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Abstract

Many observations about coalgebras were inspired by comparable situations
for algebras. Despite the prominent role of prime algebras, the theory of a cor-
responding notion for coalgebras was not well understood so far. Coalgebras C
over fields may be called coprime provided the dual algebra C∗ is prime. This
definition, however, is not intrinsic - it strongly depends on the base ring being
a field. The purpose of the paper is to provide a better understanding of related
notions for coalgebras over commutative rings by employing traditional methods
from (co-)module theory, in particular (pre-)torsion theory.

Dualising classical primeness condition, coprimeness can be defined for mod-
ules and algebras. These notions are developed for modules and then applied
to comodules. We consider prime and coprime, fully prime and fully coprime,
strongly prime and strongly coprime modules and comodules. In particular we
obtain various characterisations of prime and coprime coalgebras over rings and
fields.

Key Words: (co-)prime modules and comodules, coprime coalgebras, dual
algebras.
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1 Preliminaries

In the category of left R-modules there are various notions of prime objects which
generalise the well known notion of a prime associative (commutative) ring R. For
the notion of primeness of modules we refer to [18, 20].

Unless explicitely stated, in the first sections R is an associative ring with unit,
M usually will be a left R-module. The category of left R-modules is denoted as RM.
The morphisms are written on the right side of the module and if needed we use the
� for the composition of mappings written on the right side. The usual composition
is denoted by ◦ and thus (u)f � g is equal to g ◦ f(u) when writing the maps on the
left side.

For two R-modules M , N , we say N is subgenerated by M if N is isomorphic to a
submodule of an M -generated module. The full subcategory of RM whose objects are
the modules subgenerated by M is denoted by σ[M ]. For a family {Nλ}Λ of modules
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in σ[M ], the product in σ[M ] exists and is given by
∏M

Λ Nλ := Tr(σ[M ],
∏

Λ Nλ). For
more details on the notions of generators, cogenerators, subgenerators and σ[M ], see
[19].

For modules over prime rings recall the following facts.

1.1. Proposition. Let R, S be rings and M be an (R,S)-bimodule. Then the follow-
ing assertions are equivalent:

(a) R = R/AnnR(M) is a prime ring;
(b) for any submodule K of M , AnnR(K) = AnnR(M) or AnnR(M/K) = AnnR(M);
(c) for any (R,S)-subbimodule K of M , AnnR(K) = AnnR(M) or AnnR(M/K) =

AnnR(M).

Let S := EndR(M), K ⊂ M a submodule and I ⊂ S a left ideal. Denoting by
πK : M → M/K the canonical projection, we put

AnnS(K) := {f ∈ S | (K)f = 0} = πK �HomR(M/K,M),

Ker I :=
⋂
{Ker f | f ∈ I}.

We always have K ⊆ Ker AnnS(K) and I ⊆ AnnS(Ker I).
For equality extra conditions on a module M are needed (see [19, 28.1]).

1.2. Lemma. Let M be a module and S = EndR(M).

(i) For any submodule K ⊆ M ,

Ker AnnS(K) = Ker πK �HomR(M/K,M) = K

if and only if M is a self-cogenerator module.
(ii) If M is self-injective, then for every finitely generated right ideal I ⊆ S,

HomR(M/Ker I,M) = I.

1.3. ∗-conditions. We formulate the following conditions for an R-module M :

(∗) For any non-zero submodule K of M , AnnR(M/K) 6⊂ AnnR(M).
(∗fi) For any non-zero fully invariant submodule K of M , AnnR(M/K) 6⊂ AnnR(M).
(∗∗) For any proper (fully invariant) submodule K of M , AnnR(K) 6⊂ AnnR(M).

1.4. (Co-)retractable modules. A module M is called (fi-)retractable if for any
non-zero (fully invariant) submodule K of M and S = EndR(M), HomR(M,K) 6= 0.

Dually, M is called (fi-)coretractable if for any proper (fully invariant) submodule
K of M , HomR(M/K,M) 6= 0.

Some relevance of these notions can be seen from the following observations which
are easy to prove.

1.5. Proposition. Let M be a coretractable R-module and S = EndR(M). The
following are equivalent:

(a) S has no zero-divisor;
(b) for any proper submodule K of M , HomR(M,K) = 0;
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(c) for any 0 6= f ∈ S, (M)f = M (any non-zero endomorphism is an epimor-
phism).

1.6. Proposition. Let M be a fi-coretractable R-module and denote S = EndR(M).
The following are equivalent:

(a) S is a prime ring;
(b) for any proper fully invariant submodule K of M , HomR(M,K) = 0;
(c) for any 0 6= f ∈ S, (M)fS = M ;
(d) for any ideal 0 6= I ⊂ S, MI = M .

1.7. Proposition. Let M be a retractable R-module and S = EndR(M). The follow-
ing are equivalent:

(a) S has no zero-divisor;
(b) for any non-zero submodule K of M , HomR(M/K,M) = 0;
(c) for any 0 6= f ∈ S, Ker f = 0 (any non-zero endomorphism is a monomor-

phism).

1.8. Proposition. Let M be a fi-retractable R-module and S = EndR(M). The
following are equivalent :

(a) S is a prime ring.
(b) For any non-zero fully invariant submodule K of M , HomR(M/K,M) = 0.
(c) For any 0 6= f ∈ S, Ker Sf = 0.
(d) For any ideal 0 6= I ⊂ S, Ker I = 0.

1.9. Corollary. Let M be a retractable and coretractable R-module, S = EndR(M).
The following are equivalent:

(a) S has no zero-divisor.
(b) M is a simple module.
(c) S is a division ring.

The following observation from [13, Lemma 17] will be useful.

1.10. Lemma. Let M,N be R-modules and f ∈ HomR(M,N) an epimorphism.

(i) If Ker f is fully-invariant and L is a fully-invariant submodule of N , then
(L)f−1 is a fully-invariant submodule of M .

(ii) If M is self-projective and U is a fully-invariant submodule of M , then (U)f is
a fully-invariant submodule of N .

2 Prime and coprime modules

A module M is called prime if for every non-zero fully-invariant submodule K of M ,
AnnR(K) = AnnR(M). The following characterisations are well-known.

2.1. Prime modules. For a module M the following are equivalent:

(a) M is a prime module;
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(b) AnnR(K) = AnnR(M) for any non-zero submodule K of M ;
(c) R/AnnR(M) is cogenerated by K for any non-zero submodule K of M ;
(d) R/AnnR(M) is cogenerated by K for any non-zero fully-invariant submodule K

of M .

The next result is an obvious modification of 13.1 of [20].

2.2. Proposition. Let M be an R-module, S = EndR(M), and R := R/AnnR(M).

(i) If M is prime, then R is a prime ring.
(ii) If R is a prime ring and M satisfies (∗fi), then M is prime.
(iii) If RM is prime and satisfies (∗fi), then MS is prime (and S is a prime ring).

A faithful module over a prime ring need not be prime:
⊕

n∈N Z/nZ is a faithful
Z-module but clearly is not prime.

2.3. Lemma. Let {Mλ}Λ be a family of faithful modules, Λ an index set. Then∏
Λ Mλ is prime if and only if each Mλ is prime.

Proof. (⇒) Let
∏

Λ Mλ be prime. Consider any submodule U ⊂ Mµ ⊂
∏

Λ Mλ. Then
AnnR(U) = AnnR(

∏
Λ Mλ) = 0.

(⇐) Let each Mλ be prime and V ⊂
∏

Λ Mλ. There is a non-zero canonical
projection (V )πλ0 ⊂ Mλ0 , for some λ0 ∈ Λ. Since (V )πλ0 is faithful, V is also faithful.
tu

2.4. Corollary. If R is a prime ring, then submodules of R-cogenerated modules are
prime. In particular, every projective module is prime.

Primeness of M implies the primeness of projective modules in σ[M ].

2.5. Proposition. Let M be prime. Then

(i) every M -cogenerated module is prime;
(ii) every projective module P in σ[M ] is prime.

Proof. (i) According to Lemma 2.3, MΛ is prime and hence any M -cogenerated mod-
ule is prime.

(ii) Any projective module P in σ[M ] is isomorphic to a submodule of some M (Λ),
Λ an index set, hence P is prime. tu

2.6. Proposition. Let M be a projective module in σ[M ]. If every non-zero submod-
ule of M cogenerates M , then EndR(M) is a prime ring.

Proof. Let J ⊂ S := EndR(M) be a finitely generated proper left ideal. By assump-
tion, M is MJ-cogenerated, i.e., there is a short exact sequence 0 → M → (MJ)Λ.
Applying HomR(P,−) to this exact sequence yields the commutative diagram

0 // HomR(P, P ) //

=

��

HomR(P, (PJ)Λ)

'
��

0 // S // JΛ,
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since HomR(P, (PJ)Λ) = HomR(P, (PJ))Λ and, by projectivity, HomR(P, PJ) = J
(see [19, 18.4]). Thus J is a faithful left S-module, i.e., EndR(P ) is a (left) prime ring.
tu

As a consequence, we obtain Proposition 1.3 of [10] :

2.7. Corollary. Let P be a projective R-module. If the ring R is prime, then EndR(P )
is prime.

2.8. Proposition. Let M be a module with Soc(M) 6= 0. If M is prime, then
R := R/AnnR(M) is a left primitive ring. If, in addition, R is commutative, then R
is a field.

Proof. By assumption, there is a simple R-submodule K of M which is faithful, thus
R is left primitive. If R is commutative and primitive, then R is a field. tu

Dual to prime modules, a module M is called coprime if for every proper fully-
invariant submodule K of M , AnnR(M/K) = AnnR(M) (e.g., [2]).

2.9. Coprime modules. For a module M the following are equivalent:

(a) M is a coprime module.
(b) AnnR(M/K) = AnnR(M) for any proper submodule K of M .
(c) R/AnnR(M) is cogenerated by M/K for any proper submodule K of M .
(d) R/AnnR(M) is cogenerated by M/K for any proper fully-invariant submodule

K of M .

Proof. (a) ⇔ (b) Let K be a submodule of M and assume I := AnnR(M/K) 6⊂
AnnR(M). Then 0 6= IM ⊂ K, and IM is fully invariant since (IM)S = I(MS) =
IM . By (a), I ⊂ AnnR(M/IM) = AnnR(M), a contradiction.

(b) ⇔ (c) and (a) ⇔ (d) are obvious. tu

Any module which has no proper fully invariant submodule is coprime.

2.10. Lemma. Let M be an R-module.

(i) If M is coprime, then R is prime.
(ii) If R is prime and M satisfies (∗∗), then M is coprime.

Proof. (i) Assume M to be coprime, i.e., AnnR(M/K) = AnnR(M) for every proper
(fully-invariant) submodule K ⊂ M . Then by Proposition 1.1, R is prime.

(ii) By (∗∗), AnnR(K) 6= AnnR(M) for any proper (fully-invariant) submod-
ule K ⊂ M . Now AnnR(K)AnnR(M/K) ⊆ AnnR(M) and R being prime implies
AnnR(M/K) = AnnR(M), hence M is coprime. tu

The example M = ZZ illustrates that without condition (∗∗), assertion (ii) in the
lemma above does not hold.
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2.11. Prüfer groups. For any prime number p, the p-component of Q/Z is the
Prüfer group Zp∞ . Any nonzero factor module Zp∞/K of Zp∞ is isomorphic to Zp∞

itself. Thus Zp∞ is coprime. Moreover, a proper submodule K ⊂ Zp∞ is of the form
K = Z{ 1

pk + Z} for some k ∈ N, thus it is not faithful. Hence Zp∞ is not prime.

The coprimeness of a module is preserved by some factor module.

2.12. Proposition. If M is coprime and K is a proper fully invariant submodule of
M , then M/K is coprime.

Proof. Take any proper fully invariant submodule U/K of M/K, where K ⊂ U ⊂ M
are proper submodules and K is fully invariant. By Lemma 1.10, U is fully invariant
in M . Thus (M/K)/(U/K) ' M/U is faithful, i.e.,

AnnR((M/K)/(U/K)) = AnnR(M/U) = AnnR(M) = AnnR(M/K).

tu

The following observation is dual to Proposition 2.8 for prime modules.

2.13. Proposition. If M is coprime and Rad(M) 6= M , then:

(i) R := R/AnnR(M) is a left primitive ring.
(ii) If R is commutative, then R is a field.

Proof. (i) By assumption there is a maximal submodule K in M . Consider the fully in-
variant submodule Rej(M,M/K) ⊂ K 6= M . By coprimeness of M , M/Rej(M,M/K)
is a faithful R-module and is cogenerated by the simple module M/K (see 14.5 of [19]).
Thus M/K is also a faithful R-module. Thus R has a faithful simple left module, i.e.,
R is a left primitive ring.

(ii) If R is commutative and primitive, then R is a field. tu

Without the condition Rad(M) 6= M , Proposition 2.13 does not hold. For example,
the Prüfer group Zp∞ is a coprime Z-module which has no maximal submodules.

3 Fully prime and coprime modules

We call a module M fully prime if for any non-zero fully invariant submodule K of
M , M is K-cogenerated.

This notion can be described using a product of fully invariant submodules K, L
of M studied by Raggi et al. in [13] which is defined by

K ∗M L := KHomR(M,L).

For not necessarily fully invariant submodules this is also considered in Bican et al.
[4]. Their definition of ”prime modules” is more restrictive than the one we consider
here. However, the proof of Proposition 2.3 of [4] can be modified to yield:

3.1. Fully prime modules. The following are equivalent for an R-module M :
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(a) M is a fully prime module.
(b) Rej(M,K) = 0 for any non-zero fully-invariant submodule K ⊂ M .
(c) K ∗M L 6= 0 for any non-zero fully-invariant submodules K, L ⊂ M .
(d) Rej(−,M) = Rej(−,K) for any non-zero fully-invariant submodule K of M ,

i.e., any M -cogenerated module is also K-cogenerated.

Based on the ∗M -product we define

3.2. Fully prime submodules. A fully invariant submodule N of M is called fully
prime in M if for any fully invariant submodules K, L of M ,

K ∗M L ⊆ N implies K ⊆ N or L ⊆ N .

Thus the module M is fully prime if the zero submodule is fully prime in M .

Proposition 18 of [13] provides a relationship between a fully prime submodule N
of M and the factor module M/N . As a special case, consider R as a left R-module
and let I, J be ideals of R. Then I ∗RJ = IJ . Since every ideal of R is a fully invariant
R-submodule, we get:

3.3. Proposition. The following are equivalent for a two-sided ideal I :

(a) R/I is a prime ring.
(b) I is a fully prime submodule in R.
(c) I is a prime ideal.

In general prime modules need not be fully prime. For the following relationship
the proof of [20, Proposition 13.2] can be adopted.

3.4. Proposition. For an R-module M with (∗fi), the following are equivalent :

(a) M is prime and fi-retractable.
(b) M is fully prime.

Notice that for any ring R, EndR(R) ' R and as a left R-module, R satisfies (∗fi)
and is fi-retractable.

3.5. Corollary. For the ring R the following assertions are equivalent:

(a) R is a prime ring.
(b) RR is a prime module.
(c) RR is a fully prime module.

3.6. Proposition. Let M be a module with Soc(M) 6= 0. If M is fully prime, then

(i) M is cogenerated by a simple module.
(ii) R := R/AnnR(M) is a left primitive ring.

Proof. (i) Let K be a simple submodule of M . Then Tr(K, M) is a fully invariant
submodule and hence M is Tr(K, M)-cogenerated. Tr(K, M) is K-cogenerated, and
hence M is K-cogenerated.

(ii) R is cogenerated by M and hence by the simple module K (from (i)). tu
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We call a module M fully coprime if for any proper fully invariant submodule K
of M , M is M/K-generated.

To study these modules an inner coproduct of fully invariant submodules K, L ⊂
M , is defined by putting

K :M L :=
⋂
{(L)f−1 | f ∈ EndR(M),K ⊆ Kerf}

= Ker πK �HomR(M/K,M) � πL,

where πK : M → M/K and πL : M → M/L denote the canonical projections. K :M L
is also a fully invariant submodule (see [14]).

Such a coproduct is considered in Bican et al. [4] for any pair of not necessary
fully invariant submodules and they derive ”coprime modules” from this coproduct.

We can characterise (our) fully coprime modules similarly to [4, Proposition 4.3].

3.7. Fully coprime modules. The following are equivalent for an R-module M :

(a) M is a fully coprime module;
(b) If K :M L = M , then K = M or L = M , for any fully invariant submodules

K, L of M ;
(c) K :M L 6= M for any proper fully invariant submodules K, L of M ;
(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant submodules K of M , i.e.

any M -generated module is also M/K-generated.

Proof. (a)⇔(d) and (b)⇔(c) are trivial.
(c)⇒(a) Let K ⊂ M be a proper fully invariant submodule such that

N = Tr(M/K,M) = (M) πK �HomR(M/K,M) 6= M.

Then 0 = (M) πK �HomR(M/K,M) � πN and K :M N = M .
(d)⇒(c) Let K, L be any proper fully invariant submodules of M and assume

(M) πK �HomR(M/K,M) � πL = 0. Then M = Tr(M,M) = Tr(M/K,M) ⊂ L. tu

3.8. Fully coprime rings. For the ring R the following are equivalent :

(a) RR is coprime;
(b) RR is fully coprime;
(c) R is a simple ring.

3.9. Lemma. Let M be fully coprime, S = EndR(M). Then M is indecomposable as
(R,S)-bimodule.

Proof. Assume M = U ⊕ V where U, V are nonzero (R,S)-subbimodules of M . Then
HomR(V,U) = 0. Since M is fully coprime, M is generated by M/U ' V . It means
V also generates U contradicting HomR(V,U) = 0. tu

3.10. Corollary. Let M be a fully coprime module. If M is semilocal, then M is
homogeneous semisimple.
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Proof. Rad(M) is a fully invariant submodule of M , hence M is generated by M/Rad(M)
which is semisimple. Thus M is semisimple and now apply Lemma 3.9. tu

A fully invariant submodule N ⊂ M is called fully coprime in M if for any fully
invariant submodules K, L ⊂ M , N ⊆ K :M L implies N ⊂ K or N ⊂ L. By 3.7, M
is fully coprime if and only if M is fully coprime in M . An immediate consequence of
the definition is (compare with Proposition 3.4):

3.11. Proposition. If a module M is fully coprime, then M is coprime and fi-
coretractable.

In view of later use for coalgebras we define another type of coproduct, the

3.12. Wedge product. For two proper fully invariant submodules K, L ⊂ M put

K ∧M L := Ker πK �HomR(M/K,M) � πL �HomR(M/L, M)
= Ker (AnnS(K) �AnnS(L)),

a fully invariant submodule of M . Obviously, K :M L ⊆ K ∧M L. If M is a self-
cogenerator, then equality holds.

3.13. Proposition. Consider the following assertions for a module M :

(a) M is a fully coprime module;
(b) if K ∧M L = M , then K = M or L = M , for any fully invariant submodules

K, L of M ;
(c) K ∧M L 6= M for any proper fully invariant submodules K, L of M ;
(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant submodules K of M ,

i.e., an M -generated module is also an M/K-generated module.

Then we have (a)⇔(d), (b)⇔(c) and (c)⇒(a).
If M is a self-cogenerator, then (d)⇒(c) and

K :M L = K ∧M L.

Proof. (c)⇔(b) is trivial and (a)⇔(d) is known (see 3.7).
(c)⇒(a) If K:ML = M , then K ∧M L = M .
(d)⇒(c) Assume M to be a self-cogenerator. Let K, L be proper fully invariant

submodules of M and assume

(M) πK �HomR(M/K,M) � πL �HomR(M/L, M) = 0.

Since M is a self-cogenerator, we obtain by Lemma 1.2,

(M) πK �HomR(M/K,M) ⊂ Ker πL �HomR(M/L, M) = L,

and M = Tr(M,M) = Tr(M/K,M) ⊆ L, a contradiction. tu

3.14. Proposition. Let M be a self-cogenerator and S = EndR(M). If S is prime,
then M is fully coprime.
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Proof. Let K, L be proper fully invariant submodules of M and M = K :M L. Then
(M) πK � HomR(M/K,M) � πL � HomR(M/L, M) = 0. Since S is prime, πK �
HomR(M/K,M) = 0 or πL �HomR(M/L, M) = 0. Hence K = M or L = M since M
is a self-cogenerator. tu

Let I, J be ideals in EndR(M) and put Ker I = K, Ker J = L. Then

I ⊆ HomR(M/K,M), J ⊆ HomR(M/L, M). (1)

For the converse of Proposition 3.14 the equalities in (1) are of interest.

3.15. Proposition. Let M be a self-cogenerator and S = EndR(M).

(i) If M is self-injective and fully coprime, then S is prime and M is coprime as a
right S-module.

(ii) If M is coprime as a right S-module, then M is fully coprime.

Proof. (i) Let M be a fully coprime module and I, J finitely generated right ideals in S
with IJ = 0. Put K = Ker I and L = Ker J . Then by Lemma 1.2, Hom(M/K,M) =
I and Hom(M/L, M) = J and K :M L = M . Then M = K or M = L, thus I = 0
or J = 0. Hence the ring S is prime. Since RM is fi-coretractable, M is coprime as a
right S-module.

(ii) We assume that MS is coprime, hence S is prime. Then the assertion follows
from Proposition 3.14. tu

3.16. Corollary. If M is a self-injective self-cogenerator and S = EndR(M), then
the following assertions are equivalent:

(a) M is fully coprime;
(b) M is coprime as a right S-module;
(c) S is a prime ring.

Proof. The equivalence holds by the Propositions 3.14 and 3.15. tu

3.17. Proposition. Let M be a fully coprime module with Rad(M) 6= M . Then:

(i) M is generated by a module that is cogenerated by a simple module;
(ii) for any projective module P in σ[M ], Rad(P ) = 0.
(iii) R := R/AnnR(M) is a left primitive ring.

Proof. (i) By assumption there is a maximal submodule K in M . Consider the fully
invariant submodule Rej(M,M/K) ⊂ K 6= M . By assumption M is generated by
M/Rej(M,M/K) which is cogenerated by the simple module M/K.

(ii) By (i), P is subgenerated by M/Rej(M,M/K). Hence P is subgenerated by a
product Q of copies of M/K, and P ⊂ Q(Λ), for some index Λ (see [19, 18.4]). Thus
P is M/K-cogenerated and Rad(P ) = 0.

(iii) By Proposition 2.13, since M fully coprime implies that M is coprime. tu
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4 Strongly prime and coprime modules

A module M is called strongly prime (in Beidar-Wisbauer [3]) if for any non-zero fully
invariant submodule K ⊆ M , M ∈ σ[K]. The regular module RR is strongly prime
if and only if R is a left strongly prime ring in the sense of Handelman-Lawrence [9].
See [20, 13.3, 13.6] for details.

4.1. Proposition. Let M be a strongly prime module. Then

(i) every M -cogenerated module in σ[M ] is strongly prime;
(ii) every projective module in σ[M ] is strongly prime;
(iii) for every finitely generated projective module P in σ[M ], EndR(P ) is strongly

prime.

Proof. (i) It is easy to see that MΛ is strongly prime for any index set Λ. Let U
be a non-zero (fully invariant) submodule of an M -cogenerated module N . Then
N ⊂ MΛ ∈ σ[U ].

(ii) Consider a projective module P in σ[M ]. Then P ' X ⊆ M (Λ) for some Λ
and hence P is strongly prime.

(iii) Let J ⊂ EndR(P ) be a proper finitely generated left ideal. Since P is strongly
prime (by ii), PJ is a subgenerator in σ[P ] and hence P ⊂ (PJ)k, k ∈ N. Since P is
finitely generated projective, HomR(P, PJ) = J (see [19, 18.4]) and

EndR(P ) ⊂ HomR(P, (PJ)k) ' HomR(P, (PJ))k = Jk

showing that EndR(P ) is (left) strongly prime. tu

4.2. Proposition. Let M be a strongly prime module with Soc(M) 6= 0. Then

(i) M is homogeneous semisimple;
(ii) R := R/AnnR(M) is primitive.

Proof. (i) Let K be a simple submodule of M . Then Tr(K, M) is a fully invariant
submodule and hence M ∈ σ[Tr(K, M)]. Thus M is K-generated, i.e., homogeneous
semisimple.

(ii) It is a consequence of Proposition 2.8, since M is strongly prime implies M is
prime. tu

For example, modules with descending chain condition for cyclic (finitely gener-
ated) submodules have non-zero socle. Thus strongly prime modules with this prop-
erty are homogeneous semisimple.

We call a module M strongly coprime if for any proper fully invariant submodule
K ⊂ M , M ∈ σ[M/K].

4.3. Proposition. If M is a strongly coprime module and K is a proper fully invari-
ant submodule of M , then M/K is strongly coprime.

Proof. Let K be a fully invariant submodule of M . We take any proper fully invariant
submodule U/K of M/K, where K ⊂ U ⊂ M . By Lemma 1.10, U is fully invariant.
Thus M ∈ σ[M/U ] and M/K ∈ σ[M/U ] = σ[(M/K)/(U/K)]. tu
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4.4. Proposition. Let M be a strongly coprime and semilocal module. Then M is
homogeneous semisimple.

Proof. Rad(M) is a fully invariant submodule of M , hence M is subgenerated by
M/Rad(M) which is semisimple. Thus M is semisimple and hence every module in
σ[M ] is injective. Now a proof similar to the proof of Lemma 3.9 shows that M is
homogeneous semisimple. tu

4.5. Proposition. Let M be a module with Rad(M) 6= M . If M is strongly coprime,
then

(i) M is subgenerated by a product of copies of some simple module;
(ii) For any projective module P in σ[M ], Rad(P ) = 0;
(iii) R := R/AnnR(M) is primitive.

Proof. (i) By assumption there is a maximal submodule K in M . Consider the fully in-
variant submodule Rej(M,M/K) ⊂ K 6= M . By assumption M is M/Rej(M,M/K)-
subgenerated, where M/Rej(M,M/K) is cogenerated by the simple module M/K
(product in σ[M ]). Thus M is (M/K)Λ-subgenerated for some index set Λ.

(ii) Since M is strongly coprime and Rad(M) is a fully invariant submodule of M ,
M ∈ σ[M/Rad(M)]. By definition of the radical, M/Rad(M) is cogenerated by simple
modules (see 14.5 of [19]). The projectivity of P implies that P ⊂ (M/Rad(M))(Λ)

for some index set Λ, and hence Rad(P ) = 0.
(iii) By Proposition 2.13, since M strongly coprime implies that M is coprime. tu

M is called duprime if for any fully-invariant submodule K of M , M ∈ σ[K] or
M ∈ σ[M/K] (see [17]). By definition it is clear that any strongly coprime module is
duprime. The converse is true for self-injective modules.

4.6. Proposition. If M is a self-injective R-module, then:

(i) M is duprime if and only if it is strongly coprime.
(ii) The following are equivalent :

(a) M is fully coprime;
(b) M is strongly coprime;
(c) M is duprime.

Proof. (i) Let K be a proper fully invariant submodule of M . By assumption, M ∈
σ[K] or M ∈ σ[M/K]. If M ∈ σ[K] then M is K-generated, since M is self-injective.
But Tr(K, M) = KEndR(M) = K ⊂ M , hence M is not K-generated, i.e., M 6∈ σ[K].
Thus M ∈ σ[M/K].

(ii) (a)⇔(b) It is clear that if M/K generates M then M ∈ σ[M/K]. Now let
M/K be a subgenerator of M . Since M is injective, it is M/K-generated. This is
based on the fact that any injective module is generated by subgenerators in σ[M ].

(ii) (b)⇒(c) holds by definition, and (c)⇒(b) by (i). tu
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5 Comodules and modules

Under weak conditions the category of comodules of an R-coalgebra C, R a com-
mutative ring, can be considered as a module category over the dual algebra C∗ =
HomR(C,R). Hence the (co-)primeness conditions developed so far can be readily
applied to comodules. We will do this in the next sections and relate our results to
previously known observations about (co-)primeness of the coalgebra C itself (as in
Xu et al. [21], Nekooei-Torkzadeh [12] and Jara et al. [11]) or of C-comodules (in
Rodrigues [15] and Ferrero-Rodrigues [8]). We begin with a short outline of basic facts
about coalgebras and comodules referring to Brzeziński-Wisbauer [5] for details.

From now R will denote a commutative ring with unit. An R-coalgebra is an R-
module C with R-linear maps ∆ : C → C ⊗R C and ε : C → R called (coassociative)
coproduct and counit respectively, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆ and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆.

For c ∈ C we use the Sweedler notation ∆(c) =
∑

c1 ⊗ c2.
The dual module C∗ = HomR(C,R) is an R-algebra, called the dual algebra of C,

by the convolution product: for any f, g ∈ HomR(C,A) put

f ∗ g = µ ◦ (f ⊗ g) ◦∆.

A right C-comodule is an R-module M with an R-linear map %M : M → M ⊗R C
called a right C-coaction, with the properties

(IM ⊗∆) ◦ %M = (%M ⊗ IC) ◦ %M and (IM ⊗ ε) ◦ %M = IM .

Denote by HomC(M,N) the set of C-comodule morphisms from M to N . The class
of right comodules over C together with the comodule morphisms form an additive
category which is denoted by MC .

Similar to the classical Hom-tensor relations (e.g. [19]), there is a functorial iso-
morphism for M ∈ MC and X ∈ RM (see [5, 3.10]),

φ : HomC(M,X ⊗R C) → HomR(M,X), f 7→ (IX ⊗ ε) ◦ f,

with inverse map h 7→ (h⊗IX)◦ρM . For X = R and M = C, φ yields EndC(C) ' C∗.
Any M ∈ MC is a (unital) left C∗-module by

⇀: C∗ ⊗R M → M, f ⊗m 7→ (IM ⊗ f) ◦ %M (m),

and any morphism h : M → N in MC is a left C∗-module morphism, i.e.,

HomC(M,N) ⊂ C∗Hom(M,N).

C is a subgenerator in MC , that is all C-comodules are subgenerated by C as C-
comodules and C∗-modules. Thus we have a faithful functor from MC to C∗M, where
the latter denotes the category of left C∗-modules.

C satisfies the α-condition if the following map is injective for every N ∈ MR,

αN : N ⊗R C → HomR(C∗, N), n⊗ c 7→ [f 7→ f(c)n].
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MC is a full subcategory of C∗M if and only if C satisfies the α-condition, and then
MC is isomorphic to σ[C∗C] (see [5, Proposition 4.3]). This provides the possibility
to apply the results of primeness and coprimeness in categories of type σ[M ] to the
category MC . In particular, MC is a Grothendieck category.

Throughout C will be an R-coalgebra which satisfies the α-condition.
Let f : M → N be a comodule morphism and U ⊂ M and L ⊂ N be subcomod-

ules. Then (U)f ⊂ N and (L)f−1 ⊂ M are again subcomodules (=C∗-submodules)
and Lemma 1.10 yields:

5.1. Lemma. Let M,N be C-comodules, f ∈ HomC(M,N) an epimorphism and
assume the coalgebra C satisfies the α-condition.

(i) If Ker f is a fully invariant subcomodule of M and L is a fully-invariant subco-
module of N , then (L)f−1 is a fully-invariant subcomodule of M .

(ii) If M is self-projective and U is a fully invariant subcomodule of M , then (U)f
is a fully-invariant subcomodule of N .

5.2. Orthogonal sets. For any submodule A ⊂ C and any subset I ⊂ C∗, put

A⊥C∗ := {f ∈ C∗| (A)f = 0} = πA �HomR(C/A,R) ⊂ C∗,

I⊥C :=
⋂
{Ker f | f ∈ I} ⊂ C,

where πA : C → C/A is the canonical projection.
For any R-submodule A of C, A ⊂ (A⊥C∗)⊥C always holds. To get the equality,

we need special properties (see [19, 28.1]).

5.3. Lemma. If every R-factor module of C is R-cogenerated, then for any R-
submodule A of C, Ker HomR(C/A,R) = A. Thus A = (A⊥C∗)⊥C .

Further properties of the annihilator and the kernel are given in [5, 6.2 and 6.3].
For subsets A ⊆ C and I ⊆ C∗ we also have the annihilators

AnnC∗(A) := {f ∈ C∗ | f ⇀ A = 0}, AnnC(I) := {c ∈ C | I ⇀ c = 0},

with the following relationships:

5.4. Lemma. Let C be an R-coalgebra and A ⊂ C.

(i) If A is an R-submodule of C, then AnnC∗(A) ⊂ A⊥C∗.
(ii) If A is a left and right subcomodule (a left and right C∗-submodule) of C, then

A⊥C∗ = AnnC∗(A).

Proof. (i) Let g ∈ AnnC∗(A). Then g ⇀ a = 0 for any a ∈ A and (IC ⊗ g) ◦∆(a) = 0.
Applying ε we obtain 0 = ε((IC ⊗ g) ◦∆(a)) = g(a). Thus AnnC∗(A) ⊂ A⊥C∗ .

(ii) It is sufficient to prove that A⊥C∗ ⊂ AnnC∗(A). Take any f ∈ A⊥C∗ , that is
f(a) = 0 for any a ∈ A. Then

f ⇀ a =
∑

(IC ⊗R f) ◦∆(a) =
∑

a1f(a2) = 0,

since ∆(a) ∈ C ⊗R A. Thus A⊥C∗ ⊂ AnnC∗(A). tu
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Notice that for any subcoalgebra A of C holds A⊥C∗ = AnnC∗(A), since A is a left
and right subcomodule of C.

5.5. Lemma. Let C be an R-coalgebra and J ⊂ C∗.

(i) If J is an R-submodule of C∗, then AnnC(J) ⊂ J⊥C .
(ii) If J is a two-sided ideal of C∗, then J⊥C = AnnC(J).

Proof. (i) Let c ∈ AnnC(J). Then h ⇀ c = 0 for any h ∈ J and (IC ⊗ h) ◦∆(c) = 0.
Applying ε we obtain 0 = ε((IC ⊗ h) ◦∆(c)) = h(c). Thus AnnC(J) ⊂ J⊥C .

(ii) By [5, 6.3], J⊥C is a (C∗, C∗)-subbimodule of C. It is sufficient to prove that
J⊥C ⊂ AnnC(J). Take any c ∈ J⊥C , that is l(c) = 0 for any l ∈ J . Then

l ⇀ c =
∑

(IC ⊗R l) ◦∆(c) =
∑

c1l(c2) = 0,

since ∆(c) ∈ C ⊗R J⊥C . Thus J⊥C ⊂ AnnC(J). tu

5.6. Lemma. For any proper (C∗, C∗)-subbimodule A of C, if C/A is R-cogenerated,
then AnnC∗(A) 6= 0 and equivalently C satisfies condition (∗∗) as a C∗-module. Thus
if R is a cogenerator in RM, then AnnC∗(A) 6= 0.

Proof. Since C/A is R-cogenerated, there is some f̃ : C/A → R such that 0 6= f :=
πA � f̃ : C → R. Thus AnnC∗(A) 6= 0. tu

6 Prime and coprime comodules

We call a right C-comodule M prime if M is prime as a left C∗-module.

6.1. Prime comodules. For a right C-comodule M , the following are equivalent:

(a) M is a prime comodule;
(b) AnnC∗(K) = AnnC∗(M) for any subcomodule K of M ;
(c) C∗ := C∗/AnnC∗(M) is cogenerated by K for any subcomodule K of M ;
(d) C∗ is cogenerated by K for any fully invariant subcomodule K of M .

If these conditions hold, then:

(i) C∗ is a prime algebra and a right C-comodule that is finitely generated as an
R-module.

(ii) R/AnnR(C∗) is a prime ring.

Proof. From 2.1 we have the equivalences stated.
(i) Consider a cyclic C∗-submodule of M , say U := C∗ ⇀ m, for some m ∈ M .

According to the Finiteness Theorem 2 ([5],4.12), U is a finitely generated R-module
with generators say {u1, . . . , uk}. Define a mapping

ϕ : C∗ → Uk, f 7→ (f ⇀ u1, . . . , f ⇀ uk) = f ⇀ (u1, . . . , uk) ∈ Uk.

If f ⇀ (u1, . . . , uk) = 0, then f ⇀ ui = 0 and f ⇀ (r1u1 + . . . + rkuk) = 0 for any
ri ∈ R, i = 1, 2, . . . , k. Thus f ⇀ U = 0, i.e., f ∈ AnnC∗(U) = 0, since M is prime. It
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follows that the map ϕ is a monomorphism and C∗ is a right C-comodule. Moreover,
it is cyclic as a left C∗–module and, by the Finiteness Theorem 2, this implies that it
is finitely generated as an R-module.

(ii) Since R is commutative and C∗ is prime, R/AnnR(C∗) is a prime ring. tu

6.2. Proposition. Let M be a comodule with Soc(M) 6= 0. If M is prime, then
C∗ is a simple artinian algebra and finitely generated as an R-module. Thus M is a
homogeneous semisimple comodule.

Proof. Consider a simple C∗-submodule of M , say V := C∗ ⇀ m, for some m ∈ M .
Then by 6.1 part (i), C∗ is a direct summand of the homogeneous semisimple C∗-
module V k, i.e., C∗ is a simple artinian algebra. If M is a faithful C∗-module, then
C∗ is a simple artinian algebra and finitely generated as an R-module. tu

Proposition 3.2 of [8] is a corollary of our Proposition 6.2.

6.3. Corollary. If R is a perfect ring and M is a prime comodule over the R-coalgebra
C, then C∗/AnnC∗(M) is a simple artinian algebra.

Proof. If R is a perfect ring, then M satisfies the descending chain condition for
finitely generated R-submodules and hence for finitely generated C-subcomodules
(see [5, 4.16]). Thus Soc(M) 6= 0 and Proposition 6.2 applies. tu

6.4. Prime coalgebras. For a coalgebra C, the following are equivalent :

(a) C is prime as a right C-comodule.
(b) AnnC∗(A) = 0 for any non-zero right subcomodule A of C.
(c) C∗ is cogenerated by A for any non-zero right subcomodule A of C.
(d) C∗ is cogenerated by A for any non-zero (C∗, C∗)-subbimodule A of C.

If these conditions hold, then:

(i) C is a finitely generated R-module and MC = C∗M.
(ii) Every C-cogenerated comodule is prime.
(iii) Every projective comodule P is prime.
(iv) C∗ is a prime algebra and finitely generated as R-module.

Proof. Considering C as a right C-comodule we get the equivalences and (iv) from
6.1. (i) By 6.1, C∗ ∈ MC and hence C is finitely generated as R-module. Now apply
[5, 4.7]. (ii)-(iii) Transfer the situation of Proposition 2.5 into MC . tu

6.5. Proposition. Let C be a coalgebra that is prime as right C-comodule with
Soc(C) 6= 0. Then

(i) C∗ is a simple algebra and finitely generated as R-module.
(ii) If C is cocommutative, then C∗ is a field.

Proof. (i) By Proposition 6.2. (ii) By Corollary 2.8. tu
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If C is prime as right C-comodule, then for any fully invariant subbicomodule A
of C, AnnC∗(A) = A⊥C∗ = 0 (see Lemma 5.4).

6.6. Example. Let R be a commutative ring. Consider the free R-module T := Rn,
where n ∈ N, T is a finitely generated and projective R-module. C := T ∗ ⊗R T is a
coalgebra (see [7]) and moreover, as R-module,

C = (Rn)∗ ⊗R Rn ' EndR(Rn
R),

that is the matrix coalgebra of all n× n matrices over R, which we denote as Mn(R).
Let {eij}1≤i,j≤n be the canonical basis of Mn(R). Then the coproduct and counit of
C are

∆ : Mn(R) → Mn(R)⊗R Mn(R), eij 7→
n∑

k=1

eik ⊗R ekj .

ε : Mn(R) → R, eij 7→ δij .

For the dual algebra of C, there are (anti-)algebra morphisms

C∗ ' EndR((Rn)∗R) ' EndR((R∗)n
R) ' Mn(EndR(R∗R)) ' Mn(R),

the matrix ring of all n × n matrices over R. Thus if R is prime then C∗ is a prime
algebra. The fully invariant subcomodules of C = Mn(R) are (C∗, C∗)-subbimodules,
that is the two-sided ideals of Mn(R), and hence are of the form Mn(I), where I is
an ideal of R. Since AnnMn(R)(Mn(R)/Mn(I)) 6= 0, C satisfies (∗fi), and thus C is
prime as C∗-module (by Proposition 2.2 (ii)).

We call a right C-comodule M coprime if M is coprime as a C∗-module. Here 2.9
and Lemma 2.10 read as follows.

6.7. Coprime comodules. Let M be a right C-comodule with S = EndC(M).

(i) The following assertions are equivalent :

(a) M is a coprime comodule;
(b) AnnC∗(M/K) = AnnC∗(M) for any proper subcomodule K of M ;
(c) C∗/AnnC∗(M) is cogenerated by M/K for any proper subcomodule K of

M ;
(d) C∗/AnnC∗(M) is cogenerated by M/K for any proper fully invariant sub-

comodule K of M .

(ii) If M is coprime, then C∗/AnnC∗(M) is prime.
(iii) If C∗/AnnC∗(M) is prime and for any proper (fully invariant) subcomodule K

of M holds AnnC∗(K) 6= AnnC∗(M), then M is coprime.

6.8. Proposition. Let M be a right C-comodule. If M is coprime and Rad(M) 6= M ,
then C∗ := C∗/AnnC∗(M) is a simple algebra and finitely generated as R-module.

Proof. By Proposition 2.13, C∗ := C∗/AnnC∗(M) is a primitive algebra. Then the
proof is similar to 6.2. tu
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6.9. Coprime coalgebras. Let C be a coalgebra.

(1) The following are equivalent :

(a) C is coprime as a right C-comodule;
(b) AnnC∗(C/A) = 0 for any proper right subcomodule A of C;
(c) C∗ is cogenerated by C/A for any proper right subcomodule A of C;
(d) C∗ is cogenerated by C/A for any proper (C∗, C∗) subbimodule A of C.

(2) If the conditions (a)-(d) hold, then

(i) C∗ is prime;
(ii) if C is cocommutative, then C∗ is an integral domain;
(iii) for any proper fully-invariant (C∗, C∗)-subbimodule A of C, C/A is co-

prime as C∗-module;
(iv) Rad(C) 6= C implies that C∗ is a simple algebra and finitely generated as

R-module;
(v) if C is cocommutative with Rad(C) 6= C, then C∗ is a field.

(3) If C∗ is prime and AnnC∗(A) 6= 0 for any proper (C∗, C∗)-subbimodule A of C,
then C is coprime as a right C-comodule.

Proof. (1) is obtained by applying 6.7.
(2)(i) and (3) follow from 6.7; (ii) C∗ is prime and commutative; (iii) and (iv)

follow by Proposition 6.8, and (v) is a consequence of (iv). tu

A coalgebra C with C∗ prime may not be coprime if it does not satisfy the condition
(∗∗), i.e., for any proper (C∗, C∗)-subbimodule A of C holds AnnC∗(A) 6= 0. We can
see this in the following example.

6.10. Example. Let H be a free R-module with basis {cm | m ∈ N}. Define the
comultiplication cm 7→

∑
i=0,m ci ⊗ cm−i and the counit by ε(cm) = δ0,m. H is a

coalgebra and the dual algebra H∗ has multiplication for f, g ∈ H∗, (f ∗ g)(cm) :=∑
i=0,m f(ci)g(cm−i) and unit u : R → H∗ where u(α)(cm) = αδ0,m for any α ∈ R, m ∈

N. There is an isomorphism (see Example 1.3.8 of [6]) Φ : H∗ → R[[X]], where f 7→∑
m≥0 f(cm)Xm. Notice that the formal power series ring R[[X]] is prime provided R

is a prime ring. As a special case one may take H = R[X] with comultiplication

∆ : R[X] → R[X]⊗R R[X], Xm 7→
∑

i=0,m

Xi ⊗Xm−i,

and the counit is ε(Xm) = δ0,m. If R is a field, then R[[X]] is a prime ring, and R[X]
is a coprime comodule by 6.9 part (3). For R = Z, the primeness of Z[[X]] does not
imply the coprimeness of Z[X], since for the subcomodule nZ[X], for 0 6= n ∈ N, we
have AnnZ[X]∗(Z[X]/nZ[X]) 6= 0.

7 Fully prime and coprime comodules

We call a comodule M fully prime if for any non-zero fully invariant subcomodule K
of M , M is K-cogenerated.
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As in Section 3, a product of fully invariant subcomodules K, L of M is defined
by K ∗M L := KHomC(M,L).

7.1. Fully prime comodules. The following are equivalent for a comodule M :

(a) M is a fully prime comodule;
(b) Rej(M,K) = 0 for any non-zero fully invariant subcomodule K ⊂ M ;
(c) K ∗M L 6= 0 for any non-zero fully invariant subcomodules K, L ⊂ M ;
(d) Rej(−,M) = Rej(−,K) for any non-zero fully invariant subcomodule K of M ,

i.e., any M -cogenerated comodule is also K-cogenerated.

If these conditions hold and Soc(M) 6= 0, then

(i) M is semisimple;
(ii) C∗ := C∗/AnnC∗(M) is a simple artinian algebra and finitely generated as R-

module.

Proof. From 3.1 we get the equivalences stated. M is fully prime implies that it is
prime. Now apply Proposition 6.2 to get (i) and (ii). tu

A fully invariant subcomodule N of M is called fully prime in M if for any fully
invariant subcomodules K, L of M ,

K ∗M L ⊆ N implies K ⊆ N or L ⊆ N .

The comodule M is fully prime if zero is a fully prime subcomodule.
Applying Proposition 18 of [13] and Lemma 5.1 yield

7.2. Proposition. Let N be a proper fully-invariant subcomodule of M .

(i) If N is fully prime in M , then M/N is a fully prime comodule.
(ii) If M is self-projective and M/N is fully prime, then N is fully prime in M .

For M = C the assertions in 7.1 yield

7.3. Fully prime coalgebras. The following are equivalent for a coalgebra C:

(a) C is fully prime as a right C-comodule;
(b) Rej(C,A) = 0 for any non-zero (C∗, C∗)-subbimodule A of C;
(c) A ∗C B 6= 0 for any non-zero (C∗, C∗)-subbimodules A,B of C;
(d) Rej(−, C) = Rej(−, A) for any non-zero (C∗, C∗)-subbimodule A of C, i.e., any

C-cogenerated coalgebra is also A-cogenerated.

If these conditions hold and Soc(C) 6= 0, then

(i) C is a semisimple C∗-module;
(ii) C∗ is a simple artinian algebra and finitely generated as R-module.

We call a comodule M fully coprime if for any proper fully invariant subcomodule
K of M , M is M/K-generated.

For fully invariant subcomodules K, L ⊂ M , we have the internal coproduct

K :M L :=
⋂
{(L)f−1 | f ∈ EndC(M),K ⊆ Kerf}.
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7.4. Fully coprime comodules. Let M be a C-comodule and S = EndC(M). The
following are equivalent:

(a) M is a fully coprime comodule;
(b) If K :M L = M , then K = M or L = M , for any fully invariant subcomodules

K, L of M ;
(c) K :M L 6= M for any proper fully invariant subcomodules K, L of M ;
(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant subcomodules K of M ,

i.e. any M -generated comodule is also M/K-generated.

If these conditions hold, then

(i) M is coprime, fi-coretractable and indecomposable as (C∗, S)-bimodule;
(ii) if Rad(M) 6= M , then C∗ := C∗/AnnC∗(M) is a simple algebra and finitely

generated as R-module. Moreover, M is homogeneous semisimple.

Proof. By 3.7 we get the equivalences stated.
(i) follows by Proposition 3.11 and Lemma 3.9.
(ii) By Proposition 3.17 part (iii), C∗ is a primitive algebra. Then the proof is

similar to 6.2. tu

Let M be a comodule and N ⊂ M be a fully invariant subcomodule. We say
that N is fully coprime in M if for any fully invariant subcomodules K, L ⊂ M ,
N ⊆ K :M L implies N ⊂ K or N ⊂ L.

By 7.4, M is a fully coprime comodule if and only if M is fully coprime in M .

7.5. Proposition. Let M be a self-cogenerator right comodule and S = EndC(M).

(i) If S is prime, then M is fully coprime.
(ii) If M is self-injective and fully coprime, then M is coprime as a right S-module

and hence S is prime.
(iii) If M is coprime as a right S-module, then M is fully coprime.

Proof. By Lemma 3.14 and Lemma 3.15. tu

7.6. Fully coprime coalgebras. The following are equivalent for a coalgebra C.

(a) C is fully coprime as a right C-comodule;
(b) If A :C B = C, then A = C or B = C, for any (C∗, C∗)-subbimodules A,B of

C;
(c) A :C B 6= C for any proper (C∗, C∗)-subbimodules A,B of C;
(d) Tr(C/A,−) = Tr(C,−) for any proper (C∗, C∗)-subbimodule A of C, i.e. any

C-generated coalgebra is also C/A-generated.

If these conditions hold, then

(i) C is indecomposable as (C∗, C∗)-bimodule;
(ii) if Rad(C) 6= C, then C∗ is a simple algebra and finitely generated as R-module;
(iii) for any projective comodule P in MC , Rad(P ) = 0.

Proof. Put M = C and apply 7.4. For (iii) see Proposition 3.17 part (ii). tu
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8 Strongly prime and strongly coprime comodules

We call a comodule M strongly prime if it is strongly prime as C∗-module. This
property extends to the self-injective hull and we have

8.1. Strongly prime comodules. For a comodule M denote by M̂ its injective
hull in MC . The following are equivalent:

(a) M is a strongly prime comodule;
(b) M is subgenerated by each of its non-zero subcomodules;

(c) M̂ is generated by each of its nonzero (fully-invariant) subcomodules;

(d) M̂ has no non-trivial fully invariant subcomodules.

If these conditions hold and SocM 6= 0, then

(i) M is homogeneous semisimple;
(ii) C∗ := C∗/AnnC∗(M) is a simple algebra and finitely generated as R-module.

Proof. Apply [20, 13.3] to get the equivalences stated. (i) and (ii) follow by Proposition
4.2 and ”finitely generated” is obtained similarly to the proof of Proposition 6.2. tu

As a corollary of 8.1 we obtain [8, Theorem 3.3 and Corollary 3.5], since R is a
perfect ring implies Soc(M) 6= 0. For M = C, 8.1 yields:

8.2. Strongly prime coalgebras. For a coalgebra C with C-injective hull Ĉ, the
following are equivalent:

(a) C is strongly prime as a right C-comodule;
(b) Ĉ is generated by each of its nonzero subcomodules;
(c) Ĉ has no non-trivial (C∗, C∗)-subbimodule.

If these conditions hold and Soc(C) 6= 0, then

(i) C is homogeneous semisimple;
(ii) C∗ is simple and finitely generated as an R-module;
(iii) every comodule is strongly prime;
(iv) for any finitely generated projective comodule P , EndC(P ) ' EndC∗(P ) is strongly

prime.

Proof. (iii) and (iv) follow by Proposition 4.1. tu

For any two fully invariant subcomodules A,B ⊂ C we have from 3.12,

A ∧C B = KerπA �HomC(C/A,M) � πB �HomC(C/B, C).

This can be written in the form known as wedge product in coalgebra theory.

8.3. Lemma. For any (proper) subbicomodules A,B ⊂ C,

Ker ∆ � (πA ⊗ πB) ⊆ A ∧C B = (A⊥C∗ ∗B⊥C∗)⊥C .

Equality holds provided R is a field.
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Proof. We first show the identity. For this let

u ∈ Ker πA �HomC(C/A,C) � πB �HomC(C/B, C)

and take any f̃ ∈ (C/A)∗, g̃ ∈ (C/B)∗. Then there are
α := ∆ � (πA � f̃ ⊗ IC) ∈ πA �HomC(C/A,C),
β := ∆ � (πB � g̃ ⊗ IC) ∈ πB �HomC(C/B, C), such that

(u)(πA � f̃) ∗ (πB � g̃) = (u)(α � ε) ∗ (β � ε) = (u)(α � β) � ε = 0.

Conversely, let v ∈ ((C/A)∗ ∗ (C/B)∗)⊥C . Then v ∈ AnnC((C/A)∗ ∗ (C/B)∗) (by
Lemma 5.5) and we have

0 = (v)∆ � (IC ⊗ πA � f̃ ∗ πB � g̃)
= (v)∆ � (IC ⊗ α � ε ∗ β � ε)
= (v)∆ � (IC ⊗ α � β) � (IC ⊗ ε)
= (v)(α � β) �∆ � (IC ⊗ ε) = (v)(α � β).

The left inclusion is obvious. To show equality (see also [16]), let R be a field and
let d ∈ (A⊥C∗ ∗ B⊥C∗)⊥C . For all f ∈ A⊥C∗ and g ∈ B⊥C∗ , writing f = πA � f̃ and
g = πB � g̃, where f̃ ∈ (C/A)∗ and g̃ ∈ (C/B)∗, we get

0 = (d)(f ∗ g) = (d)∆ � (f ⊗ g) = (d)∆ � (πA ⊗ πB) � (f̃ ⊗ g̃).

As known from Linear Algebra this implies (d)∆ � (πA ⊗ πB) = 0 and therefore
d ∈ Ker ∆ � (πA ⊗ πB). tu

8.4. Corollary. Let C be an R-coalgebra, R a perfect ring. Then the following
assertions are equivalent:

(a) C is prime as a right C-comodule.
(b) C is strongly prime as a right C-comodule.
(c) C is homogeneous semisimple.
(d) C∗ is a simple ring and a finitely generated R-module.

We call a comodule M strongly coprime if it is strongly coprime as C∗-module.

8.5. Strongly coprime comodules. Let M be a strongly coprime comodule.

(1) For any proper fully-invariant subcomodule K of M , M/K is strongly coprime.
(2) If Rad(M) 6= M , then

(i) M is homogeneous semisimple;
(ii) C∗ := C∗/AnnC∗(M) is a simple algebra and finitely generated as R-

module.

Proof. (1) By Proposition 4.3.
(2) By Proposition 4.5, C∗ is a primitive algebra. Then similar to the proof of 6.2

we get that C∗ is a simple algebra. tu
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Recall that a comodule M is duprime if for any fully invariant subcomodule K ⊂
M , M ∈ σ[K] or M ∈ σ[M/K]. By definition it is obvious that any strongly coprime
comodule is duprime. The converse is true for self-injective comodules.

As a corollary of 8.5 we get:

8.6. Strongly coprime coalgebras. Let C be strongly coprime as a right C-
comodule. If Rad(C) 6= C, then

(i) C is homogeneous semisimple;
(ii) C∗ is a simple algebra and finitely generated as R-module.

Coprime coalgebras over a field k, defined by the wedge product, are considered
for example, in Jara, Merino, Ruiz [11] and Nekooei-Torkzadeh [12]. Xu, Lu, Zhu [21]
describe coalgebras with prime dual algebra. Some of their results are included in the
following list.

For the moment let us call a coalgebra C wedge coprime if for any subcoalgebras
A,B of C, A ∧C B = C implies A = C or B = C (see [11], [12]).

Coalgebras C over a field R are injective cogenerators and for any subcoalgebras
A,B (see 8.3),

Ker ∆ � (πA ⊗ πB) = A :C B = A ∧C B = (A⊥C∗ ∗B⊥C∗)⊥C .

8.7. Coprime coalgebras over fields. For a coalgebra C over a field R, the fol-
lowing are equivalent:

(a) C is a wedge coprime coalgebra;
(b) C is coprime as a left (right) C-comodule;
(c) C is fully coprime as a right C-comodule;
(d) C∗ is a prime algebra.
(e) For any proper (C∗, C∗)-subbimodule A of C, HomC(C,A) = 0.
(f) For any 0 6= f ∈ C∗, C = C ↼ (f ∗ C∗).
(g) For any ideal 0 6= I ⊂ C∗, C = C ↼ I.
(h) For any 0 6= f ∈ C∗, C = (C∗ ∗ f) ⇀ C.
(i) For any ideal 0 6= I ⊂ C∗, C = I ⇀ C.

Proof. The coalgebra C over a field R is a self-cogenerator and hence fi-coretractable.
By the isomorphism EndC(C) ' C∗ we have (C)EndC(C) = C ↼ C∗. Now apply
Proposition 1.6 to get the equivalences (d)⇔(e)⇔(f)⇔(h).

(a)⇔(c) Over a field, the wedge product ∧C and :C coincide.
(b)⇔(c)⇔(d) C is a self-injective self-cogenerator; now apply the Propositions

3.14, 3.15 and Corollary 3.16.
(d)⇔(h) is symmetric to (d)⇔(f). It also follows by [21, Theorem 3].
(d)⇔(i) is symmetric to (d)⇔(g). tu

Recall that our definition of coprimeness is related to fully invariant subcomodules
of C. To conclude we observe some properties related to not necessarily fully invariant
subcomodules of the coalgebra C.
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8.8. Proposition. Let C be a coalgebra over a field R. The following assertions are
equivalent:

(a) C∗ has no zero-divisor;
(b) For any proper left C∗-submodule A of C, HomC(C,A) = 0;
(c) For any 0 6= f ∈ C∗, C ↼ f = C.

Proof. The coalgebra C over a field R is a self-cogenerator and hence coretractable.
By the isomorphism EndC(C) ' C∗ we have (C)EndC(C) = C ↼ C∗. Now apply
Proposition 1.5.

The implication (a)⇔(c) is also shown in [21, Corollary]. tu

For explicit examples of (wedge) coprime coalgebras we refer to [12] and [11]. For
an extension of these and similar investigations for corings we refer to Abuhlail [1].
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[15] Rodrigues, V.S., 2004, Co-Módulos Primos e Co-álgebras Primas, Ph.D Thesis, Inst.
Matem., Univ. Federal do Rio Grande do Sul, Porto Alegre, Brazil.

[16] Sweedler, M.E., 1969, Hopf Algebra, Benjamin, New York.

[17] Van den Berg, J.E., Wisbauer, R., 2001, Duprime and usemiprime modules, J. Pure
Appl. Algebra 165, 337-356.

[18] Wisbauer, R., 1983, On prime modules and rings, Comm. Algebra 11(20), 2249-2265.

[19] Wisbauer, R., 1988, Grundlagen der Modul- und Ringtheorie, Verlag Reinhard Fischer,
München.
– 1991, Foundations of Module and Ring Theory, Gordon and Breach.

[20] Wisbauer, R., 1996, Modules and Algebras : Bimodule Structure and Group Actions on
Algebras, Addison Wesley Longman Limited, England.

[21] Xu, Y., Lu, D., Zhu, H., 1990, A necessary and sufficient condition for dual algebras of
coalgebras to be prime, Proc. Asian Math. Conf., Singapore, 502-510.

25


