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Abstract 
 
The classical Cooley-Tukey fast Fourier transform 
(FFT) algorithm has the computational cost of 
( )NNO 2log  where N  is the length of the discrete 

signal. Spectrum resolution is improved through 
padding zeros at the tail of the discrete signal. If 
( )Np 1−  zeros are padded (where p  is an integer) at 
the tail of the data sequence, the computational cost 
through FFT becomes ( )pNpNO 2log . This paper 
proposes an alternate instance of padding zeros to the 
data sequence that results in computational cost 
reduction to ( )NpNO 2log . It has been noted that this 
modification can be used to achieve non-uniform 
upsampling that would zoom-in or zoom-out a 
particular frequency band. In addition, it may be used 
for pruning the spectrum, which would reduce 
resolution of an unimportant frequency band.  
 
 
1. Introduction 
 
Suppose we have a discrete time signal x[n] for 

Nn <≤0  and α2=N  where α  is an integer. The 
discrete Fourier transform (DFT) is used to transform 
the discrete time signal into discrete frequency domain. 
The classical Cooley-Tukey fast Fourier transform 
algorithm [1]-[3] for the computation of DFT has the 
computational cost of ( )NNO 2log . Many techniques 
that reduce its complexity like higher-radix and split-
radix algorithms [4, 5], pruning [6]-[13], block 
transforms [14], and slide transforms [15] can be 
employed. Zero padding at the tail of the discrete 
signal is carried out to improve the frequency 
resolution. This process is called spectral interpolation. 
Padding ( )Np 1−  zeros when 1>p  increases the 
computational cost of the FFT algorithm to 

( )pNpNO 2log . The classical FFT algorithm’s 
application to pruning and zooming are limited as non-
uniform upsampling is not conveniently applicable. 
 
This paper presents an alternate zero padding scheme 
to the standard practice of padding zeros at the tail of 
the data sequence, causing a reduction in the 
computational cost to ( )NpN 2log  of the zero padded 
signal. The proposed zero padding scheme, can be used 
for non-uniform upsampling in the frequency domain. 
This facilitates zooming-in of frequency bands of 
interest. Similarly, the same algorithm can be adapted 
for the purpose of pruning.  
 
This paper is organized as follows. The modified zero 
padding scheme and its application to the FFT 
algorithm is presented in Section 2. Section 3 describes 
ways in which the proposed scheme can be used to 
achieve pruning, zooming and non-uniform 
upsampling in the frequency domain.  
 
2. Modified FFT Algorithm 
 
2.1 Proposed Modification  
 
The discrete Fourier transform for a complex data 
sequence of length N  is given by:  
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for 1,,0 −= Nk L  
There are many fast Fourier transform algorithms but 
we will discuss only the so called radix-2 decimation in 
time (DIT) variant of the FFT. Consider a signal with 
eight data points with eight zeros padded. Figure 1 
shows levels in FFT.  
 

0-7803-9247-7/05/$20.00 ©2005 IEEE

IEEE --- 2005 International Conference on Emerging Technologies
September 17-18, Islamabad

41

zulfiqar
On Cooley-Tukey FFT Method for Zero Padded Signals



                 
 

Figure-1: Levels in FFT of an eight point signal. 
 

There are ( )N2log  levels of the butterfly algorithm. 
Let l  be an integer that represents the stage number of 
FFT algorithm such that ( )Nl 2log0 <≤ . We call a 
stage as the lowest level stage ( 0=l ) when the 
dimension of the matrix ( )0Ω , representing constants 
and twiddle factors relating input sequence to output 
sequence, is minimum (2 × 2 in radix-2 DIT FFT) and 
the highest level [ ]( )1log2 −= Nl  when the 
dimensions of the matrix [ ]( )1log2 −Ω N  is maximum. 
The lowest level stage matrix Ω  for DIT FFT 
algorithm is written as: 
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The proposal is to pad zeros at the lowest level rather 
than at the tail of the overall data sequence to achieve 
upsampling in the frequency domain. Suppose that 
after zero padding at the lowest level, the number of 
data points is 12 −p . This fact is clear from Figure 2. 
 
Equation (1) becomes: 
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12,,0 −= pk L  
The lowest level ( )0Ω  in this case is obtained from 
equation (3). The first column of ( )0Ω  is all ones 
( 0=n ) and the second column of ( )0Ω  is generated 

by pkje /π−  for pk 20 <≤  ( 1=n ). The remaining 
data points for 2=n  to 12 −p  are all padded zeros. 
So, ( )0Ω  can be written as: 
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As a specific case, if the lowest level sequence is 
padded with two zeros ( 2=p ), then ( )0Ω  will be: 
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( )0Ω  is a 22 ×p  matrix. Here the lowest level had 

two data points in the subset. If there are q  data points 
in the lowest level matrix, the dimensions of ( )0Ω  will 
be qqp ×  - the generalization is easy and 

straightforward. ( )0Ω  is generated by pkqje /π−  for 
pk 20 <≤  where k is an integer.  

The generalized mathematical derivation for the 
suggested modification is shown in Appendix A. 
 
Example-1: Consider the function ( )tx  as: 
 
( ) ( ) ( )tttx ππ 2cos6cos +=    (6) 

Signal is sampled at 10 Hz. The signal was 6.3 seconds 
long. Figure-3 shows the power spectral density (PSD) 
fo the signal obtained with ( )0Ω  of equation (5) and 
compared with the PSD of the same signal padded with 
equal number of zeros at the tail of the original signal.

}0,0,0,0,0,0,0,0,,,,,,,,{ 76543210 xxxxxxxx

}0,0,0,0,,,,{ 6420 xxxx }0,0,0,0,,,,{ 7531 xxxx

}0,0,,{ 40 xx }0,0,,{ 62 xx }0,0,,{ 51 xx }0,0,,{ 73 xx

}0,{ 0x }0,{ 4x }0,{ 1x }0,{ 5x}0,{ 2x }0,{ 6x }0,{ 3x }0,{ 7xl = 0 
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Figure-2: Modified suggested FFT levels. 
 

  
 

Figure-3: Comparison between conventional and proposed scheme. ( )0Ω  is as in (5).  

 
2.2 Computational Cost 
 
The Cooley-Tukey fast Fourier transform algorithm 
has a complexity/cost of ( )NNO 2log . In fact, there 
are N2log  stages of the FFT algorithm each with 
( )NO  computations. Consider a discrete time signal 

[ ]nx  where α20 =<≤ Nn  and α  is a positive 
integer. For improving the spectral resolution, zeros are 
appended to the signal. Suppose we pad ( )Np 1−  
zeros where p  is a positive integer, greater than one. 
The number of stages in the FFT algorithm is now 

( )pN2log . Therefore, the computational cost of the 
algorithm is ( )pNpN 2log  each with ( )pNO  
computations. If the modification suggested in Section 
2.1 is implemented where each subset has least 
possible number of samples then the number of stages 
would remain unchanged, i.e., ( )N2log  stages with 

( )pNO  computations due to zero padding at this stage. 
Consequently, zero padding at the lowest stage reduces 
the computational cost by [ ]( )ppNO log . 
 
3. Conclusions  
 
When we are performing frequency-domain analysis, 
zoom FFT is useful for zooming in on a narrow 
frequency band. We can use zoom FFT to focus on a 
narrowband channel by performing only the 
calculations needed to obtain the FFT data in the 
frequency range of interest. For a large data size, we 
may use pruning to reduce the computational load. 
 
As shown in Section 2, we can expand ( )0Ω  for a 
better spectral estimate. We can expand any ( )lΩ  at 
any stage of the algorithm. Expanding ( )lΩ  in a 
required particular fashion will yield non-uniform 

},,,{ 6420 xxxx },,,{ 7531 xxxx

}0,0,,{ 40 xx

},{ 62 xx },{ 51 xx },{ 73 xx

}0,0,,{ 62 xx

},{ 40 xx

}0,0,,{ 51 xx }0,0,,{ 73 xx

IEEE --- 2005 International Conference on Emerging Technologies
September 17-18, Islamabad

43



upsampling. This is done when we are interested in 
spectrum of the signal in a particular frequency band. 
( )lΩ  is squeezed when we are not interested in some 

frequency band.  
 
Suppose some of the twiddle factors had very small 
magnitude, then the corresponding branches of the 
butterfly operations could be dropped (pruned) to 
reduce complexity. Thus, we can squeeze ( )lΩ  for 
pruning. Various pruning techniques can still be 
applied after this modification. 
 
It is obvious that computational cost has been reduced 
by a factor of [ ]( )ppNO 2log . Moreover, the proposed 
method can be used for pruning and non-uniform 
upsampling in the frequency domain.  
 
Acknowledgements 
 
This research work was funded by Higher Education 
Commission (HEC), Islamabad, Pakistan. Their 
support is gratefully acknowledged. 
 
References 
 
[1] Z. J. Mou, P Duhamel, “In-place Butterfly-

Style FFT of 2D Real Sequences,” IEEE 
Transactions on Acoustics, Speech and Signal 
Processing, vol. 36, no.10, Oct. 1988. 

[2] A. Fertner, “Computationally efficient 
methods for analysis and synthesis of real 
signals using FFT and IFFT,” IEEE Trans. 
Signal Processing, vol. 47, pp. 1061-1064, 
April 1999. 

[3] J. G. Proakis and D. G. Manolakis, “Digital 
Signal Processing, Principles, Algorithms and 
Applications,” 3rd Edition, Prentice-Hall Inc., 
1996. 

[4] P. Duhamel, “Implementation of “Split-radix” 
FFT algorithms for complex, real, and real-
symmetric data,” IEEE Trans. on ASSP, vol. 
34, pp. 285-295, April 1986. 

[5] H. V. Sorensen, M. T. Heideman, C. S. 
Burrus, “On Computing the Split radix FFT,” 
ICASSP-85 Proceedings, March 1985. 

[6] H. V. Sorenson and C. S. Burrus, “Efficient 
computation of the DFT with only a subset of 
input or output points,” IEEE Trans. Signal 
Processing, vol. 41, no. 3, pp. 1184–1199, 
Mar. 1993. 

[7] D. P. Skinner, “Pruning the decimation-in-
time FFT algorithm,” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. ASSP-24, no. 
4, pp. 193–194, Apr. 1976. 

[8] S. B. Narayanan and K. M. M. Prabhu, “Fast 
Hartley transform pruning,” IEEE Trans. 
Signal Processing, vol. 39, no. 1, pp. 230–
233, Jan. 1991. 

[9] S. Barash, Y. Ritov, “Logarithmic pruning of 
FFT frequencies,” IEEE Trans. Signal 
Process., vol. 41, no. 3, 1398-1400, 1993. 

[10] S.R. Rangarajan, S. Srinivasan, “Generalized 
Method for Pruning an FFT Type of 
Transform,” VISP(144), No. 4, pp. 189-192, 
August 1997. 

[11] H. Huang, Y. Lee, P. Lo, “A novel algorithm 
for computing the 2D split-vector-radix FFT,” 
Signal Processing, vol. 84, no. 3, March 2004. 

[12] S. Franz, S. K. Mitra, “Gerhard Doblinger, 
Frequency estimation using warped discrete 
Fourier transform,” Signal Processing,  vol. 
83, no. 8, August 2003. 

[13] S. Barasch and Y. Ritov, “Pruning FFT 
frequencies,” IEEE transactions on Signal 
Processing, vol. 41, pp. 1398-1400, 1993. 

[14] G. P. M. Egelmeers and P. C. W. Sommen, 
“Recursive computation of block-FFT’s,” 
Proc. ProRISC/IEEE Symp. Circuits, Systems 
Signal Processing,  Netherlands, pp. 59–66, 
Mar. 1995. 

[15] T. Springer, “Sliding FFT computes frequency 
spectra in real time,” EDN, pp. 161–170, Sep. 
1988.

Appendix – A 
 
Consider { }7210 ,,,, xxxxan L=  
 

∑∑∑
=

−

+

−

=

−

=

−
+=

3

0

2
8

2

12
4

3

0

2
8

2

2

7

0

8
2

n

nkj

n

kj

n

nkj

n
n

nkj

n eaeeaea
ππππ

 

 

IEEE --- 2005 International Conference on Emerging Technologies
September 17-18, Islamabad

44



∑∑
=

−

+

−

=

−
+=

3

0

4
2

12
4

3

0

4
2

2
n

nkj

n

kj

n

nkj

n eaeea
πππ

 

Let nn ba =2  and nn ca =+12  
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Now we suppose that two zeros are padded. So changing the summands with four point DFT and also changing the 
twiddle factors in equation (A-1), 
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This is DFT of eight data point DFT with eight zeros padded at the end. We generalize the results of equation (A-2) 
as: 
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Where { }1210 ,,,, −= Nn xxxxa L . This relationship is used recursively. 
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