
ON CONVEXITY AND IDENTIFIABILITY IN 1-D FOURIER PHASE RETRIEVAL

Kejun Huang∗ Yonina C. Eldar† Nicholas D. Sidiropoulos∗

∗University of Minnesota, Minneapolis, MN, 55455, USA
†Technion – Israel Institute of Technology, Haifa, 32000, Israel

ABSTRACT

This paper considers phase retrieval from the magnitude of 1-D over-
sampled Fourier measurements. We first revisit the well-known lack
of identifiability in this case, and point out that there always exists
a solution that is minimum phase, even though the desired signal
is not. Next, we explain how the least-squares formulation of this
problem can be optimally solved via PhaseLift followed by spectral
factorization, and this solution is always minimum phase. A simple
approach is then proposed to circumvent non-identifiability: adding
an impulse to an arbitrary complex signal (offset to the Fourier trans-
form) before taking the quadratic measurements, so that a minimum
phase signal is constructed and thus can be uniquely estimated. Sim-
ulations with synthetic data show the effectiveness of the proposed
method.

Index Terms— phase retrieval, over-sampled Fourier measure-
ments, minimum phase, auto-correlation estimation, semi-definite
programming.

1. INTRODUCTION

Phase retrieval seeks to find a signal from the magnitudes of linear
measurements. This problem arises in various applications, includ-
ing crystallography, microscopy, and optical imaging, due to the lim-
itations of the detectors used in those applications. Different types
of measurement systems have been proposed and used in practice,
e.g., over-sampled Fourier measurements, short-time Fourier mea-
surements, random Gaussian, to name just a few (see [1] for a con-
temporary review). Two of the fundamental questions regarding this
problem are: i) Is the signal uniquely determined by the (noiseless)
magnitude measurements (up to inherent and usually inconsequen-
tial ambiguities like a global phase); and ii) Is there an efficient al-
gorithm that can provably compute an optimal estimate of the signal
according to a suitable criterion (like maximum likelihood)?

This paper considers the phase retrieval problem with a specific
but widely used measurement system: 1-D over-sampled Fourier
measurements. We will answer both the aforementioned questions
positively. We first show that the least-squares formulation of this
problem can be optimally solved in polynomial time. Due to the fact
that all solutions obtained from our algorithm have the minimum
phase property, we then propose an approach that first transforms an
arbitrary signal into a minimum phase signal by simply adding an
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impulse, so that identifiability is restored. Compared to the existing
methods that provide identifiability with 1-D masked or short-time
Fourier measurements [2, 3], the proposed approach is much easier
conceptually, requires minimal number of measurements, and can
always be solved to global optimality, as we will see.

As a sneak preview and roadmap of our approach, let us sum-
marize the proposed procedure to recover an arbitrary signal s =
[ s1 s2 ... sN−1 ]

T from the magnitude of 1-D over-sampled Fourier
measurements.

1. Construct smin by inserting s0 in front of s, i.e., smin =
[ s0 s1 ... sN−1 ]T , such that |s0| ≥ ‖s‖1;

2. Take the M -point discrete Fourier transform of smin, where
M ≥ 2N , and measure its squared magnitude {b1, ..., bM};

3. Solve the PhaseLift problem (4) with {b1, ..., bM}, denote the
solution as X�, and construct an auto-correlation sequence r
using (5b);

4. Perform spectral factorization on r to obtain x�. This x�

is the optimal solution for the least-squares phase retrieval
problem (2);

5. Delete the first element of x� to obtain an estimate of s, de-
noted as ŝ.

Notice that we use s and its variations to denote the signal to be
estimated, and x to denote optimization variables.

2. NON-IDENTIFIABILITY AND HIDDEN CONVEXITY

In this section, we first provide insight on signal recovery from the
magnitude of 1-D Fourier measurements. First we revisit the well-
known fact that an arbitrary s ∈ CN cannot be uniquely identified
from bm = |fH

ms|2, for m= 1, ...,M , where fH
m is the m-th row

of the M -point discrete Fourier transform (DFT) matrix, truncated
at length N . Explicitly,

fH
m =

[
1 φ(m−1) φ2(m−1) · · · φ(N−1)(m−1)

]
, (1)

and φ = exp(−2π
√−1

M
). The least-squares formulation of phase re-

trieval, given the squared magnitudes of 1-D Fourier measurements
{b1, ..., bM}, is

minimize
x∈CN

M∑
m=1

(bm − |fH
mx|2)2. (2)

We will explain how this seemingly non-convex problem can be op-
timally solved via the popular PhaseLift followed by spectral factor-
ization (SF).



2.1. Non-identifiability

It is well-known that phase retrieval from 1-D Fourier measurements
is not identifiable without any additional prior information [4, 5],
and here we briefly review where the non-identifiability comes from.
From classical digital signal processing [6], we know that the DFT
can be obtained by sampling the z-transform of the finite-length sig-
nal on the unit circle |z|2 = 1. Let S(z) be the z-transform of s,
which is a polynomial of order N − 1, and can be written in the
factored form:

S(z) =
N∑

n=1

snz
−(n−1) = s1

N−1∏
n=1

(1− ξnz
−1), (3)

where ξn’s are the zeros (roots) of the polynomial S(z). The
quadratic measurements can be seen as sampled from another z-
transform |S(z)|2, which is

|S(z)|2 = S(z)S∗(1/z∗)

= |s1|2
N−1∏
n=1

(1− ξnz
−1)(1− ξ∗nz).

As we can see, the zeros of |S(z)|2 always come in conjugate recip-
rocal pairs, and even if we are given |S(z)|2, we cannot determine
whether a zero ξ or its conjugate reciprocal (ξ∗)−1 is a root of S(z),
let alone reconstructing s. In other words, for a given signal s, we
can find the zeros of its z-transform as in (3), take the conjugate re-
ciprocal of some of them, and then take the inverse z-transform to
obtain another signal y. If we re-scale y to have the same �2 norm
as s, then it is easy to verify that

|fH
ms|2 = |fH

my|2, ∀m = 1, ...,M,

no matter how large M is.
Traditionally, this problem is often seen in design problems

where uniqueness is not important. There, it is natural (from the
maximal energy dissipation point of view) to pick the zeros to lie
within the unit circle, yielding a so-called minimum phase signal.

2.2. Hidden convexity

Ignoring the special structure of fm, it is easy to write (2) as a non-
convex quadratically constrained quadratic programming (QCQP),
for which the prevailing approach is to use semi-definite relaxation
[7] to get a lower bound on the optimal value of (2). In the field of
phase retrieval, this procedure is known as PhaseLift [8, 9]. Specifi-
cally, PhaseLift instead tries to solve the following problem (without
the trace norm penalty)

minimize
X∈HN

+

M∑
m=1

(
bm − Trace

{
fmfH

mX
})2

, (4)

where HN
+ denotes the set of Hermitian positive semi-definite ma-

trices of size N ×N . Problem (4) can be cast as semi-definite pro-
gramming (SDP) and solved in polynomial time, and if the solution
of (4), denoted as X�, turns out to be rank one, then we also ob-
tain the optimal solution of the original problem (2) by extracting
the rank one component of X�. However, for general measurement
vectors PhaseLift is not guaranteed to give a rank one solution, espe-
cially when the measurements {bm} are noisy. In that case one can
only resort to sub-optimal solutions, for example by taking the first
principal component of X�, possibly refined by a traditional method
like the Fienup algorithm [10].

What was not known in the phase retrieval community, to the
best of our knowledge, is that for the particular 1-D Fourier mea-
surements, recent advances in non-convex QCQPs [11, 12] can be
used to show that problem (2) is equivalent to a convex optimiza-
tion problem. Define the auto-correlation sequence of x as rk =∑N

n=k+1 xnx
∗
n−k, and stack it into a vector r ∈ CN . Then it can be

shown [11, 12] that (2) can be equivalently written as

minimize
r∈CN ,X∈HN

+

M∑
m=1

(
bm − Re

{
fH
m Ĩr

})2

(5a)

subject to rk = Trace {TkX} , (5b)

∀ k = 0, 1, ..., N − 1,

where Ĩ = diag {[ 1 2 2 ... 2 ]}, Tk is a matrix with ones on its k-th
sub-diagonal and zeros elsewhere, and T0 = I . The cost function
is linear least-squares with respect to r, and the constraint (5b) is a
semi-definite parametrization of r to ensure that it is a valid auto-
correlation sequence [13]. In fact, in terms of optimization we can
eliminate the variable r, as in [11, 12], which then turns out to yield
least-squares PhaseLift problem (4). The corresponding r can be
obtained by plugging X� back into the formula (5b). However, the
difference here from PhaseLift for general measurements is that the
constraints (5b) guarantee that there always exists a rank one solu-
tion, as shown in [13, Appendix A.].

The question that remains is how to find a signal x that generates
such an auto-correlation sequence r. This is known as spectral fac-
torization (SF). We briefly discuss three SF methods, and refer the
reader to [14, Appendix] and [15, Appendix B] for a more complete
review.

• Root finding. According to the definition of minimum phase, we
can directly calculate the roots of the polynomial defined by the
sequence [ r∗N−1 r∗N−2 ... r∗1 r0 r1 ... rN−1]. Since r is a valid
auto-correlation sequence, the roots come in conjugate reciprocal
pairs; therefore, we can pick the ones that are inside the unit circle,
expand the expression, and then scale it to have �2 norm equal to√
r0. It is conceptually a simple method, but in practice very

sensitive to round-off error when N becomes large.

• SDP based. For a valid auto-correlation r, it is shown in [15,
Chapter 2.6.1] that the following SDP

maximize
X∈HN

+

X(1, 1)

subject to rk = Trace {TkX} ,
∀ k = 0, 1, ..., N − 1,

(6)

has a unique rank one solution, and its rank one component gen-
erates the given auto-correlation. Algorithms for SDP are numer-
ically stable, although the complexity could be high if we use a
general-purpose SDP solver.

• Kolmogorov’s method. It can be shown that if we take the log-
arithm of a minimum phase signal, then the Hilbert transform of
the real part equals the imaginary part. The real part can be calcu-
lated from r, and the Hilbert transform can be well-approximated
by two FFTs if we pick the length to be sufficiently large (typi-
cally larger than 20N is good enough). This method is both ef-
ficient and numerically stable, thus usually the method of choice.
Implementation details can be found in [15, Appendix B.4].

Notice that all of these methods give us the minimum phase signal.
We briefly summarize the claims of this subsection here. The

PhaseLift problem (4) is a semi-definite relaxation of (2), which does



not generally have (or yield, even with trace norm regularization) a
rank one solution. For 1-D Fourier measurement vectors, however,
there actually always exist rank one solutions for (4), among other
solutions with higher rank [11, 12]. In most cases an SDP algorithm
will give us a solution with a higher rank. To obtain a rank one
solution, we can construct an auto-correlation sequence r according
to (5b), and then perform SF on it. The signal obtained from SF is
an optimal solution of problem (2).

3. A NEW MEASUREMENT TECHNIQUE

It is now clear that 1) an arbitrary signal cannot be uniquely de-
termined from the magnitude of its over-sampled 1-D Fourier mea-
surements, because there always exists a minimum phase signal that
gives the same measurements; and 2) the least-squares estimate can
be efficiently calculated by solving PhaseLift followed by SF, which
gives us an optimal solution that is minimum phase. If the true sig-
nal s is indeed minimum phase, then we can optimally estimate it in
polynomial-time. However, minimum phase is usually an impracti-
cal assumption to be imposed to the true signal.

We propose to resolve this ambiguity by deliberately making the
signal to be minimum phase before taking the quadratic measure-
ments, so that the augmented signal can be uniquely identified, and
then the true signal can be recovered easily.

For an arbitrary complex signal s, we propose to add s0 in front
of s before taking measurements, where s0 satisfies that |s0|≥‖s‖1.
Denote the augmented signal as smin, then smin is minimum phase,
as explained in the following.

Lemma 1. [16, Theorem 1.] Let ζ be a zero of the polynomial

zN + cN−1z
N−1 + ...+ c1z + c0,

where c0, ..., cN−1 ∈ C and N is a positive integer, then

|ζ| ≤ max

{
1,

N−1∑
n=0

|cn|
}
.

Equipped with Lemma 1, we show the following result.

Proposition 1. For an arbitrary complex signal s=[s1 s2...sN−1]
T ,

the augmented signal smin = [ s0 s1 s2 ... sN−1 ]T , where
|s0| ≥ ‖s‖1, is minimum phase.

Proof. All we need to show is that the zeros of the z-transform
of smin

s0 + s1z
−1 + ...+ sN−1z

−(N−1),

or equivalently the roots of the polynomial

zN−1 +
s1
s0

zN−2 + ...+
sN−1

s0
,

all lie inside the unit circle. Substituting the coefficients of the
above polynomial into the inequality in Lemma 1, the right-hand-
side equals 1. Therefore, smin is minimum phase.

Conceptually, this approach is very simple: all we need is a way
to over-estimate the �1 norm of the target signal, and a mechanism
to insert an impulse at the front of the signal before taking quadratic
measurements. For example, if we assume each element in s comes
from a complex Gaussian distribution with variance σ2, we know
that the probability that the magnitude of one element exceeding 3σ
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Fig. 1. Optimality gaps (f − f�) in each Monte-Carlo trials.

is almost negligible; therefore, we can simply construct smin by set-
ting s0 = 3σN , and then smin is of minimum phase with very high
probability.

If this new approach is applicable, we also benefit from the fact
that M , the number of measurements taken, can be as small as 2N .
If we look at the equivalent reformulation (5), the measurements
bm’s are linear with respect to r, and from elementary linear algebra,
we know that N complex numbers can be uniquely determined by
as few as 2N real linearly independent measurements, even without
the semi-definite parametrization (5b). From a unique r, a unique
minimum phase smin can be determined from spectral factorization,
thus follows the identifiability of phase retrieval with 1-D Fourier
measurements.

4. SIMULATIONS

We now present some simulation results to show the effectiveness of
our proposed approach. All simulations are done in MATLAB on a
Windows desktop. We compare four methods:

• Proposed method, i.e., PhaseLift followed by SF;

• The leading principal component (PC) of the PhaseLift solution;

• Fienup algorithm with 105 iterations, initialized by the PC of the
PhaseLift solution;

• Fienup algorithm with 105 iterations, initialized randomly.

The PhaseLift problem (4) is solved by TFOCS [17], and the SF step
is done by the Kolmogorov method with FFT length 32N .

4.1. Optimization

We first verify that the solution given by spectral factorization indeed
attains the lower bound provided by PhaseLift, whereas other meth-
ods do not. We want to emphasize that the algorithm always works
regardless of whether there is a valid underlying model. To illustrate
this, we work with random data. Fixing N = 128, we randomly set
M as an integer between 2N and 8N , and generate the bm’s from
an i.i.d. uniform distribution between [0, 1]. The optimality gaps
between the fitting error f as in (2) obtained by the aforementioned
methods and the theoretical lower bound f� given by PhaseLift (4)
are shown in Fig. 1, for the 100 Monte-Carlo trials we tested.

As we can see, PhaseLift followed by SF indeed attains the lower
bound with negligible gaps, whereas other methods do not. The nu-
merical error of SF using Kolmogorov’s method may be as high as
10−4, but still acceptable for practical purposes.
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4.2. Estimation

Clearly the ultimate goal is not merely to solve problem (2) to opti-
mality, but to recover the signal s. In this subsection we verify that
our proposed new measuring technique is able to recover s up to
global phase ambiguity. For a fixed signal s ∈ CN−1 with elements
randomly generated from i.i.d. CN (0, 1) and N = 128, smin is con-
structed by inserting s0 = 3N in front of s so that it is minimum
phase with very high probability. We compare the aforementioned
algorithms in two measurement setups: direct Fourier measurements
on s, and using our proposed technique, i.e., measuring smin, and
deleting the first element of the solution to obtain ŝ. White Gaussian
noise with variance ς2 is added to the squared magnitude measure-
ments, fixing the signal-to-noise ratio (SNR) to be the same in both
cases:

SNR = 10 log10

∑M
m=1 |fH

m (s or smin)|4
Mς2

.

Notice that this implies much higher noise power in our proposed
setup, because the addition of the impulse artificially inflates the
SNR.

After resolving the global phase ambiguity, the estimation error
‖s−ŝ‖2 from each method is compared with the Cramér-Rao bound
(CRB) derived in [18], which lower bounds the averaged squared er-
ror that can be attained. The CRB depends on the true value of s, and
that is why we used the same s throughout the simulations we show
here—we want the CRB curve to be consistent with how we change
one parameter setting of the simulation. The performance is actually
very robust to inputs, as long as we make the signal minimum phase
by inserting s0 = 3σN . If smin is measured, we simply ignore the
first element when summing up the CRB for each element, leading
to the CRB of the desired signal s.

Minimum phase equivalent (MPE) signal: Our method is us-
ing the assumption that smin is minimum phase. It would be unfair
for the other methods not to use it as well when trying to recover smin.
We therefore compute the minimum phase equivalent (MPE) signal
that gives the same fitting error, using the root finding procedure that
we discussed in Sec. 2.1, i.e., taking the conjugate reciprocal of the
roots that are outside the unit circle. Numerically, the roots of a
polynomial are found by calculating the eigenvalues of a companion
matrix. The eigenvectors of a companion matrix are Vandermonde
vectors generated by the corresponding eigenvalue. So after we take
the conjugate reciprocals of some of the roots, assuming all the roots
are distinct and non-zero, the companion matrix corresponding to
the minimum phase signal can be conversely formed. The equiva-
lent minimum phase signal can then easily be read out from the last
row of the new companion matrix1. An interesting side observation

1Alternatively, one can directly calculate the coefficients of the polyno-
mial from the roots, e.g., using the poly function in MATLAB. However,

here is that, although one would normally prefer not lifting the vari-
ables, working with matrices of size N × N seems unavoidable if
we want to use the minimum phase prior for identifiability.

The performance is shown in Fig. 2, where each point is an av-
erage of 10 Monte-Carlo trials. On the left, we fix SNR= 50dB,
and increase the number of measurements M from 2N to 16N . On
the right, we fix M = 4N , and increase the SNR from 40dB to
70dB. The SNR may seem high here, but notice that 1-D Fourier
phase retrieval is one of the most difficult phase retrieval problems,
as is also shown by the CRB that if we further decrease SNR, simply
guessing ŝ = 0 would attain the CRB. As is shown in Fig. 2, if we
follow the proposed procedure, the estimation error is able to attain
the CRB, even for as few as M = 2N measurements. None of the
other methods are able to attain the theoretical bound in all cases, es-
pecially if their solution is not refined by Fienup, or if the minimum
phase prior is not used. On the other hand, if we directly measure
s, none of the algorithms are able to recover the signal correctly,
even though in this case the corresponding CRB is smaller (since it
has nothing to do with identifiability). Notice that the MPE solution
of Fienup initialized with PhaseLift comes second best; however, if
we need to solve PhaseLift in the first place, SF with Kolmogorov’s
method only requires two FFTs with moderately increased length,
whereas Fienup requires a large number of iterations, each with FFT
complexity, and an additional MPE step.

5. CONCLUSION

In this paper we studied the phase retrieval problem with 1-D over-
sampled Fourier measurements. As we explained:

1. The least-squares formulation of this problem (2) can be opti-
mally solved, because there always exists a rank one solution for
the relaxation method PhaseLift, which can be found by spectral
factorization;

2. Without any prior information on the true signal, the solution is
not unique. On the other hand, the solution given by spectral
factorization is minimum phase.

3. We therefore proposed a simple measurement procedure that first
makes any signal minimum phase, then measures the magnitude
of its Fourier transform. To make any signal minimum phase, all
we need to do is to add an impulse with large enough amplitude
to the front of the signal, which is conceptually easy.

As a result, the model is now identifiable, and we have an algorithm
that provably solves it to optimality. Simulations on synthetic data
confirmed our claims.

we found that the roundoff error becomes significant as N approaches 64.
Using the method we discussed above gives acceptable round-off error, al-
though it does not work if the Vandermonde matrix is singular.
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