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ON  CONVOLUTIONS  WITH THE  MÖBIUS FUNCTION

S.   L.  SEGAL

Abstract.   By using the results of [6], it is proved that for an

extensive class of increasing functions h,

(*) 2    —h(-)~xh'(x)   asx^oo
lsdSx   d      \dj

where n denotes the Möbius function. This result incidentally

settles affirmatively Remark (iii) of [6], and refines the Tauberian

Theorem 2 of that paper. It is also shown that one type of con-

dition imposed in [6] is necessary to the truth of the cited Theorem

2, at least if some sort of quasi-Riemann hypothesis is true. Never-

theless, examples are given to show that on the one hand (*) may

be true for functions not covered by the first theorem of this paper,

and on the other that some sort of nonnaïve condition on a func-

tion h is necessary to ensure the truth of (*).

Much of this note, as will be evident, is in the nature of an interesting

addendum to [6]; had I had the wit to notice it earlier, it should of course

have been incorporated there.

Throughout, x denotes a real variable and s=a+it a complex variable,

a, t real. All sums begin at 1. Given a suitable function g, J will denote the

operator defined by Jg(y)=\X igix)\x) dx, and Jr the rfh iterate of./.

pt is the Möbius function and N(x)=J^nSx (u.(ri)ln). l,(s) is the Riemann

zeta-function, y is Euler's constant. When h(x) is constant, the right side

of (*) is to be interpreted as equal to o(l).

For convenience we state here the main results of [6] which will be

used in the sequel :

Theorem A. Let f(x) be any function bounded and integrable in every

finite subinterval of [I, oo) which satisfies

(1) 2/Í-) = xg(x) + o(x2g'(x)),

where g(x) is a positive, twice continuously differentiable function, defined
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on [1, oo) such that

(i) g'(x)>0forxe(l, co),

(ii) xg'(x) is nonincr easing from some point on,

(iii) for some positive integer k, x(logx)kg'(x) = u(x) is nondecreasing

from some point on, and lim inf,.^^ u(x)= oo.

Then

(2) ¡Xf-¥dt = g(x)-yZ^g(*)+o(Xg%X))
Jl     t «si   v       \v/

as x—»-co.

(This is Theorem 2 of [6].)

Theorem B.    Iff and g are as in Theorem A, then

(3) \XJ^-dt = x + o(x).
Ji t2g'(t)

(This is equation (19) of [6]; if/ is nondecreasing, one then easily

deduces/(x)<~x2g'(jc) as in Theorem 1 of [6].)

We now state

Theorem 1. Let h(x) be a positive function which has the property that

there exists a nonnegative integer r such that h e CT+2(1, oo) and h(x) =

Jrg(x) where g satisfies (i), (ii), (iii) of Theorem A; then

ñ<r d      \d!
xh'(x)    as x -*■ oo.

iSi

Proof. By induction. For convenience, we define g(x)=0 for x<l.

Suppose first the theorem were true for some k, k^.1. Let G(x)=Skg(x).

Then (since k^.1) G is clearly unbounded, and by hypothesis

and so
(*x/d

tax d      \d!

i^r^dt=n-i^G(tAdt
dâx à Ji       t Ji t ag(  d      \dj

-J G'(0(1 + o(l)) at = G(x) + o(G(x)),

which establishes the theorem for r=k+1. It remains to prove the theorem

for r=0 and r=l. For r=0, h(x)=J°g(x)=g(x). Let

^(d)

«"-I*?*®-
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Then

and so, by Theorem A,

(4) (Xmdt = g(X)-yZ^M+o(xg<(x));
Jl       t tgi   v        \v/

and, by Theorem B,

(5) -^- dt = x + o(x).
Ji tg'it)

(If xFix) were monotone, the conclusion, as remarked previously, would

now follow almost immediately; unfortunately this need not be the case.)

Furthermore the hypotheses on g imply (see Lemma 1 of [6] for the

easy deduction)

xg"ix)
lim-= — 1    and also that
.-• g'ix)

() xg"jx)_idldx)ixg'ix))_l^_i

g'(x) g'(x) '    -      '

from some point on. Hence xg"(x)¡g'(x) is eventually nondecreasing and

so eventually has a nonnegative derivative, a.e.

Now, integrating by parts in (5), after using (4), gives

Ji tg'it)     ¿ix) h t     JiimfJi u

(7)
g(x)      yFix) ,    , x .  f g"(0

.Fix)        fWW , ,
= x--— v     -— dt + o(x)

Yx)     rJi   (S'(t))2

g'ix)      g'ix) Jl (gW

yF_(x)_    rxF(t)g"(t)

(x)     yJi   (g'(i)):

(cf. treatment of equation (15) in [6]).

And so (5) yields

Fix) _ _ p F(t)g"(t)

\x) Ji    ig'it))2

r g"(t)
+ o(x) +   TvirM') - rF(<) + <Kts\t)))dt

Ji ig (t)Y

g'ix) Ji    ig'it))2

But

rmmdt = rm^mdt
k (g'(t)f    ji tg'it) g'it)

= *_m rm dt _ p./^ rm du dt
g'ix) Ji tg'it) Jidt\g'(t)JJiug'(u)
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and on substituting this in (8), and using (6) and (5), we get

—■«♦•(HS))-
However, by (6),

Ji       \g'(t))        g'M       J1   SV)f(t)J g'(x)       Jl   g'(t)

= -x + o(x) + P(l + 0(1)) dt + 0(1) = o(x),

and substituting this in (9) gives

(10) F(x)~xg'(x)

as claimed. This proves the case r=0. The case r=l now follows on

substituting (10) in (4) to obtain

(11) I"' ̂  dt = g(x) - yxg'(x) + o(xg'(x)),
Ji     t

and noting that
"xld

,<.„ d Ji       t Ji     t

and that the conditions on g imply xg'(x)=o(g(x)) as jc->-oo.

Remarks, (a) To prove the results of [6] used above, it was neces-

sary to invoke a fairly strong form of the prime number theorem: N(x) =

o((log xy~k) for every &>0. In the other direction, for k a positive integer,

(log x)k satisfies the conditions placed on h(x) in Theorem 1 (with

g(x)=log x), and so we get, from Theorem 1,

2?H- /c(log x)k-1

for every positive integer k (which is, of course, also deducible directly

from N(x)=o((log x)~k) for every £>0).

(b) The conclusion of Theorem A can now be amended to read:

(12) j*f-&dt = g(x) - yxg(x) + o(xg'(x)).

g(x) was assumed for this theorem to be twice continuously differentiable.
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In practice, however, g is usually analytic. Suppose we assume g is

analytic; under what subsidiary conditions on g can (12) be replaced by a

similar asymptotic expansion with a desired number of terms for

(F(t)lt2)dt1

Condition (iii) of Theorem A seems somewhat unnatural; while it may

be somewhat ameliorated by using stronger results from prime number

theory than used in [6] (see Remark (iv) ofthat paper), the real question

is whether any condition in addition to (i) and (ii) is necessary for the

truth of Theorem A. Assuming a "quasi-Riemann hypothesis", the answer

is "yes", as Theorem 2 below shows.

Theorem 2. Suppose some sort of quasi-Riemann hypothesis holds;

i.e. suppose t,(s)j^0for some strip è<cr=l (£_£). Then there is a function

k(x) satisfying (i) and (ii) of Theorem A which is analytic in (I, oo) and for

which the conclusion of Theorem A (in the form of (12)) is false. A similar

contradiction is even easier to obtain in Theorem A's original form.

Proof. Let ae (b, 1). Define ka(x)=l—xa~1. Then ka(x) satisfies (i),

(ii) as is easily checked. By the hypothesis on £ we have that, as x->oo,

(13) C — dt = -1 + o(xa-1),
Ji     t

and

Cx Nú) 1
(14) -dt converges to-.

Ji    ta ia- l)£(a)

(These results arise from using partial summation on

^/4d)logd  and   y4&_2*&é"t
däx      d d£x da      d&x d

and taking note of results usually stated in the literature for b=\ (the

Riemann hypothesis), but whose analogues for other values of b are

immediate, see e.g. [5], [7, p. 315].)

Let/(x) = (l -a)xa ]x (N(t)lta) dt. Then

"«*

è/w   (1   a)xh.dal   f

= (1 - a)xa fVa2 - n(-\ du = x(l - x""1) = xkaix),
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since   ^d<u(l¡d)N(u¡d)=l,  and  N(x)=0 for x<l.  If the conclusion

expressed by (12) held for all ka(x), then we would have

rmdt=ií_a)¡^rmdudt
(15)    Ji   i2 Ji       Ji   ua

= 1 - x""1 - y(l - a)xa-1 + o^""1)   for all a, b < a < 1.

But integrating by parts in (15) gives

_xa-l [X W ¿„ _ FW) dt =  1   _ (J   +      (,   _ aY)xa-l + 0(-xa-l)
Jl      Ma Jl       /

and so by (13), as x-»-oo,

N(u)f
or by (14),

du = \ +y(l - a) + o(l)   for all a, J ^ ¿> < a < 1 ;

(16) ;-TT77T = l + ri1 - a>>   foralla,i<b<a<l.
(a - l)Ç(a)

For a given fixed value of a, (16) might be shown false by ad hoc com-

putation, however, this would not suffice to prove the theorem for any

quasi-Riemann hypothesis; instead, we simply argue as follows: (16)

would imply

(17)   -=-,    for all a, J^è<a< 1.
a — 1 1 — y(a — 1)

Letting a—>-l in (17) would give

,.    Ua) - (ilia - 0) - y        2
hm-= y .

o-i~ a — 1

But the limit on the left is known to equal

-Yl fef - Jim f|!5i£ - ¿(log h)2) = 0.07281+ * y2

which is the desired contradiction. (Two proofs of the form taken by the

coefficients of the Taylor expansion of £(s)— l/(i— 1) about 1 may be

found in [1]; the result was known to Hardy in 1912, and is no doubt

much older still. The computation of —yx was made by Wilton [8] from

a different expression for that constant.)
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We close with two examples further illuminating the relationship (*).

Example 1. There is a nondecreasing function h for which (ii) does

not hold but (*) still does.

Proof. Take h(x)=¡I ((1 +Nú))¡t) dt. It is easy to see that |7Y(x)| = 1

for all x_l [4, p. 583] whence h is nondecreasing; clearly x/z'(x) =

1 +Ar(x) is not monotone decreasing. However,

Id©

däx d        \df     däx d Ji       t

= i + o(i)-2^( 2 ^*^- 2 ^logfï))
dix d   \m£x/d      m mSx/d m \d)J

= i + 0(1) _ 22m 2 ^^ + iog*2— 2 —!
dáz   "    mSl/il m <ZSx   "    mSí/i   m

=  1  + 0(1),

since Zdaxit¿(d)logdld)=-l+o(l) (e.g. [4, §158]),

yM<0 y Km)log_m = yMfO y í((m)_    /   1   \

dg*   ^   mSj/i fH däx   d   mäx/d   m \log XI

as x—>-oo; these last two being easily proved by a technique going back to

Dirichlet and embodied in the argument in [4, p. 685],

Example 2. There is a function h such that h(x)~C as x—>-oo, C a

constant, but 2<ís¡* (f¿(d)/d)h(xld)¿¿o(l) as x—>-oo.

Proof. It is known that there are (Z)-summable series which are not

convergent; i.e. there is a sequence {an} such that lim^œ(l/x) %nííx 2d\ndad

exists but 2 an does not converge. (This is stated in [3]; a proof may be

obtained by applying the Silverman-Toeplitz Theorem to the inverse of

the (/^transformation.) It is also known that (/)-summability implies

(C, l)-summability [3]. Let

'(*) = - 2 2 dad - - 2 2 mam
•^ n^x d\n % ú<x m"^ x/d

where {an} is such a sequence. Then

2*40/(2*      Í   2 mam,
,,<;„ d     \d!      x _.<,
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lim^^ I(x) exists, 2 an 1S (G, l)-summable but not convergent, and so

J,m¿xmam9ío(x) as x^co (e.g. [2, Theorem 65]).

Remark.   No explicit example of such a sequence {an} seems to be

known.
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