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ABSTRACT. By using the results of [6], it is proved that for an
extensive class of increasing functions 4,

1<dsa d

*) > ) h(g) ~ xh'(x) asx— oo

where p denotes the Mobius function. This result incidentally
settles affirmatively Remark (iii) of [6], and refines the Tauberian
Theorem 2 of that paper. It is also shown that one type of con-
dition imposed in [6] is necessary to the truth of the cited Theorem
2, at least if some sort of quasi-Riemann hypothesis is true. Never-
theless, examples are given to show that on the one hand (*) may
be true for functions not covered by the first theorem of this paper,
and on the other that some sort of nonnaive condition on a func-
tion 4 is necessary to ensure the truth of (*).

Much of this note, as will be evident, is in the nature of an interesting
addendum to [6]; had I had the wit to notice it earlier, it should of course
have been incorporated there.

Throughout, x denotes a real variable and s=o¢+it a complex variable,
o, t real. All sums begin at 1. Given a suitable function g, .# will denote the
operator defined by fg(y)=J7 (g(x)/x) dx, and #" the rth iterate of .£.
u is the Mobius function and N(x)=>, -, (u(n)/n). {(s) is the Riemann
zeta-function, y is Euler’s constant. When /(x) is constant, the right side
of (*) is to be interpreted as equal to o(1).

For convenience we state here the main results of [6] which will be
used in the sequel:

THEOREM A. Let f(x) be any function bounded and integrable in every
finite subinterval of [1, o) which satisfies

0 S5(E) = we + otxtgcon,

where g(x) is a positive, twice continuously differentiable function, defined
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on [1, o) such that
(i) g'(x)>0 for x e (1, ),
(i) xg'(x) is nonincreasing from some point on,
(iti) for some positive integer k, x(log x)*g’(x)=u(x) is nondecreasing
from some point on, and lim inf,_, ., u(x)= o0
Then
@ [ a1 = 00— 5 3E2 (%) + oxgio)

vgz
as x— 0.

(This is Theorem 2 of [6].)

THEOREM B. If fand g are as in Theorem A, then
UGN
1£78'(1)
(This is equation (19) of [6]; if f is nondecreasing, one then easily

deduces f(x)~x%g’'(x) as in Theorem 1 of [6].)
We now state

(3) dt = x + o(x).

THEOREM 1. Let h(x) be a positive function which has the property that
there exists a nonnegative integer r such that h e C™?(1, ) and h(x)=
JF1g(x) where g satisfies (i), (i), (iii) of Theorem A; then

#d) (XN .
déz P h(d) xh'(x) as x — oo.

ProoF. By induction. For convenience, we define g(x)=0 for x<1.
Suppose first the theorem were true for some k, k=1. Let G(x)=S5%g(x).
Then (since k=1) G is clearly unbounded, and by hypothesis

Z"M G(i) ~ xG'(x) as x — oo,

dsz d
and so

Zrel ez o)«

=£ G'()(1 + o(1)) dt = G(x) + o(G(x)),

which establishes the theorem for r=k+ 1. It remains to prove the theorem
for r=0 and r=1. For r=0, h(x)=Sg(x)=g(x). Let

Z ud) (g) .

dswx
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Then

3 5#(3) =0

d<z

and so, by Theorem A,

@ [P -y 3Ee() oo
and, by Theorem B,

F(1)
Q) j; 20 dt = x 4+ o(x).

(If xF(x) were monotone, the conclusion, as remarked previously, would
now follow almost immediately; unfortunately this need not be the case.)

Furthermore the hypotheses on g imply (see Lemma 1 of [6] for the
easy deduction)

limx—g,—’@) = —1 and also that
6 z=w g'(X)
© xg'() _ (@) |
g'(x) g'(x) = 7

from some point on. Hence xg”(x)/g’(x) is eventually nondecreasing and
so eventually has a nonnegative derivative, a.e.
Now, integrating by parts in (5), after using (4), gives

FO 1 [PFQ). . (g0 [‘Fw)
fltg(t)d g(x)f td’+£<g'(1))z u
" O

g g €40

yF(x) F(t)g"(t)
=x————y| —=Zdt+o0
T J. @y T
(cf. treatment of equation (15) in [6]).
And so (5) yields

(8)
But

[E0eQ, _[*F0 w0,
1 (g'(0)? 11g'(1) g'(1)

_XgOF® o [*d (1870 [*Ew)
g htg a -[dt(g’(t))ﬁugl(u)d dt + 0(1),

—= 5 (8() — yF(t) + o(tg (1)) dt

R __[TFOEW o

g'(x) (¢ (t))2
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and on substituting this in (8), and using (6) and (5), we get
F(x) *d (tg"()
— = d
7 x+()+f ( )(t+(t))t

© = x4 o(x) + 0(f ’d(tg:’((t))))
However, by (6),

= (g’ (1)) _ x*g"(x) 1g"(1)
d = d 0o(1
Jl’ (g'(t)) (%) f g M ToW

= —x 4+ o(x) +f (1 + o(1)) dt + 0(1) = o(x),
1
and substituting this in (9) gives

(10) F(x) ~ xg'(x)

as claimed. This proves the case r=0. The case r=1 now follows on
substituting (10) in (4) to obtain

(1) f FO 41 = g(x) = yxg'x) + oxg(x),

and noting that
z/d x
5 d) 0y f 0,
1

=z d .1
and that the conditions on g imply xg’(x)=0(g(x)) as x—c0.

REMARKS. (a) To prove the results of [6] used above, it was neces-
sary to invoke a fairly strong form of the prime number theorem: N(x)=
o((log x)7®) for every k>0. In the other direction, for k a positive integer,
(log x)* satisfies the conditions placed on h(x) in Theorem 1 (with
g(x)=Ilog x), and so we get, from Theorem 1,

> Hd) (log ’j)kN k(log x)**

sz d

for every positive integer k (which is, of course, also deducible directly
from N(x)=o((log x)7*) for every k>0).
(b) The conclusion of Theorem A can now be amended to read:

(12) [ 4 = g) = yxg') + otag o).

g(x) was assumed for this theorem to be twice continuously differentiable.
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In practice, however, g is usually analytic. Suppose we assume g is
analytic; under what subsidiary conditions on g can (12) be replaced by a
similar asymptotic expansion with a desired number of terms for

f z(F(t)/tz) dr?

Condition (iii) of Theorem A seems somewhat unnatural; while it may
be somewhat ameliorated by using stronger results from prime number
theory than used in [6] (see Remark (iv) of that paper), the real question
is whether any condition in addition to (i) and (ii) is necessary for the
truth of Theorem A. Assuming a ““quasi-Riemann hypothesis”, the answer
is “yes”’, as Theorem 2 below shows.

THEOREM 2. Suppose some sort of quasi-Riemann hypothesis holds;
i.e. suppose {(s)#O0 for some strip b<o=1 (b=}). Then there is a function
k(x) satisfying (i) and (ii) of Theorem A which is analytic in (1, ) and for
which the conclusion of Theorem A (in the form of (12)) is false. A similar
contradiction is even easier to obtain in Theorem A’s original form.

PrOOF. Let a € (b, 1). Define k,(x)=1—x°"1. Then k,(x) satisfies (i),
(i) as is easily checked. By the hypothesis on { we have that, as x— oo,

(13) f L )
1
and
(14) fx N@ dt converges to _ .
1 1® (a — D(a)

(These results arise from using partial summation on
SHdlond g Sud 5 ud) e
i<z dsz Sz d

and taking note of results usually stated in the literature for 5=} (the
Riemann hypothesis), but whose analogues for other values of b are
immediate, see e.g. [S], [7, p. 315].)

Let f(x)=(1—a)x? T (N()/t®) dt. Then

Zf( ) =(1—ax> 1af2/dNt£t)dt

dsz d=x d

= (1 — a)x* J "‘z ( ) du = x(1 — x*1) = xk,(x),

dSu
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since D,cy (1/d)N(u/d)=1, and N(x)=0 for x<1. If the conclusion
expressed by (12) held for all k,(x), then we would have

as) f%’)dz =(1- a)flmra-fﬁ:;@du dt

=1—x"1—yp(1l —a)x* 1+ o(x*") foralla,b<a<1.
But integrating by parts in (15) gives

_xa-—IJ' Mdu —f N_(t_)dt =1 (] + '}’(1 — a))xa—-l + o(xa—l)
1 u® 1t
and so by (13), as x—c0,
f —N(:l)du =14+9(1 —a)+ o) forallag,}<b<a<l;
1 u

or by (14),

. S
(a — 1Di(a)

For a given fixed value of a, (16) might be shown false by ad hoc com-
putation, however, this would not suffice to prove the theorem for any
quasi-Riemann hypothesis; instead, we simply argue as follows: (16)
would imply

@=fa=)—y_ 5

17 , foralla,3=<b<a<l.
(17 a—1 L —ya—1) a4 <

(16) =1+9(1—a) foralla,}Sb<a<l.

Letting a—1 in (17) would give

i {a)—fla—=1)—y ,
im =y~

a—1" a—1

But the limit on the left is known to equal

|
—n & _ fim (Z %% _ i(log n)2> = 0.07281+ % 9°
v

n 0 \p=1

which is the desired contradiction. (Two proofs of the form taken by the
coefficients of the Taylor expansion of {(s)—1/(s—1) about 1 may be
found in [1]; the result was known to Hardy in 1912, and is no doubt
much older still. The computation of —y,; was made by Wilton [8] from
a different expression for that constant.)
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We close with two examples further illuminating the relationship (*).

ExampLE 1. There is a nondecreasing function A for which (ii) does
not hold but (*) still does.

Proor. Take h(x)=ff ((1+N(2))/t) dt. 1t is easy to see that [N(x)| =1
for all x=1 [4, p. 583] whence h is nondecreasing; clearly xh'(x)=
14 N(x) is not monotone decreasing. However,

)
d x/d N
-2 () v2h )f

=1+ o(1) — 22‘1@ Z ”—————(m)logmﬂong’@ S Hm

dsz msz/d m Y] m<ald M

=1+ o(1),
since D 4, (u(d)log d/d)=—1+o0(1) (e.g. [4, §158]),

Z,u(d) z ,u(m)logm__ o(1), and ZM Z /Lm)= O(L)

iZz d m=Sqld m dsa d m<z/da M lng

as x—oo; these last two being easily proved by a technique going back to
Dirichlet and embodied in the argument in [4, p. 685].

ExaMPLE 2. There is a function 4 such that A(x)~C as x—o0, C a
constant, but >,_, (u(d)/d)h(x/d)7#0(1) as x—c0.

Proor. It is known that there are (/)-summable series which are not
convergent; i.e. there is a sequence {a, } such thatlim,_, ,,(1/x) 2. <, 2a. da,
exists but > a, does not converge. (This is stated in [3]; a proof may be
obtained by applying the Silverman-Toeplitz Theorem to the inverse of
the (/)-transformation.) It is also known that (/)-summability implies
(C, 1)-summability [3]. Let

I(x)—— Z Zdad—— Z z ma,,
X nSzdln X g<x mSz/d
where {a,} is such a sequence. Then

)

ma.,,
d=g d

1
X m<g
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lim,_, ., I(x) exists, > a, is (C, 1)-summable but not convergent, and so
D m<z May7#0(x) as x—>o0 (e.g. [2, Theorem 65]).
REMARK. No explicit example of such a sequence {a,} seems to be
known.
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