3.5-
3.9); their proofs are routine and will be omitted. 

3.6. Lemma. Let A,B and G be as above. Then A0 and B° are convex 

d-subgroups ofG and they satisfy the following conditions: 

(i) For each g G G there exist uniquely determined elements gA £ A0 and gs G B° 

such that g = gA+ gB* 

(ii) If g and g' are elements of G, then gtg = (gAtg'A) -f (gB^g's) f°r eacn t £ 
{ + ,A,V}. 

(iii) For g and g' in G the relation (a) g ^ g' is equivalent to (b) gA ^ g'A
 and 

gB ^g'B-

3.7. Lemma. Let A0 and B° be convex d-subgroups of a d-group G. Assume 
that the conditions (i), (ii) and (iii) from 3.5 are satisfied. For each g G G put 
(p(g) = (gA>gB)- Then ip is an isomorphism of G onto the direct product A0 x B°. 

In view of 3.5 and 3.6 we often identify (when no misunderstanding can occur) the 
d-groups A and ^4°, and similarly for B and B°; in this sense we write G = A0 x B°, 

or also G = A x B. 

In this connection the following natural question arises. For a d-group G we denote 
by G* the corresponding directed group (we forget the operations A and V). Assume 
that a direct product decomposition G* = A x B is given. Then we can ask whether 
A and B are d-subgroups of G such that G = A x B is valid. The answer is that this 
need not hold in general (cf. [3], Example in 3.6). 
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Let us remark that for a related question concerning direct product decompositions 
of a directed group (G; +, ^ ) and direct product decompositions of the directed set 
(G; ^ ) (we forget the group operation -f) the answer is affirmative (cf. [1]). 

3.8. Lemma. Let A,B and G be d-groups such that G = A x B. Let C be a 

convex d-subgroup ofG. Then C = (C n A) x (C n B). 

3.9. Lemma. Let A,B and G be as in 3.8 and let K be a d-ideal of G. 

Then K n A and K n B are d-ideals of A or of B, respectively; moreover, G/K = 

(A/KnA) x (B/KnB). 

Let us remark that Lemmas 3.6 and 3.7 can be generalized to direct products with 
any number (i.e., also infinite number) of direct factors. On the other hand, neither 
3.8 nor 3.9 are valid, in general, for direct product decompositions with an infinite 
number of direct factors. 

3.10. Theorem. The lattice ¥? is distributive. 

P r o o f . Let X\, X2 and Y be elements of ^ . We have to verify that Y A (X\ V 
X2) = (Y A X\) V (Y A X2) is valid. It suffices to verify that the relation 

Y A (X\ V X2) C (Y A Xi) V (Y A X2) 

holds. 

Let G G Y A (Ki V X2). Then G G Y and G G Ki V X2. Thus in view of 3.4 there 
are G\ G X\ and G2 G X2 such that G G HC(G\ x G2). Therefore we can assume 
that there are (i) a convex d-subgroup B oi G\ x G2, and (ii) a d-ideal K oi B such 
that G is isomorphic to B/K. 

According to 3.8 the relation B = (B n Gx) x (B n G2) is valid. Put J5 n G; = G'. 
(i = 1,2). Then G\ is a convex d-subgroup of Gt-, hence GJ G A"» for z = 1, 2. In view 
of 3.9, 

B/K = (G'l/G[ nK)x (G'2/G2 n # ) . 

Clearly GJG^ n K e X{ for t = 1,2. Let t G {1,2}. Because GJ/GJ f l i^G HC{G}, 
we infer that GJ/G; n K belongs to Y; hence it belongs to Y A Xi as well. Thus 
(cf. 3.4) B/K is an element of the convexity (Y A Xi) V (F A K2). Hence H belongs 
to this convexity as well, which completes the proof. D 

The question whether ^ satisfies the infinite distributive law 

YA(\/Xt)=\J(YAXi) 
^iel ' i<El 
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remains open. 

4 . FURTHER PROPERTIES OF ^ 

We already observed in Section 2 that ^ is a proper collection. The question 
arises what can be said in this direction on chains in ^ ; i.e., we can ask whether 
there exists a subcollection *€\ of ^ such that (i) ^ i is a chain in the lattice ^ , and 
(ii) ^ i is a proper collection. 

We shall construct a subcollection ^ i of ^ having these properties. 

For each infinite cardinal a let Ha be as in Section 2. Next let M; be the class of 
all infinite cardinals. 

As above we can suppose that if a and ft are elements of Mt- with ft < a, then Hp 

is a d-subgroup of Ha. 

For a e M{ let Xa be as in Section 2. We put Ya = V Xa. 
p^a 

Let a, /3 £ Mi, ft < a. Let I be a nonempty set of indices and for each i G I let A; 
be a d-group which is equal to some Hp with ft ^ a. Put _4 = [} ytt-. Assume that 

iei 
B is a convex d-subgroup of A and that K is a d-ideal of B. 

4 .1 . Lemma. Under the above notation, Hp is not isomorphic to B/K. 

The proof is similar to that of 2.1, only minor modifications are required. It will 
be omitted. 

4.2. Lemma. Let a and ft be as above. Then Hp does not belong to Ya. 

P r o o f . This is a consequence of 4.1 and 3.5. D 

4.3. Theorem. For each ft € Mi let (D(/3) = Yp. Then </? is a surjection of Mi 
onto ^\. Moreover, if a, ft € Mi, ft < a, then Ya <Yp. 

P r o o f . The first assertion is a consequence of 4.2; the second is obvious. D 

The question whether f\Yp (ft £ Mi) is the least element of ^ remains open. 
P 

For a nonempty subclass X of Q) we denote by SX the class of all d-subgroups of 
elements of X. 

If r is a variety of d-groups, then HSPY = Y, hence, in particular, HCPY = Y; 
thus y Gtf. 

4.4. Proposition. Each variety of lattice ordered groups belongs to ¥>. 
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P r o o f . Let y be a variety of lattice ordered groups. Then Py = y. Let 
Gey. If Ho is a convex d-subgroup of G, then Ho is a convex ^-subgroup of G; 
hence Cy — y. Next let Hi be a d-ideal of G. In [5] it has been shown that each 
d-ideal of a d-group is a convex normal d-subgroup. Therefore Hi is an ^-ideal of 
G and so G/Hi G y. Thus y is closed with respect to homomorphisms (which 
are considered as homomorphisms of d-groups). Summarizing, we conclude that y 
belongs to ^. D 

For the particular case y = J£ the relation f G ^ can be obtained also from [5], 
Theorem 4.3. 

Let sz/ be the variety of all abelian lattice ordered groups; X0 denotes the class 
of all one-element d-groups. It is well-known that if y is a variety of lattice ordered 
groups with V / X0, then sz/ cy. 

In view of 3.4, sz/ e <€. If Y e <*? and Y # X0, then the relation sz/ CY need not 
be valid. In fact, let R be the additive group of all reals and let G1 be the subgroup 
of R consisting of all integers. We consider R and G1 to be lattices (with the natural 
linear order). Put Y = HCP{R}. Then X0 ^ Y G <& (and, at the same time, 
Y C jSf). Since R is divisible, each element of Y is a divisible lattice ordered group-
Thus G1 does not belong to Y and therefore sz/ <£ Y. 

The following consideration shows that the collection of elements Y of ^ which 
satisfy the condition sz/ £ Y is large. 

4 .5. Proposition. Let G be a linearly ordered group. Assume that there exists 

g0 G G such that 0 •< g0. Then for each infinite cardinal a the relation G £ Ya is 

valid. 

P r o o f . By way of contradiction, assume that G belongs to Ya for some a e Mi. 
Thus in view of 3.5 there exist d-groups A{(i G I) such that for each i G I there is a 
cardinal a(i) ^ a with A{ = Ha(i) and G G HC Y\ A{. 

iei 
Thus there is a convex d-subgroup B of [ ] A{ and a d-ideal K of B such that G is 

-e/ 
isomorphic to B/K. Without loss of generality we can assume that G = B/K. As 

above, we denote g = g + If for each g e B. By the assumption there exists 6 G H 
such that 0 ^ 6 . 

We have 6vO = 6 v O = b, hence we can take 6 V 0 instead of b. Thus we can 
assume that 6(i1) ^ 0 for each i G I. There is 6' € A having the property that 
b'(il) = ^(f1) and 6'(i2) = 0 for each i G I. Then 0 ^ b' < 26, whence b' G B. 
Moreover, 0 ^ V ^ 26. 

Since 6 < 26', the relation 6' = 0 would imply that 6 = 0, which is impossible. 
Next, 6 < 26 - 6' and thus 26 = F. Since B/K is linearly ordered and 0 -< 6 •< 26, 
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we must have b' = b. Therefore we can take b' instead of b. Hence b(i2) = 0 for each 

ieL 

Put Ii = {i e I : b(i) ^ 0}. Thus Ii 7- 0. Let g e A be such that g(i) \\ 0 for 

each i G Ii and g(i) = 0 otherwise. Then - b < g < b, hence g e B. Next, g || 0 and 

g < (g V0) — g. If g > 0, then g ^ (g V0) —g = 0, which is a contradiction. Similarly, 

the relation g < 0 cannot be valid. Thus # = 0. Hence oV0 = 0. 

Let h e A such that h(il) = 1, li(i2) = 0 for each i e Ii, and li(i) = 0 otherwise. 

Then 0 < h ^ b, whence h e B. There exists g e B with the properties as above 

such that h = g V 0. Therefore h = 0. 

Let bi and b2 be elements of A such that 

h(i) = b(i) if b^'1) = 1, and bi(i) = 0 otherwise, 

b2(i) = b(i) if b(il) > 1, and b2(i) = 0 otherwise. 

It is obvious that bi and b2 belong to B. Next, b = bi -f- b2 and 0 ^ bi ^ /i, whence 

bT = 0. Thus bT = b. 

There exists c e A such that 

(i) c(i2) = 0 for each i e I; 

(ii) if b2(i) = 0, then c(il) = 0; 

(iii) if b2(i) ^ 0, then c(il) is the least positive integer which is greater than or 

equal to \b2(il). 

Then clearly c e B. Now by analogous steps as in the proof of 2.1 (cf. the relations 

(ai) and (bi), i = 1,2) we arrive at a contradiction. • 

4.6. Corollary. Let a e M{. The linearly ordered group Gl does not belong to 

4.7. Corollary. Let a e Mi. Then srf fails to be a subclass ofYa. 
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