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On cooperative patrolling: optimal trajectories,

complexity analysis, and approximation algorithms
Fabio Pasqualetti, Antonio Franchi, and Francesco Bullo

Abstract—The subject of this work is the patrolling of an
environment with the aid of a team of autonomous agents. We
consider both the design of open-loop trajectories with optimal
properties, and of distributed control laws converging to optimal
trajectories. As performance criteria, the refresh time and the
latency are considered, i.e., respectively, time gap between any
two visits of the same region, and the time necessary to inform
every agent about an event occurred in the environment. We
associate a graph with the environment, and we study separately
the case of a chain, tree, and cyclic graph. For the case of chain
graph, we first describe a minimum refresh time and latency
team trajectory, and we propose a polynomial time algorithm
for its computation. Then, we describe a distributed procedure
that steers the robots toward an optimal trajectory. For the case
of tree graph, a polynomial time algorithm is developed for the
minimum refresh time problem, under the technical assumption
of a constant number of robots involved in the patrolling task.
Finally, we show that the design of a minimum refresh time
trajectory for a cyclic graph is NP-hard, and we develop a
constant factor approximation algorithm.

I. INTRODUCTION

The recent development in the autonomy and the capabilities

of mobile robots greatly increases the number of applications

suitable for a team of autonomous agents. Particular interest

has been received by those tasks requiring continual execution,

such as the monitoring of oil spills [1], the detection of

forest fires [2], the track of border changes [3], and the

patrol (surveillance) of an environment [4]. The surveillance

of an area of interest requires the robots to continuously

and repeatedly travel the environment, and the challenging

problem consists in scheduling the robots trajectories so as

to optimize a certain performance criteria. The reader familiar

with network location, multiple traveling salesman, or graph

exploration problems may observe a close connection with the

patrolling problem we address, e.g., see [5], [6], [7]. It is worth

noting, however, that these classical optimization problems do

not capture the repetitive, and hence dynamic, aspect of the

patrolling problem, nor the synchronization issues that arise

when a timing among the visits of certain zones is required.

A precise formulation of the patrolling problem requires the

characterization of the robots capabilities, of the environment

to be patrolled, and of the performance criteria. In this work,
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we assume the robots to be identical and capable of sensing

and communicating within a certain spatial range, and of

moving according to a first order integrator dynamics with

bounded speed. We represent the environment as a graph,

in which the vertices correspond to physical and strategi-

cally important locations, and in which the edges denote the

possibility of moving and communicating between locations.

We assume that, when a robot is placed at each of the

graph vertices, the union of the sensor footprints provides

complete sensor coverage of the environment. Regarding the

performance criteria of a patrolling trajectory, we consider

(i) the time gap between any two visits of the same region,

called refresh time, and (ii) the time needed to inform the team

of robots about an event occurred in the environment, called

latency. Loosely speaking, refresh time and latency reflect the

effectiveness of a patrolling team in detecting events in the

environment and in organizing remedial actions. For both the

refresh time and latency optimization problem, we focus on

the worst case analysis, even though the average refresh time

and the average latency cases are also of interest. Notice that

for the latency to be finite, the motion of the robots needs

to be synchronized. For instance, if two robots are allowed

to communicate only when they simultaneously occupy two

adjacent vertices of the graph, then they need to visit those

vertices at the same time in a finite latency trajectory.

The patrolling problem is receiving increasing attention

because of its fundamental importance in many security

applications, e.g., see [8], [9], [10], [11], [12]. Although

many solutions have been proposed, the problem of designing

minimum refresh time and latency team trajectories for a

general environment is, to date, an open problem. Almost all

traditional approaches rely on space decomposition, and trav-

eling salesperson tour computation [13]. In [14] an empirical

evaluation of existing patrolling heuristics is performed. In

[15] two classes of strategies are presented, namely the cyclic-

and the partition-based strategy. In the cyclic-based strategy,

the robots compute a closed route through the viewpoints, and

travel repeatedly such route at maximum speed. Clearly, in the

case of a single robot, if the tour is the shortest possible, then

the cyclic-based strategy performs optimally with respect to

the refresh time and latency criteria. In the partition-based

strategy, the viewpoints are partitioned into m subsets, being

m cardinality of the team, and each robot is responsible

for a different set of viewpoints. To be more precise, each

robot computes a closed tour visiting the viewpoints it is

responsible for, and it repeatedly moves along such tour at

maximum speed. Still in [15], the two classes of strategies

are compared, and it is qualitatively shown that cyclic-based
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strategies are to be preferred whenever the ratio of the longest

to the shortest edge of the graph describing the environment

is small, while, otherwise, partition-based policies exhibit

better performance. In [4] and [2], an efficient and distributed

solution to the perimeter patrolling problem for robots with

zero communication range is proposed. By means of some

graph partitioning and graph routing techniques, we extend the

results along these directions, e.g., by considering the case of a

nonzero communication range for the perimeter patrolling, and

by characterizing optimal strategies for different environment

topologies. An important variant of the patrolling problem is

known as persistent surveillance, e.g., see [16]. Differently to

our setup, a dynamically changing environment is considered

for the persistent surveillance problem, and performance guar-

antees are offered only under a certain assumption on the rate

of change of the regions to be visited.

It is worth mentioning that a different approach to the

design of patrolling trajectories relies on the use of pebbles or

chemical traces to mark visited regions, e.g., see [17], [18],

[19], [20]. These techniques, although effective even without

a global representation of the environment, and with severe

communication constraints, do not explicitly deal with the

optimality of the patrolling trajectories, and they represent

therefore a complementary area of research with respect to

this work.

The main contributions of this work are as follows. We

introduce and mathematically formalize the concept of refresh

time and latency of a team trajectory, and we formally state the

patrolling optimization problem. We propose a procedure to

build a graph (roadmap) to represent the topological structure

of the area to be patrolled, and we study separately the case of

a chain, tree, and cyclic (not acyclic) graph. We exhaustively

discuss the case of a chain roadmap. First, we characterize a

family of minimum refresh time and latency team trajectories,

which can be computed by optimally partitioning the chain

graph among the robots. Second, we derive a centralized

polynomial time algorithm to compute an optimal partition,

and, ultimately, to design an optimal team trajectory. Our

partitioning procedure is based upon a bisection method, and

it is also amenable to distributed implementation. Third, we

develop a distributed procedure for the robots to converge and

synchronize along an optimal trajectory, so as to minimize

the refresh time and latency criteria. Fourth and finally, we

test the robustness of our methods through a simulation study.

When the roadmap has a tree or cyclic structure, we focus

on the refresh time optimization problem, and we do not

consider the latency optimization nor the design of distributed

algorithms. For the case of a tree roadmap, we reduce the

minimum refresh time patrolling problem to a known graph

optimization problem. We show that the computational com-

plexity of the minimum refresh time patrolling problem is

polynomial in the number of vertices of the roadmap, and,

under the assumption of a fixed and finite number of robots, we

identify a polynomial time centralized algorithm to compute

a minimum refresh time team trajectory. For the case of a

cyclic roadmap, we show that the patrolling problem is an NP-

hard optimization problem. We propose two approximation

algorithms, and we characterize their performance. The first

approximate solution is extremely easy to compute, but its

performance depends upon the ratio between the longest and

the shortest edge in the graph representing the environment.

The second approximation algorithm is based on a polynomial

time path-covering procedure, and it allows us to compute a

team trajectory whose refresh time is within a factor of 8
from the minimum refresh time for the given environment (cf.

Fig. 13 for an example). To the best of our knowledge, this

algorithm is the first constant factor approximation algorithm

for the NP-hard minimum refresh time patrolling problem.

A preliminary version of this work appeared in [21]. With

respect to the latter manuscripts, in this current work we

introduce and solve the latency optimization problem, we

perform a numerical study to analyze the robustness of our

algorithmic procedures, and we improve the presentation of

the results on the refresh time optimization problem.

The rest of the paper is organized as follows. The notation

and the problem under consideration are in Section II, where

we also show that the patrolling problem is, generally, compu-

tationally hard. Section III, IV, and V contain our results for

the patrolling of a chain environment. We characterize a mini-

mum refresh time and latency team trajectory, and we derive a

centralized and a decentralized algorithm for its computation.

In Section VI we perform a simulation study to show some

robustness and reconfigurability properties of our distributed

procedure. Section VII-A contains our results for the patrolling

of a tree environment. We describe a minimum refresh time

team trajectory on a tree roadmap, and we characterize the

complexity of computing an optimal solution. Section VII-B

deals with the general case of cyclic environment, and it

contains our approximation procedures. Our conclusion and

final remarks are in Section VIII.

II. ROBOTIC MODEL AND PRELIMINARY CONCEPTS

A. Robots on roadmaps with sensor coverage and communi-

cation connectivity

We will be using the standard motion planning notation,

and we refer the reader to [22] for a comprehensive treatment

of the subject. We are given a team of m > 0 identical

robots, capable of sensing, communicating, and moving in

a connected environment. We make the following combined

assumptions on the robot capabilities and on the environment

to be patrolled.

Regarding sensing, we assume that the environment can be

completely covered by simultaneously placing a robot at each

of a set of n > m viewpoints in the configuration space.

In other words, if m = n robots were available and placed

at the n viewpoints, then the union of the sensors footprint

of the robots would provide complete sensor coverage of the

environment. We assume that each viewpoint is required for

complete sensor coverage. Finally, we assume n > m so that

at least one robot needs to visit more viewpoints for the entire

environment to be monitored over time.

Regarding communication, we associate an undirected

graph G with the environment, whose vertices are the n
viewpoints, and in which there is an edge between two

vertices if two robots placed at those viewpoints are able to
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Fig. 1. A polygonal environment and its associated roadmap. The viewpoints
are chosen in a way that the environment is completely covered by placing
a robot at each of the 12 viewpoints. The edges of the roadmap denote the
possibility for the 3 robots of both moving and communicating between pair
of connected viewpoints. The weight of each edge corresponds to its length.

communicate to each other. We assume that G is connected.

In what follows we design cooperative patrolling algorithms

with sporadic communication, in the sense that two robots

are required to communicate only when they occupy adjacent

vertices. The occurrence of additional communication links

can be easily incorporated into the algorithms and cannot

decrease their performance.

Regarding motion, we assume that the robots are holonomic,

i.e., they are modeled as first order integrators and move at

most at unit speed. Additionally, we turn the graph G into a

robotic roadmap [22] and a metric weighted graph as follows:

to each pair of viewpoints that are neighbors in G, we associate

a unique path connecting them. We select these paths so that

the set of path lengths, adopted as edge weights, verify the

triangle inequality. (For example, the shortest paths between

viewpoints constitute a suitable choice.) We assume that each

robot remains always on the roadmap.

In summary, the combined assumptions on the robot ca-

pabilities and on the environment are that: the vertices of G
provide complete sensor coverage of the environment and each

edge of G corresponds to both a communication edge and a

motion path. Hence, we refer to G as a roadmap with sensor

coverage and communication connectivity.

B. On suitable roadmaps and robots capabilities

The problem of constructing a roadmap from an environ-

ment is here discussed.

Example 1 (Roadmap computation with omnidirectional sens-

ing and communication in known environments). Assume

that the robots are holonomic vehicles moving at bounded

speed, and equipped with an omnidirectional sensing device,

and a line-of-sight communication device. If a map of the

environment is available, then a valid roadmap is obtained

by solving an Art Gallery Problem with Connectivity [23].

A solution to the Art Gallery Problem with Connectivity is

a set of locations, called guards, with the following two

properties: each point in the environment is visible by at least

one guard and the visibility graph of the guards is connected.

An example roadmap is given in Fig. 1. (A distributed sensor-

based algorithm for the Art Gallery Problem with Connectivity

is given in [24].)

Example 2 (Roadmap computation for general robots in an

unknown environment). If the environment is unknown, then

an exploration algorithm should be used to obtain a represen-

tation of the environment, see for example [18], [25], [26].

While or after exploring the environment, a robot should select

viewpoints to provide full sensor coverage. By construction,

the existence of a path between two viewpoints is automatically

guaranteed by the exploration algorithm. Moreover, if com-

munication between two path-connected viewpoints (vi, vj)
is not guaranteed, then the graph may be augmented with

additional viewpoints along the path connecting vi and vj . The

roadmap resulting from these steps features sensor coverage

and communication connectivity.

The following remarks are in order. First, a roadmap rep-

resenting the environment is in general not unique, and the

patrolling performance depends upon the particular choice.

In this work, we do not address the problem of choosing

the roadmap that yields optimal performance. Instead, we

present efficient algorithms for the patrolling problem, which

can also be used to compare different roadmaps on the basis

of the corresponding patrolling performance. Second, for the

implementation of our algorithms, a robot does not need

to travel exactly along the roadmap. Indeed, a robot only

needs to arrive sufficiently close to a viewpoint, or to be

able to circle around it to provide sensor coverage. A related

example is in Section VI, where the arrival delay of a robot

can be interpreted as the uncertainty in the motion of the

robots. Third, the global knowledge of the roadmap may

not be required for the execution of a patrolling trajectory.

Indeed, in general, each robot only visits a subpart of the

roadmap. Fourth and finally, collisions are prevented by letting

two robots exchange their roles every time they are about

to collide. Indeed, since no robot is assigned to a specific

viewpoint, if robot i is about to collide with robot j at time T ,

then, without affecting the performance of the team trajectory,

collision is avoided by redefining the i-th and j-th trajectory

as x̄i(t) = xj(t) and x̄j(t) = xi(t) for t ≥ T ; see the notion

of order invariant trajectory below. Communication or sensing

devices can be used to detect and prevent possible collisions.

C. Refresh time of team trajectories: definitions and a prelim-

inary complexity result

For a team of m robots with specific capabilities, let

G = (V,E) be a robotic roadmap with sensor coverage

and communication connectivity. A team trajectory X is an

array of m continuous and piecewise-differentiable trajectories

x1(t), . . . , xm(t) defined by the motion of the robots on the

roadmap G, i.e., xi : [0, Tf] 7→ G, for i ∈ {1, . . . ,m}, where

Tf ∈ R is a time horizon of interest, much larger than the

time required by a single robot to visit all viewpoints. We

say that a viewpoint v ∈ V is visited at time t by robot i if

xi(t) = v. We define the refresh time of a team trajectory X ,

in short RT(X), as the longest time interval between any two

consecutive visits of any viewpoint, i.e.,

RT(X) = max
v∈V

max
(t1,t2)∈Ω(v,X)

t2 − t1
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where Ω(v,X) = {(t1, t2) ∈ [0, Tf]
2, t1 ≤ t2, | xi(t) 6=

v,∀i ∈ {1, . . . ,m}, t1 < t < t2}.

Remark 1 (Existence of a minimum). We claim that there

exists a team trajectory with minimum refresh time and prove

it as follows. Without loss of generality, we restrict our

attention to team trajectories in which each robot moves

at maximum speed along the edges and stops for certain

durations, possibly equal to zero, at the viewpoints. Thus,

a team trajectory can be described as a tuple of the form

(S, ∆) = {(S1,∆1), . . . , (Sm,∆m)}, where Si contains the

sequence of viewpoints visited by robot i, and ∆i contains

the waiting times at the visited vertices. Notice that the time

horizon Tf is finite, the length of each edge is positive, the

number of vertices is finite, and the speed of the robots is

bounded. It follows that the length of each sequence Si is

finite, and, therefore, each Si takes value in a finite set. Now,

for each possible sequence of visited vertices, the refresh time

is a continuous function of only the waiting times, and each

waiting time lies in the compact interval [0, Tf]. Because any

continuous function defined over a compact region admits a

point of minimum value, we conclude that there exists a team

trajectory with minimum refresh time.

Problem 1 (Team refresh time). Given a roadmap and a team

of robots, find a minimum refresh time team trajectory.

In Section IV we present a different optimization problem,

which deals with the possibility for a robot to communicate,

possibly with multiple hops, with every other robot in the

team. We now conclude this section with our first result

on the computational complexity of the Team refresh time

problem. For a detailed discussion of the main aspects of

the computational complexity theory, we refer the interested

reader to [27]. Recall that an optimization problem is said to

be NP-hard if it is, informally, as hard as the hardest problem

in the class NP, for which no polynomial time algorithm is

known to compute an optimal solution.

Theorem II.1 (Computational complexity). The Team refresh

time problem is NP-hard.

Proof: This statement can be shown by reduction from

the Traveling Salesman problem [27]. In fact, if m = 1, since

the speed of the robots is bounded, then a minimum refresh

time trajectory consists of moving the robot at maximum

speed along a shortest closed tour visiting the viewpoints. The

problem of finding a shortest tour through a set of points in

the plane, also known as Traveling salesman problem, is an

NP-hard problem [27]. Hence, by restriction, the Team refresh

time problem is also NP-hard.

Following Theorem II.1, the minimum refresh time opti-

mization problem is generally computationally hard. In this

work, we first identify two roadmap structures for which there

exists an efficient solution to the Team refresh time problem,

and then we describe two approximation algorithms to deal

with the general case.

III. MINIMUM REFRESH TIME TEAM TRAJECTORY ON A

CHAIN ROADMAP

We characterize in this section an optimal refresh time team

trajectory when the roadmap associated with the environment

has a chain structure.

A. Open loop team trajectory characterization

Let Ni denote the neighbor set of the vertex i, and let

|Ni| denote the degree of i, i.e., the cardinality of the set

Ni. A chain roadmap is an undirected, connected, and acyclic

roadmap, in which every vertex has degree two, except for

two vertices which have degree one. Without losing generality,

we assume that the n vertices are ordered in a way that

N1 = {2}, Nn = {n − 1}, and Ni = {i − 1, i + 1} for each

i ∈ {2, . . . , n − 1}. We define a relative order of the robots

according to their position on the roadmap. A team trajectory

is order invariant if the order of the robots does not change

with time, i.e., if xi(t) ≤ xi+1(t) for each i ∈ {1, . . . ,m−1}
and for every instant t ∈ [0, Tf], where xi(t) denotes the

distance at time t on the roadmap from the first vertex of

the chain to the position of the i-th robot.

Proposition III.1 (Order invariant team trajectory). Let X
be a team trajectory. There exists an order invariant team

trajectory X̄ such that RT(X) = RT(X̄).

Proof: Let X be a team trajectory, and consider the

permutation matrix P (t), that keeps track of the order of the

robots at time t, i.e., such that the (i, j)-th entry of P (t) is 1 if,

at time t, the i-th robot occupies the j-th position in the chain

of robots, and it is 0 otherwise. Since X is continuous, anytime

the function P (t) is discontinuous, the positions of the robots

directly involved in the permutation overlap. Therefore, the

order invariant team trajectory X̄ = P−1(t)X(t) is a feasible

team trajectory, and it holds RT(X̄) = RT(X).
Let Vi ⊆ V be the set of viewpoints visited over time by the

agent i with the trajectory xi, and let the image of the team

trajectory X be the set {V1, . . . , Vm}. Notice that different

team trajectories may have the same image. Throughout the

paper, let li = minv∈Vi
v, ri = maxv∈Vi

v, and di = ri − li.
Finally, let RT∗ = minX RT(X). A team trajectory is non-

overlapping if Vi ∩ Vj = ∅ for all i 6= j.

Proposition III.2 (Non-overlapping team trajectory). Given

a chain roadmap, there exists an order invariant and non-

overlapping team trajectory with refresh time RT∗.

Proof: Let X∗ be a minimum refresh time team trajectory,

and let X be the order invariant team trajectory obtained

from X∗ as in Proposition III.1. Clearly RT(X) = RT∗. Let

{V1, . . . , Vm} be the image of X , and note that V = ∪m
i=1Vi.

Consider the partition of V defined as

V̄1 = V1,

V̄i = Vi \ ∪
i−1
j=1Vj , i ∈ {2, . . . ,m}.

For every nonempty V̄i, let l̄i = minv∈V̄i
v, r̄i = maxv∈V̄i

v,

and d̄i = r̄i − l̄i. Note that, by construction, the viewpoint l̄i
is visited by the robot i and, possibly, by the robots j > i.
Also, because X is order invariant, we have xi(t) ≤ xj(t).
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Trajectory 1: Minimum refresh time trajectory on a chain

roadmap (i-th robot)

Input : li := minv∈Vi
v, ri := maxv∈Vi

v, di := ri − li;
Require : an optimal partition of the chain graph;

1: xi(t) := li for t := 0, 2di, 4di, . . . ;
2: xi(t) := ri for t := di, 3di, 5di, . . . ;

It follows that RT(X) ≥ 2 maxi d̄i. Consider now the team

trajectory X̄ with image {V̄1, . . . , V̄m}, and assume that the

robots sweep periodically at maximum speed their segment.

Then RT(X̄) = 2 maxi d̄i, so that X̄ is an order invariant and

non-overlapping team trajectory with minimum refresh time.

Given a chain graph on the viewpoints V , let Πm =
{π1, . . . , πm} be an m-partition of V , i.e., π1, . . . , πm is a

collection of subsets of V such that πi ∩ πj = ∅ whenever

i 6= j, and V =
⋃m

i=1 πi. Additionally, let the dimen-

sion of the partition Πm equal the longest distance between

any two viewpoints in the same cluster, i.e., dim(Πm) =
maxi∈{1,...,m} (maxv∈πi

v − minv∈πi
v), where maxv∈πi

v −
minv∈πi

v = 0 if πi = ∅. Following Proposition III.2,

there exists a minimum refresh time team trajectory whose

image coincide with an m-partition of V . We now show that

the minimum refresh time equals twice the dimension of an

optimal m-partition.

Theorem III.3 (Minimum refresh time). Let G be a chain

roadmap, and let m be the number of robots. Then RT∗ =
2 minΠm

dim(Πm).

Proof: As a consequence of Propositions III.1 and III.2,

there exists a minimum refresh time team trajectory whose

image coincides with an m-partition Πm. Since each robot

is assigned a different cluster, and the speed of the robots

is bounded by 1, we have RT∗ ≥ 2dim(Πm). Consider a

team trajectory X in which each robot continuously sweeps

at maximum speed the cluster it is assigned to. Clearly,

RT(X) = RT∗ = 2dim(Πm).
We have shown that a minimum refresh time trajectory

consists of letting the robot sweep at maximum speed a part of

the chain graph. Such a trajectory is more formally described

for the i-th robot in Trajectory 1, where we only characterize

the instants of time at which robot i changes its velocity vector,

and we assume that it moves at maximum speed otherwise.

Remark 2 (Average partition). By removing the longest edges

in the chain the average length of the clusters is minimized.

In general, such partition does not minimize the dimension of

the m-partition, and hence it is not optimal in our sense. An

example is in Fig. 2.

B. Optimal m-partition centralized computation

In the remaining part of the section we describe an algorithm

to compute an optimal m-partition. For a set of viewpoints V ,

we call left-induced partition of length ρ ∈ R≥0 the partition

Πρ = {πi} defined recursively as (cf. Fig. 3(a))

πi = {v ∈ V | ai ≤ v ≤ ai + ρ}, i = 1, . . . , (1)

v1 v8v4 v6v3 v5 v7 v10

(a)

v1 v4 v6 v7v3 v5 v10

(b)

Fig. 2. A 4-partition with minimum (maximum) dimension is in Fig. 2(a).
The dimension of this partition is v7 − v6. A 4-partition with minimum
(average) dimension is obtained by removing 3 longest edges and it is reported
in Fig. 2(b). The dimension of this partition is v10 − v7 > v7 − v6.

ρ4

v6 v7 v9v8 v10v2 v3v1 v4 v5

v6 v7 v9v8 v10v2 v3v1 v4 v5

ρ5

v4 v5 v6 v7v2 v3v1 v9v8 v10

(a)

1

2

3

4

5

6

7

8

9

10

ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ10

ρ8 = ρ9

|Πρ|

ρ

(b)

Fig. 3. In 3(a) the left-induced partition of length ρ4 and ρ5, with ρ5 <
ρ4, for the chain roadmap with vertices {v1, . . . , v10}. The cardinalities are
|Πρ4 | = 4 and |Πρ5 | = 5, respectively. In 3(b) the cardinality |Πρ| is plotted
as a function of the length ρ. Notice that, because v2 − v1 = v10 − v9, the
function |Πρ| does not assume the value 9.

where

a1 = v1,

aj = min{v ∈ V | v > aj−1 + ρ}, j = 2, . . . .

The cardinality |Πρ| corresponds to the integer j such that

{v ∈ V | v > aj + ρ} = ∅. Observe that the function ρ 7→
|Πρ| is monotone, non-increasing, and right-continuous (cf.

Fig. 3(b)). Let {ρ1, . . . , ρn−1} ∈ R
n−1
≥0 be the discontinuity

points of the function ρ 7→ |Πρ|, then, for k ∈ {1, . . . , n− 1},

|Πρ| ≤ k, if ρ ≥ ρk,

|Πρ| > k, if ρ < ρk.
(2)

Note that two or more discontinuity points of |Πρ| may

coincide, so that the function |Πρ| may not assume all the

values in the set {1, . . . , n}, e.g., in Fig. 3(b) the value |Πρ|
is never equal to 9.

Theorem III.4 (Optimal m-partition). Let G be a chain

roadmap. Let Πm be an m-partition of G, and let Πρ be the
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Algorithm 2: Optimal left-induced m-partition

Input : Viewpoints v1, . . . , vn, Number of robots m ≤ n,
Tolerance 0 < ε < vn

m
;

Set : a := 0, b := 2vn

m
, ρ :=

(a+b)
2

;

1: while (b − a) > 2ε do

2: Πρ := left-induced({v1, . . . , vn}, ρ);
3: if |Πρ| > m then

4: a := ρ, ρ := a+b
2

;

else

5: Π∗ := Πρ, b := ρ, ρ := a+b
2

;

6: return Π∗

left-induced partition of length ρ of G. Then

min
Πm

dim(Πm) = min{ρ ∈ R≥0 | |Πρ| ≤ m}.

Proof: Let Πm be an m-partition, and let Πρ =
{πρ

1 , . . . , πρ
k} be the left induced partition of length ρ of a

chain roadmap G. Let ρ∗ = minΠm
dim(Πm). We want to

show that ρ∗ is one of the discontinuity points of the function

|Πρ|, i.e., that ρ∗ verifies the conditions (2).

By contradiction, if ρ < ρ∗ and |Πρ| ≤ m, then an m-

partition with dimension smaller than the optimal would exists.

Therefore we have |Πρ| > m if ρ < ρ∗.

Suppose now that ρ ≥ ρ∗, and let Π∗
m = {π∗

1 , . . . , π∗
m} be

an m-partition with minimum dimension. Notice that |πρ
1 | ≥

|π∗
1 |, because the cluster πρ

1 contains all the viewpoints within

distance ρ from v1, and hence also within distance ρ∗. It fol-

lows that max πρ
1 ≥ max π∗

1 , and also that minπρ
2 ≥ minπ∗

2 .

By repeating the same procedure to the remaining clusters,

we obtain that max πρ
m ≥ max π∗

m, so that, if |Π∗| = m and

ρ ≥ ρ∗, then |Πρ| ≤ m.

Following Theorem III.4, an optimal left-induced partition

of cardinality (at most) m is also an optimal m-partition.

Notice that for the computation of an optimal left-induced

partition only the lengths ρ corresponding to the discontinuity

points of Πρ need to be considered. Since each discontinuity

point coincides with the distance between a pair of vertices,

only
n(n−1)

2 values need to be tested. Therefore, an opti-

mal left-induced partition can be computed with complexity

O(n2). In what follows we describe an ε-approximation al-

gorithm with linear complexity for any ε ∈ R>0. Notice that

ε-approximation algorithms with linear complexity are often

more convenient for a practical implementation than exact

algorithms with higher complexity [7].

We now present our algorithm for the computation of an

optimal m-partition. Since the function ρ 7→ |Πρ| is monotone

and continuous, a bisection method is effective for finding

its discontinuity points, and, therefore, for determining the

shortest length of a left-induced partition of cardinality m.

A bisection based procedure to compute an optimal left-

induced partition is in Algorithm 2, where the function left-

induced({v1, . . . , vn},ρ) returns the left-induced partition de-

fined in equation (1). We next characterize the convergence

properties of Algorithm 2.

Lemma III.5 (Convergence of Algorithm 2). Let G be a chain

roadmap, and let Πm denote an m-partition of G. Let ρ∗ =

minΠm
dim(Πm). Algorithm 2 with tolerance ε returns a left-

induced partition of dimension at most ρ∗ + ε and cardinality

at most m. Moreover, the time complexity of Algorithm 2 is

O(n log(ε−1)).

Proof: Algorithm 2 searches for the minimum length ρ∗

that generates a left-induced partition of cardinality at most

m. Because of Theorem III.4, the length ρ∗ coincides with

one of the discontinuity points of the function |Πρ|, and it

holds ρ∗ ∈ (0, 2vn/m). Indeed, ρ∗ > 0 because m < n, and

ρ∗ < 2vn/m, because (2vn/m)m > vn. Recall from (2) that

|Πρ| > m for every ρ < ρ∗, and that the function ρ 7→ |Πρ| is

monotone. Note that the interval [a, b], as updated in Algorithm

2, contains the value ρ∗ at every iteration. The length of the

interval [a, b] is divided by 2 at each iteration, so that, after

log2(
2vn

εm
), the value ρ∗ is computed with precision ε. Since

the computation of |Πρ| can be performed in O(n) operations,

the time complexity of Algorithm 2 is O(n log(ε−1)).
As a consequence of Proposition III.2 and Theorem III.3, in

what follows we only consider team trajectories whose image

coincide with an m-partition. Therefore, for ease of notation,

we use the set {V1, . . . , Vm} to denote both the image set of

a team trajectory and an m-partition of the chain graph. We

conclude this section with a summary of the presented results.

Theorem III.6 (Patrolling a chain graph at minimum refresh

time). Let G be a chain graph with n viewpoints and let m ≤
n be the number of robots. Let V be an optimal m-partition

of G computed by means of Algorithm 2 with tolerance ε. Let

dmax be the dimension of V . A team trajectory with image V ,

and minimum refresh time 2dmax is computed as in Trajectory

1. Moreover, the time complexity of designing such trajectory

is O(n log(ε−1)).

IV. MINIMUM REFRESH TIME AND LATENCY TEAM

TRAJECTORY ON A CHAIN ROADMAP

The previous section considers the problem of designing

team trajectories with optimal refresh time on a chain graph. In

a patrolling mission it may be important for the robots to com-

municate with each other in order to gather information about

the status of the entire environment. For instance, messages

could be sent by a unit to ask for reinforcement, or to spread

an alarm. Informally, we call latency of a team trajectory

X , in short LT(X), the shortest time interval necessary for a

message generated by any robot to reach all the other robots.

In other words, given our communication model, the latency of

a team trajectory is a measure of how fast a message spreads

to all robots. In this section we describe team trajectories with

minimum refresh time and latency.

We now give a more formal definition of LT(X). Recall

that, by assumption, two robots are allowed to communicate

when they lie on two adjacent viewpoints. In a chain roadmap,

for a message to reach every robot in the chain, every pair of

adjacent robots needs to communicate. For i ∈ {2, . . . ,m},

let Φi denote the union of the set of times at which the robots

i − 1 and i communicate and {0}. The up-latency of X , in

short LTup(X), is the longest time interval between any two

consecutive communications between the robots 1, 2 and m−
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1,m. Precisely,

LTup(X) = max
t2∈Φ2

min
tm∈Φ̄m(t2)

tm − t2,

where Φ̄m(t2) = {tm ∈ Φm | ∃ t3 ∈ Φ3, . . . , tm−1 ∈
Φm−1, t2 ≤ t3 ≤ · · · ≤ tm} ∪ {Tf}. Analogously, we call

down-latency the quantity

LTdown(X) = max
tm∈Φm

min
t2∈Φ̄2(tm)

t2 − tm,

where Φ̄2(tm) = {t2 ∈ Φ2 | ∃ t3 ∈ Φ3, . . . , tm−1 ∈
Φm−1, t2 ≥ t3 ≥ · · · ≥ tm} ∪ {Tf}. Finally, we define the

latency of a team trajectory as

LT(X) = max{LTup(X), LTdown(X)}.

Notice that our definitions of latency hold for m ≥ 2, and that,

if m = 2, then we have LTup(X) = LTdown(X) = LT(X) = 0
for every team trajectory X . We envision that the up- and

down-latency performance criteria should be adopted when it

is of interest to report the status of the monitored area to a

base station located at one end of the chain environment. The

latency minimization problem is more appropriate for fully

distributed scenarios. In this section we design synchronized

team trajectories with the following two features. First, since a

minimum refresh time trajectory is determined by an optimal

partition of the chain graph, we aim at finding team trajectories

associated with the same optimal partition.1 Second, we de-

sign synchronized team trajectories with minimum up-latency

(resp. down-latency) or latency.

A. Lower bound and optimal team trajectory for up-latency

We start by showing a lower bound for LTup(X) and

LTdown(X). Recall that, for a partition {V1, . . . , Vm}, we

have li = minv∈Vi
v, ri = maxv∈Vi

v, di = ri − li, and

dmax = maxi∈{1,...,m} di.

Lemma IV.1 (Up-latency lower bound). Let G be a chain

roadmap, and let {V1, . . . , Vm} be an m-partition of G. The

latency of a team trajectory with image {V1, . . . , Vm} is lower

bounded by
∑m−1

i=2 di.

Proof: The proposition follows from the fact that the

robots speed is bounded by 1, and that the robots need to travel

their segment to communicate with the neighboring robots.

For the up-latency of a team trajectory to equal the lower

bound in Lemma IV.1, each robot i needs to transfer a message

from robot i − 1 to robot i + 1 in time di. In order to do so,

each robot i needs to communicate with its neighbor i + 1 as

soon as xi(t) = ri.

Theorem IV.2 (Patrolling a chain graph at minimum refresh

time and minimum up-latency). Let G be a chain graph with

n viewpoints and let m ≤ n be the number of robots. Let

V be an optimal m-partition of G computed by means of

Algorithm 2 with tolerance ε. Let dmax be the dimension

of V , and let di be the length of the i-th cluster. A team

1We focus on this family of trajectories, and we leave the more general
optimization problem as the subject of future research. However, this family
of trajectories is believed to contain an (unconstrained) optimal solution.

Trajectory 3: Minimum base-latency team trajectory (i-
th robot)

Input : li := minv∈Vi
v, ri := maxv∈Vi

v, di := ri − li,
dmax := maxj rj − lj ;

Require : optimal partition of the chain graph;

Set : t0 := −
Pm−1

j=1 dj ,

k ∈ N 7→ Ti(k) := 2kdmax + t0 +
Pi−1

j=1 dj ;

1: xi(t) := li for t0 ≤ t ≤ Ti(0) and for Ti(k)+2di ≤ t ≤ Ti(k +1);
2: xi(t) := ri for t := Ti(k) + di;

viewpoints

r3

l3

r2

l2

r1

l1
t0 2dmax 4dmax time

d1

d2

dmax = d3

T3(1)

0

Fig. 4. A team trajectory with minimum up-latency generated with the
procedure in Trajectory 3. Notice that each robot i communicates with the
neighboring robot i + 1 as soon as xi(t) = ri. A team trajectory with
minimum down-latency is obtained by shifting in time the trajectory of robot
1, in a way that robot 2 communicates with robot 1 as soon as x2(t) = l2.

trajectory with image V , minimum refresh time 2dmax, and

minimum up-latency
∑m−1

j=2 dj is computed as in Trajectory

3. Moreover, the time complexity of designing such trajectory

is O(n log(ε−1)).

Proof: The theorem follows by observing that the tra-

jectory is 2dmax-periodic, and that no robot i waits at ri to

communicate with the neighboring robot i+1. The up-latency

equals the lower bound in Lemma IV.1, and it is therefore min-

imum. Regarding the computational complexity, notice that it

is determined by the computation of the optimal m-partition

V , and hence, by Lemma III.5, it equals O(n log(ε−1)).

An example of a team trajectory with minimum refresh time

and minimum up-latency is in Fig. 4. Finally, observe that

the minimization of the down-latency can be achieved in an

analogous way.

Remark 3 (Simplifications for clusters of equal length). Let

{V1, . . . , Vm} be an optimal m-partition, and suppose that

dmax = ri− li for all i ∈ {1, . . . ,m}. Then the up-latency and

the down-latency can be made minimum and equal to (m −
2)dmax by arranging the robots trajectories to be in opposite

phase. Specifically, for k = 0, 2, . . . , we set

xi(2kdmax) = li, xi((2k + 1)dmax) = ri,

if i is odd, and

xi(2kdmax) = ri, xi((2k + 1)dmax) = li,

if i is even. Because of Lemma IV.1, the above trajectory has

minimum latency. This particular case was studied in [2].
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ti

ti+1

ti+2

t̄i

t̄i+1

ti + 2dmax

t̄i+2

di

di+1

tj

Fig. 5. As stated in Lemma IV.3, at most one communication sequence is
possible within each period of length 2dmax. Here di + di+1 > dmax.

B. Lower bound for latency

We now consider the minimization of the latency criterion,

and we restrict our attention to periodic team trajectories. To

be more precise, let {V1, . . . , Vm} be an optimal m-partition

of the environment, and let dmax denote the longest length of

the clusters. We aim at finding a 2dmax-periodic team trajectory

with image {V1, . . . , Vm} and minimum latency. Notice that,

by imposing a periodicity of 2dmax, the refresh time of the

trajectory, if finite, is also minimized.

We start by considering the pedagogical situation in which

di+di+1 > dmax for all i ∈ {1, . . . ,m−1}. In the next Lemma,

we show that the frequency of message exchange among the

robots is limited by the periodicity of the trajectory.

Lemma IV.3 (Frequency of message exchange). Consider a

2dmax-periodic team trajectory, and let di + di+1 > dmax for

all i ∈ {1, . . . ,m − 1}. For any t ∈ [0, Tf − 2dmax] and for

any i ∈ {2, . . . ,m− 2}, there exist no two distinct sequences

ti, ti+1, ti+2 and t̄i, t̄i+1, t̄i+2, with tj , t̄j ∈ Φj , j = i, i +
1, i + 2, such that

t ≤ ti ≤ ti+1 ≤ ti+2 ≤ t + 2dmax

t ≤ t̄i ≤ t̄i+1 ≤ t̄i+2 ≤ t + 2dmax

ti+1 ≤ t̄i

ti+2 ≤ t̄i+1.

Moreover, for any i ∈ {m, . . . , 4}, there exist no two se-

quences ti, ti−1, ti−2 and t̄i, t̄i−1, t̄i−2 with tj , t̄j ∈ Φj ,

j = i, i − 1, i − 2, such that

t ≤ ti ≤ ti−1 ≤ ti−2 ≤ t + 2dmax

t ≤ t̄i ≤ t̄i−1 ≤ t̄i−2 ≤ t + 2dmax

ti−1 ≤ t̄i

ti−2 ≤ t̄i−1.

Proof: Since di+1 + di+2 > dmax, it follows

max{di+1, di+2} > dmax/2. Let di+1 > dmax/2. By contradic-

tion, if two distinct sequences ti, ti+1, ti+2 and t̄i, t̄i+1, t̄i+2

exist, with t ≤ ti ≤ ti+1 ≤ ti+2 ≤ t + 2dmax, t ≤ t̄i ≤ t̄i+1 ≤
t̄i+2 ≤ t + 2dmax, ti+1 ≤ t̄i and ti+2 ≤ t̄i+1, then the (i + 1)-
th robot travels its cluster four times. Since the speed of the

robots is bounded by one, robot i + 1 cannot travel its cluster

four times in a period of 2dmax (cf. Fig. 5). The second part

of the theorem follows from an analogous reasoning.

Notice that in the above Lemma the index i belongs to the

set {2, . . . ,m− 2} (resp. {m, . . . , 4}) because we consider 3
consecutive communication instants, and because Φi denotes

the sequence of times at which robots i−1 and i communicate.

Because of Lemma IV.3, in a 2dmax-periodic team trajectory

with di + di+1 > dmax only one message can be passed

from robot i to robot i + 3 in a period of time of 2dmax.

This limitation determines a lower bound on the latency

of a periodic trajectory. Notice that eventual communication

instants tj ∈ Φi, with t ≤ tj ≤ ti ≤ ti+1, do not influence

the latency, since all information can be transmitted at time ti
without affecting the latency performance.

Lemma IV.4 (Latency lower bound, simple case). Let X be

a 2dmax-periodic team trajectory with di +di+1 > dmax for all

i ∈ {1, . . . ,m − 1}. Then

min
X

LT(X) ≥ (m − 2)dmax.

Proof: Because of Lemma IV.3, a message can be trans-

fered from robot i to robot i + 3 in at most 2dmax instants of

time, by traveling the clusters Vi+1 and Vi+2. Without losing

generality, we let dmax be the time to pass a message form i+1
to i+2, and from i+2 to i+3. Notice that the same reasoning

holds also for the time to transfer a message from i + 3 to i.
Therefore, the latency is lower bounded by (m − 2)dmax.

We now consider the situation in which an optimal m-

partition does not verify the constraint di + di+1 > dmax

for all i ∈ {1, . . . ,m − 1}. Intuitively, for what concerns the

latency, two consecutive clusters with length di and di+1 may

be regarded as one single cluster of length di+di+1. Therefore,

in order to use Lemma IV.3 and Lemma IV.4, we partition the

clusters {V1, . . . , Vm} into groups such that the sum of the

length of the clusters of two consecutive groups is greater

than dmax. In other words, let V̄r = {r̄1, . . . , r̄m̄} be the set of

right-extreme viewpoints of the partition {V1, . . . , Vm} defined

recursively as

r̄0 := l1,

r̄i := max
j∈{1,...,m}

{rj |

j
∑

k=pi

dk ≤ dmax}, i = 1, . . . , m̄,

where pi = min{1, . . . ,m} such that lpi
≥ r̄i−1. Let

V̄l = {l̄1, . . . , l̄m̄} be the set of left-extreme viewpoints defined

recursively as

l̄1 := l1,

l̄i := min
j∈{1,...,m}

{lj | lj ≥ r̄i−1}, i = 2, . . . , m̄.

Additionally, define the set of aggregated clusters V̄ =
{V̄1, . . . , V̄m̄}, where V̄i contains all the clusters within l̄i and

r̄i, and let d̄i be the sum of the length of the clusters in V̄i.

Lemma IV.5 (Latency lower bound, general case). Let X be a

2dmax-periodic team trajectory with image {V1, . . . , Vm}, and

let m̄ be the number of aggregated clusters. Then,

min
X

LT(X) ≥ (m̄ − 2)dmax + (d̄1 − d1) + (d̄m̄ − dm).

Proof: Consider the clusters defined by the right extreme

viewpoints, and notice that they verify di+di+1 > dmax. Then,

the Theorem follows from Lemma IV.4, and from the fact

that the minimum latency on the image {V̄1, . . . , V̄m̄} equals
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the minimum latency on the image {V1, . . . , Vm}. The terms

d̄1−d1 and d̄m̄−dm are due to the fact that we are interested

in delivering a message from robot 1 to robot m in the original

configuration, and not on the aggregated chain.

C. Optimal team trajectory for latency

A team Trajectory with minimum refresh time and minimum

latency is formally presented in Trajectory 4, where we specify

the instants of time at which a robot changes its velocity, and

we assume that it moves at maximum speed otherwise. An

example is reported in Fig. 6, and here we give an informal

description. Let {V1, . . . , Vm} be an optimal m-partition of a

chain graph, and let {V̄1, . . . , V̄m̄} be the set of aggregated

clusters. Recall that V̄i is a subset of {V1, . . . , Vm}, and that

the sum of the length of two consecutive elements is larger

than dmax. The procedure in Trajectory 4 (lines 6−11 and 18−
23) is such that the robots in the same group behave as a single

robot assigned to the whole set of viewpoints. In other words,

the motion of the robots in the same group is determined by a

token passing mechanism, in which robot i+1 moves towards

ri+1 only when xi(t) = ri and xi(t
−) 6= ri, and, analogously,

robot i moves towards li only when xi(t) = li and xi(t
−) 6= li.

Instead, lines 1− 5 and 12− 17 in Trajectory 4 guarantee the

transfer of one message in a period of 2dmax between three

consecutive groups, and, consequently, the minimization of the

latency. Indeed, since the sum of the length of two consecutive

groups is larger than dmax, because of Lemma IV.3, no more

than one message can be transferred between three consecutive

groups in a period of 2dmax.

Theorem IV.6 (Patrolling a chain graph at minimum refresh

time and minimum latency). Let G be a chain graph with n
viewpoints and let m ≤ n be the number of robots. Let V be

an optimal m-partition of G computed by means of Algorithm

2 with tolerance ε. Let dmax be the dimension of V , and let d1

(resp. dm) be the length of the first (resp. last) cluster in V .

Let m̄ be the number of aggregated clusters, and let d̄1 (resp.

d̄m̄) be the length of the first (resp. last) aggregated cluster.

A team trajectory with image V , minimum refresh time 2dmax,

and minimum latency (m̄ − 2)dmax + d̄1 − d1 + d̄m̄ − dm is

computed as in Trajectory 4. Moreover, the time complexity of

designing such trajectory is O(n log(ε−1)).

Proof: By inspection, the team Trajectory described in

Trajectory 4 is 2dmax-periodic, and therefore it has minimum

refresh time. Moreover, by construction, the communications

at the extreme viewpoints happen every 2dmax instants of time,

so that the latency is equal to (m̄−2)dmax+d̄1−d1+d̄m̄−dm,

and hence, by Lemma IV.5, minimum. Regarding the com-

putational complexity, notice that it is determined by the

computation of the optimal m-partition V , and hence, by

Lemma III.5, it equals O(n log(ε−1)).

V. DISTRIBUTED SYNCHRONIZATION ALGORITHM ON A

CHAIN ROADMAP

In the previous sections we have shown that, for the

computation of a minimum refresh time and latency team

trajectory, first an optimal m-partition of the roadmap needs

Trajectory 4: Minimum refresh time and latency trajec-

tory (i-th robot)

Input : li := minv∈Vi
v, ri := maxv∈Vi

v, dmax := maxj rj − lj ,
R := set containing the identifiers of the robots in the same
group as i, k := index of the aggregated cluster {1, . . . , m̄};

Require: optimal partition of the chain graph;

1: case li is a left-extreme

2: if k is odd then

3: xi(t) = li with t = 0, 2dmax, 4dmax, . . . ;

4: else if k is even then

5: xi(t) = li with t = dmax, 3dmax, 5dmax, . . . ;

6: case li is not a left-extreme

7: δi :=
P

j∈R,j<i dj ;

8: if k is odd then

9: xi(t) = li for τ − δi ≤ t ≤ τ + δi, with
τ = 0, 2dmax, 4dmax, . . . ;

10: else if k is even then

11: xi(t) = li for τ − δi ≤ t ≤ τ + δi, with
τ = dmax, 3dmax, 5dmax, . . . ;

12: case ri is a right-extreme

13: δi := dmax −
P

j∈R dj

14: if k is odd then

15: xi(t) = ri for τ − δi ≤ t ≤ τ + δi, with
τ = dmax, 3dmax, 5dmax, . . . ;

16: else if k is even then

17: xi(t) = ri for τ − δi ≤ t ≤ τ + δi, with
τ = 0, 2dmax, 4dmax, . . . ;

18: case ri is not a right-extreme

19: δi := dmax −
P

j∈R,j≤i dj ;

20: if k is odd then

21: xi(t) = ri for τ − δi ≤ t ≤ τ + δi, with
τ = dmax, 3dmax, 5dmax, . . . ;

22: else if k is even then

23: xi(t) = ri for τ − δi ≤ t ≤ τ + δi, with
τ = 0, 2dmax, 4dmax, . . . ;

viewpoints

l2

r1

0 2dmax 4dmax 6dmax time

d1

d2

dmax = d3

l1 = l̄1

r2 = r̄1

l3 = l̄2

r3 = r̄2

Fig. 6. A team trajectory with minimum refresh time (2dmax) and minimum
latency ((m̄ − 2)dmax + d1 + d2 − d1 + d3 − d3 = d2) is here reported.
A message with delivery time equal to d2 is reported in red. The right-
extreme viewpoints are {r̄1, r̄2}, the left-extreme viewpoints are {l̄1, l̄2}, and
m̄ = 2. The represented team trajectory has minimum refresh time (2dmax)
and minimum latency ((m̄− 2)dmax + (d1 + d2)− d1 + d3 − d3 = d2). A
message with delivery time equal to d2 is reported in red.

to be found, and, then, a synchronization of the motion of the

robots needs to be achieved to ensure communication between

neighboring robots. The distributed computation of an optimal

m-partition follows directly from Algorithm 2, by letting the

robots compute the left-induced partition of length l in a

distributed way. A simple solution consists of the following

three operation:
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(i) the robots gather at the leftmost viewpoint, and

(ii) determine the cardinality of the team and elect a leader;

(iii) the leader computes an optimal left-induced partition,

and assigns a different cluster to each robot.

Notice that, by only assuming the capability of detecting the

viewpoints in the roadmap (in particular the leftmost and

rightmost viewpoint) the robots can distributively compute

an optimal partition. Indeed, the leader can simply travel the

roadmap, and evaluate if, for a given length ρ, the cardinality

of the corresponding left-induced partition is greater, equal, or

smaller than the cardinality of the team. We believe that, by

simple programming operations, the above procedure can be

improved, so as to handle reconfigurations due to addition or

removal of robots in the team. In this section we focus instead

on the design of a distributed feedback law to synchronize the

motion of the robots so as to guarantee the minimization of

the latency of the trajectory.

Recall that xi(t) denotes the position on the chain of the

robot i at time t. Moreover, let the i-th cluster of an optimal

m-partition be delimited by li and ri. Let diri ∈ {−1, 0, 1}
denote the direction of motion of robot i. Let c-time denote the

current time of simulation, let a-time be the time at which a

robot arrives at his right extreme. Let n-meet(i,j) be a function

that returns the number of times that the robots i and j have

communicated. Let Timer(δ) be a function that returns 1 after

a time interval of length δ. An algorithm for the robots to

distributively converge to a minimum refresh time and latency

team trajectory is in Algorithm 5. It should be noticed that the

algorithm assumes the knowledge of an optimal partitioning

of the chain graph, and of the left- and right-extreme sets.

Algorithm 5 is informally described as follows. First, the

velocity of a robot changes only when its position coincides

with the leftmost or the rightmost of the assigned viewpoints.

When a robot reaches an extreme viewpoint, it waits until

a communication with the neighboring robot happens (lines

7 − 8). This mechanism determines the feedback behavior of

our procedure. The behavior of a robot after a communication

is determined by the lines 9−21, which reproduce the optimal

behavior described in Trajectory 4. To be more precise, the

function Token(i, j) coordinates the motion of the robots in

the same group (see Section IV-C), so that they move as if

there was a single robot sweeping the viewpoints in the same

group. The function Timer(δi), instead, ensures the maximum

frequency of messages exchange between consecutive groups,

so as to minimize the latency of the resulting trajectory.

Theorem V.1 (Optimal team trajectory). Let X be the team

trajectory generated by Algorithm 5. There exists a finite time

after which X has minimum refresh time and latency.

Proof: Let {V1, . . . , Vm} be an optimal m-partition, let

V̄r = {r̄1, . . . , r̄C∗} be the set of right-extreme viewpoints,

and let V̄l = {l̄1, . . . , l̄C∗} be the set of left-extreme view-

points. Let R denote the set of robots patrolling a viewpoint

between l̄i and r̄i, where l̄i and r̄i are as previously defined.

First, notice that robot 1 (resp. m) sets ẋ1(t) = 1 (resp.

ẋm(t) = −1) as soon as x1(t) = l1 (resp. xm(t) = rm).

Second, the function Token(i, j) guarantees that, when i, j ∈ R
communicate, exactly one robot among i, j maintains a zero

Algorithm 5: Minimum refresh time and latency team

trajectory (i-th robot)

Input : li := minv∈Vi
v, ri := maxv∈Vi

v,
dmax := maxj rj − lj , R := set containing the identifiers of
the robots in the same group as i;

Set : δi := (dmax −
P

j∈R dj)/2, diri ∈ {1,−1};

Require : optimal partition of the chain graph; li ≤ xi(0) ≤ ri;

1: while true do

2: case i = 1 and x1(t) = l1
3: dir1 := 1;

4: case i = m and xm(t) = rm

5: dirm := −1;

6: case (xi(t) = li and xi−1(t) 6= ri−1) or

(xi(t) = ri and xi+1(t) 6= li+1)

7: diri := 0;

8: case xi(t) = li and xi−1(t) = ri−1

9: if li ∈ V̄l then

10: receive τ from robot i − 1;
11: diri := Timer(τ);

12: else if li 6∈ V̄l then

13: diri := Token(i, i − 1);

14: case xi(t) = ri and xi+1(t) = li+1

15: τ := max{0, a-time + δi − c-time};
16: send τ to robot i + 1;

17: if ri ∈ V̄r then

18: diri := −Timer(δi + τ);

19: else if ri 6∈ V̄r then

20: diri := Token(i, i + 1);

21: ẋi(t) := diri;

Function Token(i,j)

1: case i > j if n-meet(i,j) is even then return 1

2: case i < j if n-meet(i,j) is odd then return -1

3: otherwise return 0

velocity and in an alternate way. Therefore, after a finite time

Ti, independent of the initial robots motion direction, the ve-

locities of the robots in R are such that, upon communication,

ẋi(t) = ẋi−1(t
−) and ẋi−1(t) = 0. In other words, after

Ti, the robots in R behave as a single robot sweeping the

segments between l̄i and r̄i. Finally, the function Timer(τ)
and the parameter τ guarantee that the communications at

the extreme viewpoints happen every 2dmax instants of time.

We conclude that the trajectory generated by Algorithm 5

converges in finite time to a team trajectory with minimum

refresh time and latency.

It should be observed that, differently from the team trajec-

tories presented in the previous sections, Algorithm 5 contains

a feedback procedure to synchronize the motion of the robots.

Our algorithm is independent of the initial configuration, and,

as it is shown in the next section, it is robust to a certain class

of robot failures.

VI. A CASE STUDY

Given the theoretical nature of this work, in this sec-

tion we propose a simulation study to show the effective-

ness of our procedures. For our simulations, we use the

Matlab R© simulation environment, and we model the robots
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Fig. 7. The figure shows a robotic roadmap with sensor coverage and com-
munication connectivity of a two floors building. Crossing edges corresponds
to corridors at different floors. A 10-partition of the roadmap is here reported.
The dashed edges are not traveled by any robot.
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Fig. 8. For the roadmap of Fig. 7, the team trajectory obtained with Algorithm
5 is reported here. The dashed lines denote a communication among two
neighboring robots. At time t = 200 the robots have synchronized their
motion, and from that moment up to time t = 300 the team trajectory has
minimum refresh time and latency. From time t = 300 up to time t = 400,
robot 7 undergoes a temporary failure, causing all the other robots to lose
synchronization. The team of robots synchronizes again when robot 7 resume
its motion. At time t = 620, the failure of robot 7 is detected by the remaining
robots, which compute and synchronize on a new partition.

as holonomic vehicles of zero dimension. The communication

edges and the motion paths are described by a given roadmap.

Consider the chain roadmap with 30 viewpoints in Fig. 7.

Suppose that 10 robots are assigned to the patrolling task.

In order to obtain a team trajectory with minimum refresh

time, an optimal 10-partition of the roadmap is computed

(cf. Fig. 7). Additionally, to obtain a minimum latency team

trajectory, each robot is assigned to a different cluster, its initial

position is chosen randomly inside its cluster, and its velocity

is initialized randomly. The motion of each robot is then

determined by Algorithm 5. The resulting team trajectory is in

Fig. 8, where the team of robots synchronize on a minimum

refresh time and latency team trajectory after a finite transient.

We now test the robustness of our synchronization proce-

dure. As first case study, we consider a temporary stopping

failure, in which a robot stops for a certain time interval.

For instance, suppose that robot 7 stops from time 300 up

to time 400 (cf. Fig. 8). Notice that, after the failure, each

robot j, with j < 7, gathers at rj , and each robot k, with

k > 7, gathers at lk waiting for a communication with the
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Fig. 9. For the roadmap in Fig. 7, 100 team trajectories have been generated
with Algorithm 5 for each value of σ2. The average refresh time and the
average latency are plotted as continuous lines in Fig. 9(a) and Fig. 9(b)
respectively. The bars indicate the minimum and the maximum value of
the refresh time and the latency, respectively. Notice that the average team
trajectory performance degrade gracefully with the noise variance.

corresponding neighboring robot. As soon as robot 7 resumes

its functionalities, the team of robots recover the desired

synchronization. Notice that the transient failure of robot 7
can be easily detected by its neighbors by means of a timer

mechanism with a predefined threshold.

As a second case study, we let the robots actuation be

affected by noise, so that the speed of the robots becomes

a random variable with a certain distribution.2 Precisely, let

ẋi = diri+wi be the equation describing the dynamics of robot

i, where wi is a zero mean Gaussian variable with variance

σ2 [(m/s)2]. We let σ2 ∈ {0, 0.02, . . . , 0.5} and we run 100
simulations for each possible value of σ2 on the roadmap of

Fig. 7. The refresh time and the latency of the team trajectories

obtained with Algorithm 5 are plotted in Fig. 9(a) and in

Fig. 9(b), respectively, as a function of σ2. Note that the

performance degrade gracefully with the noise magnitude.

As third and final case study, we consider the situation in

which a robot definitively stops.3 The remaining robots need

to compute a new optimal partition and to synchronize in order

to guarantee an optimal patrolling of the environment. Notice

that for the computation of such a partition by Algorithm 2 the

chain graph and the number of the robots is required. Suppose

that the failure of the robot 7 is detected at time 620 by the

well-behaving robots, and assume that each robot knows the

chain roadmap and the number of operative robots. Algorithm

2 and Algorithm 5 allow the team to synchronize on a new

team trajectory with minimum refresh time and latency. Notice

that the initial and the final partitions do not coincide.

VII. APPROXIMATION ALGORITHMS AND HEURISTICS FOR

GENERAL ROADMAPS

The problem of designing minimum refresh time and la-

tency team trajectories on a chain roadmap has been discussed.

In this section we consider the more general cases of tree

and cyclic roadmap, we characterize the computational com-

plexity of determining optimal trajectories, and we describe

two approximation methods with performance guarantees. The

results we are going to present are intended for a team of

more than one robot. Indeed, if only one robot is assigned to

the patrolling task, then a minimum refresh time trajectory

2The case in which a robot fails at seeing a neighboring robot for a certain
interval of time can be modeled analogously.

3The case of additional robots joining the team is handled in a similar way.
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Fig. 10. Two examples of tree roadmap. For the roadmap in Fig. 10(a) the
family of cyclic based trajectories does not contain a minimum refresh time
team trajectory. Instead, for the roadmap in Fig. 10(b) the family of partitioned
based trajectories does not contain a minimum refresh time team trajectory.

follows from the computation of the shortest tour through

the viewpoints, for which efficient approximation algorithms

already exist [28].

A. Minimum refresh time team trajectory on a tree roadmap

Let T = (V,E) denote an undirected, connected, and

acyclic roadmap (tree). Recall that a vertex path is a sequence

of vertices such that any pair of consecutive vertices in the

sequence are adjacent. A tour is a vertex path in which the

start and end vertices coincide, and in which every vertex of T
appears at least once in the sequence. A depth-first tour of T is

a tour that visits the vertices V in a depth-first order [29]. Let

DFT(T ) denote the length of a depth first tour of T . Notice that

the length of a depth-first tour of a connected tree equals twice

the sum of the length of the edges of the tree, and that any

depth-first tour is a shortest tour visiting all the vertices. We

now show that, for the case of tree roadmap, the set of cyclic-

based and partition-based trajectories described in [15] does

not contain, in general, a minimum refresh time trajectory.

Recall that in a cyclic-based strategy the robots travel at

maximum speed and equally spaced along a minimum length

tour visiting all the viewpoints. Consider the tree roadmap

of Fig. 10(a), and suppose that two robots are assigned to the

patrolling task. Clearly, the minimum refresh time is 2ε, while

the refresh time of a cyclic strategy equals 1 + ε. Consider

now the tree roadmap in Fig. 10(b), where the edges have

unit length, and assume that two robots are in charge of the

patrolling task. Observe that any partition of cardinality 2
contains a chain of length 2, so that, since only one robot

is assigned to each cluster, the minimum refresh time that can

be obtained is 4. Suppose, instead, that the robots visit the

vertices of the roadmap as specified in Table I, where x(t)
denotes the position of a robot at time t. Since the refresh

time of the proposed trajectory is 3, we conclude that neither

the cyclic-based nor the partition-based strategy may lead to

a minimum refresh time team trajectory on a tree roadmap.

TABLE I

Robot x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)
1 v1 v2 v4 v2 v3 v2 v1 · · ·
2 v2 v3 v2 v1 v2 v4 v2 · · ·

We now introduce some definitions. Let X be a team

trajectory on the tree roadmap T . We say that the edge

(vj , vz) ∈ E is used by X if there exists i ∈ {1, . . . ,m} and

(t1, t2) ∈ [0, RT(X)]2 such that xi(t1) = vj and xi(t2) = vz ,

and it is unused otherwise. Note that, because in a tree

there exists only one path connecting two vertices, the above

condition ensures that the edge (j, z) is traveled by the robot

i. Let Ē denote the set of unused edges, and let FT be the

forest obtained from T by removing the edges Ē from E,

i.e., the collection of vertex-disjoint subtrees {T1, . . . , Tk},

with Ti = (Vi, Ei), such that V = ∪k
i=1Vi and Ei ⊆ E,

for each i ∈ {1, . . . , k}. Let mi be the number of robots

that visit at least one vertex of Ti in the interval [0, RT(X)],
and note that mi > 0 in a finite refresh time trajectory. Let

M = {m1, . . . ,mk}. Notice that the same subtree collection

can be associated with different team trajectories. We say

that a team trajectory is efficient if its refresh time is the

smallest among all the team trajectories associated with the

same subtree collection.

Theorem VII.1 (Efficient team trajectory). Let (FT ,M) be

the subtree collection associated with the team trajectory X
on the tree roadmap T , where FT = {T1, . . . , Tk}, and M =
{m1, . . . ,mk}. Then, X is efficient if

RT(X) = max
j∈{1,...,k}

DFT(Tj)/mj .

Proof: Let i ∈ {1, . . . , k}, and let mi be the number of

robots assigned to Ti. Notice that the robots in Ti travel, in

total, at least DFT(Ti) to visit all the vertices. Since the speed

of the robots is bounded by 1, the smallest refresh time for

the vertices of Ti is DFT(Ti)/mi.

An efficient team trajectory, can be computed with the

following procedure. See Table I for an example.

Lemma VII.2 (Efficient team trajectory computation). Let

(FT ,M) be a subtree collection of a tree roadmap, where

FT = {T1, . . . , Tk}, and M = {m1, . . . ,mk}. An efficient

team trajectory is as follows: for each i ∈ {1, . . . , k},

(i) compute a depth-first tour τi of Ti,

(ii) equally space mi robots along τi, and

(iii) move the robots clockwise at maximum speed on τi.

Proof: Since every vertex of Ti ∈ FT appears at least

once in a depth first tour τi of Ti, and the robots move with

maximum speed and equally spaced along τi, every vertex is

visited at most every DFT(Ti)/mi. The statement follows.

Let P (m) be the partition set of m, i.e., the set of all the

sequences of integers whose sum is m. The following problem

is useful to characterize the complexity of designing minimum

refresh time trajectories on a tree roadmap.

Problem 2 (Optimal subtree collection). Let T be a

tree roadmap and let m be the number of robots.

Find a subtree collection (FT ,M) that minimizes

maxj∈{1,...,|FT |} DFT(Tj)/mj subject to M ∈ P (m)
and |FT | = |M |.

Lemma VII.3 (Equivalent problem). For the case of a tree

roadmap, the Team refresh time problem and the Optimal

subtree collection problem are equivalent.

Proof: As a consequence of Theorem VII.1, the min-

imum refresh time on a tree roadmap T can be written

as min(FT ,M) maxj∈{1,...,k} DFT(Tj)/mj , where (F,M) is a
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Fig. 11. The figure shows a chain roadmap associated with the cyclic
roadmap of Fig. 1. Notice that the cycles in Fig. 1 have been broken.
Moreover, 3 vertices (3 edges) of Fig. 1 are repeated twice in the chain.

subtree collection of T , and |M | = |FT | = k ≤ m. It follows

that a solution to Problem 1 can be derived in polynomial

time from a solution to Problem 2 by using the procedure

described in Lemma VII.2. Suppose now we have a solution

to Problem 1. Then an optimal subtree collection follows from

the identification of the unused edges. We conclude that the

two optimization problems are equivalent.

We now state our main result on the design of minimum

refresh time team trajectory on a tree roadmap.

Theorem VII.4 (Computing a minimum refresh time team

trajectory on a tree). Let T be a tree roadmap with n vertices,

and let m be the number of robots. A minimum refresh time

team trajectory on T can be computed in O((m− 1)!n) time.

Proof: Recall from [30] that an optimal subtree collection

can be computed in O((m − 1)!n). Then, by using Lemma

VII.3 and Lemma VII.2, the claimed statement follows.

As a consequence of Theorem VII.4, the problem of design-

ing minimum refresh time team trajectories on a tree roadmap

is computationally easy for any finite number of robots. In

our design procedure, we first compute an optimal subtree

collection of the given tree, and then we schedule the robots

trajectory according to Lemma VII.2.

B. Minimum refresh time team trajectory on a cyclic roadmap

In this section we propose two approximation methods for

the Team refresh time problem in the case of a cyclic, i.e.,

not acyclic, roadmap. These solutions are obtained from a

transformation of the cyclic roadmap into an acyclic roadmap.

Let G = (V,E), with |V | = n, be an undirected and

connected roadmap. Note that there exists an open tour τ with

at most 2n−4 edges that visits all the vertices.4 We construct

a chain roadmap Γ from τ by doubling its repeated vertices

and edges, so that Γ has at most 2n − 3 vertices and at most

2n − 4 edges, and such that the length of the i-th edge of Γ
equals the length of the i-th edge of τ (cf. Fig. 11). Our first

approximation method consists of applying Algorithm 5 to an

optimal m-partition of Γ.

Theorem VII.5 (Performance ratio). Let G be a connected

roadmap, let n be the number of vertices of G, and let γ be

ratio of the longest to the shortest length of the edges of G.

Let RT∗ be the minimum refresh time on G. Let τ be an open

4An open tour with at most 2n− 4 edges that visits all the vertices can be
constructed starting from a leaf of a spanning tree of G.
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Fig. 12. A tree roadmap and two corresponding chain roadmaps. If the
number of robots is 4, then the performance ratio RT∗

Γ/RT∗ grows with ε−1.

tour with 2n − 4 edges that visits all the n vertices, and let

Γ be the chain roadmap associated with τ . Let RT∗
Γ be the

minimum refresh time on Γ. Then

RT∗
Γ ≤

(

n − 2

n

)

8γRT∗.

Proof: Let w be the shortest length of the edges of G,

and note that the length of Γ is upper bounded by 2(n−2)γw.

It follows that RT∗
Γ ≤ 4(n−2)γw

m
. Since m < n by assumption,

some robots need to move along G for all the viewpoints to be

visited. Because each robot can visit only a vertex at a time,

at least
⌈

n
m

− 1
⌉

steps are needed to visit all the vertices of

G, and therefore RT∗ ≥
⌈

n
m

− 1
⌉

w ≥ 1
2

n
m

w. By taking the

ratio of the two quantities the statement follows.

It should be noticed that, when γ grows, the performance

of our procedure might degrade. For instance, suppose that

the roadmap is as in Fig. 12, and suppose that 4 robots

are assigned to the patrolling task. As long as ε < 1, a

minimum refresh time strategy requires one robot to patrol

the viewpoints {v1, v2}, while the second, third, and fourth

robot stay on the viewpoints v3, v4, and v5 respectively. It

follows that RT∗ = 2ε. On the other hand, an optimal m-

partition of any chain graph associated with a tour that visits

all the viewpoints has dimension at least 1. Consequently, the

refresh time of the team trajectory obtained with Algorithm 5

equals 2, and the ratio RT∗
Γ/RT∗ grows proportionally to ε−1.

We next describe a polynomial time constant factor ap-

proximation algorithm for the minimum refresh time problem.

Given a roadmap G = (V,E) and a positive integer k < |V |,
we define a path cover of cardinality k as the collection of

paths {p1, . . . , pk} such that V ⊆
⋃k

i=1 pi. Let the cost of a

path equal the sum of the lengths of its edges. The min-max

path cover problem asks for a minimum cost path cover for the

input graph, where the cost of a cover equals the maximum

cost of a path in the cover. The following result is known.

Theorem VII.6 (Min-max path cover [7]). There exists a 4-

approximation polynomial algorithm for the NP-hard min-max

path cover problem.

Following Theorem VII.6, given a graph G, there exists a

polynomial time algorithm that computes a path cover of G
with cost at most 4 times greater than the cost of any path

cover of G. We now state our approximation result for the

NP-hard Team refresh time problem.

Lemma VII.7 (8-approximation refresh time). There exists an

8-approximation polynomial algorithm for the NP-hard Team

refresh time problem.
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Fig. 13. The picture shows the trajectories of 7 robots for the patrolling of
a part of the UCSB campus. The viewpoints (red circles) are chosen so as to
provide sensor coverage of the whole area. For the design of the patrolling
trajectory, a roadmap is first constructed as described in Section II. Then, a
path covering of cardinality 7 is computed with the procedure in [7], and
each robot is assigned a different path. Finally, the trajectory of each robot
consists in sweeping at maximum speed the tour obtained by shortcutting the
assigned path. The refresh time of the proposed team trajectory is proven to
be within a factor of 8 of the minimum refresh time for the given roadmap.

Proof: Let {p1, . . . , pm} be a 4-approximation path cover

of the graph G. Note that the length of each path is within

4RT∗. Indeed, in a minimum refresh time team trajectory

starting at time 0 and with unitary velocity, every vertex is

visited within time RT∗. Let X be a team trajectory obtained

by letting robot i sweep at maximum speed the path pi.

Clearly, RT(X) ≤ 8RT∗. Because of Theorem VII.6, the team

trajectory X can be computed in polynomial time.

Following Lemma VII.7, for any given roadmap and any

number of robots, a team trajectory with refresh time within a

factor of 8 of the optimal refresh time can be constructed by

computing a path covering of the roadmap, and by assigning

a different path to each robot. An example is in Fig. 13, a

movie of which is included in the multimedia material.

Remark 4 (Improving the team trajectory). Several existing

heuristics can be used to improve upon the trajectories in Fig.

13. For instance, since the robots move in a metric space,

shortcutting techniques may be applied [31]. Because these

heuristics do not guarantee an improvement of the optimality

gap of our trajectories, they are not considered in this work,

and they are left as the subject of future investigation.

VIII. CONCLUSION AND FUTURE WORK

The design of team trajectories to cooperatively patrol an

environment has been discussed. After defining the problem

and the performance criteria, we analyze the computational

complexity of the design problem as a function of the shape

of the environment to be patrolled. For the case of a chain

environment, we describe a polynomial algorithm to compute

minimum refresh time and latency team trajectories. For the

case of a tree environment, under the technical assumption of

a constant number of robots, we identify a polynomial time

algorithm to compute minimum refresh time team trajectories.

Finally, the general case of cyclic environment is shown to be

NP-hard, and two approximation algorithms with performance

guarantees have been proposed.

Interesting aspects requiring further investigation include

a throughout study of the latency optimization problem for

cyclic roadmaps, the development of more efficient approx-

imation algorithms, and the introduction of a more general

communication framework, in which the robots are allowed

to communicate while traveling the edges of the roadmap.

The study of average performance criteria and the extension

to dynamically changing environments are also of interest.

Finally, an hardware implementation of our algorithms would

further strengthen our theoretical findings.
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