
On Corrective Patterns for the SHA-2 Family

Philip Hawkes1, Michael Paddon1, and Gregory G. Rose1

Qualcomm Australia, Level 3, 230 Victoria Rd, Gladesville, NSW 2111, Australia
{phawkes,mwp,ggr}@qualcomm.com

Abstract. The Secure Hash Standard (SHS) [3] includes hashing algo-
rithms denoted SHA-n, n ∈ 224, 256, 384, 512 for producing message di-
gests of length n. These algorithms are based on a common design, some-
times known as SHA-2, that consists of a message schedule and a register.
The most successful attacks on the SHA algorithms are Chabaud-Joux
differential collisions [1, 2, 4, 5, 7], which are based on finding a corrective
pattern for the register. Previous analysis of the SHA-2 algoritms [4] in-
dicated that, for all SHA-2 algorithms, the best corrective pattern has
probability 2−66. We find that the complexity of obtaining a collision is
239 when the register state is unknown. Of this complexity, a factor of
29 corresponds to conditions on the internal state that must be satisfied,
and a factor of 230 corresponds to 30 bits of internal state that must be
guessed correctly in order to generate a collision. When the register state
is known (as is the case when generating a hash) then the guessed bits
are known and the complexity is reduced to 29.
The simple analysis of the message schedule in [4] determines limits on
the probability of collision for SHA-2, and was sufficient at that time to
conclude that the algorithms resist the attacks. In [4] the claimed com-
plexity is compared against the birthday attack bound of 2n/2. However,
the corrective pattern can be converted into a second pre-image attack
for which the complexity should be greater than 2n. When accounting for
the complexity of 29 per corrective pattern, the previous analysis of the
message schedule yields lower bounds on the complexities 227 for SHA-
224/256 and 245 for SHA-224/256. These complexities are significantly
less than the 2n bound. It is no longer certain that SHA-2 resists this
attack. More detailed analysis of the message schedule is required.
Keywords: SHA-256, second pre-image attack.

1 Introduction

A hash function (or hash algorithm) is a cryptographic algorithms that is used
to generate a message digest of fixed length n from a message of arbitrary length.
The value of n is called the security parameter n, as it indicates the intended
strength of the algorithm. A hash function with a security parameter n must
provide resistance to three classes of attacks [6]:

Collision Attack In a collision attack, the attacker finds any two messages
M,M∗ 6= M such that h(M) = h(M∗). A secure hash function resists a
collision attack if the complexity of the attack is O(2n/2).

First Pre-image Attack In a first pre-image attack, the attacker is specified
an output y, and the attacker must find a message M such that h(M) = y.
A hash function resists a second pre-image attack if the complexity of the
attack is approximately O(2n).

Second Pre-image Attack In a first pre-image attack, the attacker is speci-
fied message M , and the attacker must find another message M∗ 6= M such
that h(M) = h(M∗). A hash function resists a second pre-image attack if
the complexity of the attack is O(2n).

The Secure Hash Standard (SHS) [3] defines five standard hash algorithms de-
noted SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 that produce message
digests of length n = 160, 224, 256, 384 and 512 bits respectively. SHA-1 is the
current, de-facto world-wide standard. However, advances in computing power
have led to the need for stronger keys, and stronger hash functions. Conse-
quently, the latter four algorithms are likely to become the de-facto world-wide
standards of the future. These four algorithms are based on a common design
that has become known as SHA-2.

The algorithms SHA-224 and SHA-256 differ from each other only in two
aspects: the algorithms use distinct initial constants; and SHA-224 truncates
the message digest to the 224 leftmost bits. The algorithms SHA-384 and SHA-
512 algorithms are also identical, with the exception of distinct initial constants
and the truncated output of SHA-384. This means that it is convenient to refer
to SHA-224/256 and SHA-384/512. To save space when providing the details
for SHA-224/256 and SHA-384/512, the details for SHA-384/512 are provide
in parentheses. For example, writing “SHA-2 is based on 32-bit (resp. 64-bit)
words” indicates that SHA-224/256 is based on 32-bit words and SHA-384/512
is based on 64-bit words.

The SHA algorithms have four phases; padding, parsing, message scheduling
and register update. The updated register is called the accumulating register in
this paper. The message schedule uses the padded and parsed message to gen-
erate a expanded sequence of inputs to the accumulating register; the expanded
sequence of inputs is used during the register update.

Theus far, the most successful analysis of SHA algorithms resulted from the
search for Chaboud-Joux differential collisions [1, 2, 4, 5, 7]. Of particular note
are the collisions for SHA-0 (a pre-curser to SHA-1) found by Joux [5] and
the collisions for MD4, MD5, HAVAL-128 and RIPEMD (pre-cursers to SHA-0)
found by Wang et al [7].

This type of analysis first finds a high-probability corrective pattern for the
accumulating register; that is, given one sequence of inputs to the accumulating
register, the analysis finds another sequences of inputs such that the accumu-
lating register results in equal values for both sequences of inputs. The analysis
then analyzes the message schedule in an attempt to find two messages such that
the message schedule will result in high-probability differential collisions being
input to the accumulating register.

1.1 Results of this Paper

New Probabilities for Gilbert-Handschuh corrective patterns. Gilbert
and Handschuh [4] looked for a high probability corrective patterns for SHA-
2; where a corrective pattern is a sequence of XOR differences between two
sequences of input words such that processing each sequence could result in equal
values of the accumulation register. They claim that these corrective patterns
are optimal in the sense that the probability of a collision is maximized for
these corrective patterns. We agree with their conclusion that the differential is
optimal. However, we have found that the probability of a collision is much higher
than the probability 2−66 obtained by Gilbert and Handschuh. By transforming
the XOR-differences into addition-differences, we find that the complexity of
obtaining a collision is 239 when the register state is unknown. Of this complexity,
a factor of 29 corresponds to conditions on the internal state that must be
satisfied, and a factor of 230 corresponds to 30 bits of internal state that must
be guessed correctly in order to generate a collision. When the register state is
known (as is the case when generating a hash) then the guessed bits are known
and the complexity is reduced to 29. Interestingly, this probability applies for all
SHA-2 algorithms, independent of word size.

Our understanding is that the collisions on SHA-0 [5] and the collisions for
MD4, MD5, HAVAL-128 and RIPEMD [7] were also obtained using addition-
differences.

The corrective pattern yields a pre-image attack. The attack proposed
in [4] is simple collision attack in which the attacker can specify all the details
of the two messages that hash to equal message digests. However, the corrective
pattern proposed herein can be used in a second pre-image attack, in which
one of the messages is specified and the attacker generates a second message
that hashes to an equal message digest. This is an important distinction, as the
previous claims of resistance to the attack used the complexity bound of 2n/2

rather than the bound 2n that applies for second pre-image attacks. In other
words, the authors of [4] claimed resistance to the attack because the complexity
exceeded the 2n/2 bound, but that was based on the asumption that the attack
could only be performed as a collision attack. Now that that the attack is a
second pre-image attack, the previous bounds must be increased to 2n: that is,
SHA-2 can only be considered secure if the complexity exceeds the 2n bound.

Simple analysis of the Message Schedule is Insufficient. Gilbert and
Handschuh computing a lower limit on the complexity of a Chabaud-Joux attack
using the corrective pattern probability 2−66. They claimed that at least three
(resp. five) independent corrective patterns are required to perform a Chabaud-
Joux attack when accounting for the message scheduling. When using the cor-
rective pattern probability of 2−39, the computed lower bound on the complexity
becomes 2117 (resp. 2195);... assuming that the initial state is unknown. When the
initial value of the register states are known, then the probability drops to 2−9

(resp. 2−45). These complexities are significantly lower than the bounds required
to prove resistance to second pre-image attacks, thus suggesting that SHA-2 may

not resist the attack. However, this lower bound is based on a simple analysis
of the message schedule, and the bound is unrealistically optimistic. We cannot
conclude (from these lower bound) whether SHA-2 is sufficiently secure or not.
A more detailed analysis of the message schedule is required in order to obtained
more accurate estimates for the complexity of a Chabaud-Joux attack. We have
not yet attempted such an analysis, but recommend this as a worthwhile venture
for any cryptologist.

Organization of this paper. The remainder of Section 1 introduces the nec-
essary notation. Section 2 describes SHA-2. Section 3 discusses the corrective
patterns of [4]. Section 4 discusses our goals in searching for corrective patterns,
and Section 5 considers the relationship between XOR-differences and addition-
differences. Section 6 then performs a detailed analysis of the corrective patterns.
The complexity is determined in Section 7.

1.2 Notation

SHA-2 is based on 32-bit (resp. 64-bit) words. Within each word, the most
significant bit(MSB) is the leftmost bit while the least significant bit (MSB) is
the rightmost bit. For any word X, X̂ denotes the value of X with the MSB set
to zero.

The i-th bit of a word a is denoted a[i]. SHA-2 uses two bit-wise operators:
“∧” represents the bitwise AND operation with (a ∧ b)[i] = a[i]b[i], 0 ≤ i ≤ n;
and “⊕” represents the bitwise exclusive-OR operation with (a⊕b)[i] = a[i]⊕b[i],
0 ≤ i ≤ w, where w denotes the relevant word size.

The bit-wise complement of x (equal to 2w−1−x) is denoted x′. The function
ROTRr(X) produces a word of the same size as X, but with the bits rotated
cyclically to the right by r positions. That is, if Y = ROTRr(X) and the word
size is w, then Y [i] = X[i + r(mod w)], 0 ≤ i ≤ w. The function SHRr(X)
produces a word of the same size as X, but with the bits shifted (non-cyclically)
to the right by r positions, with the remaining left-most bits filled with zeroes.
That is, if Y = SHRr(X), then: Y [i] = X[i+ r] for i < w − r; and Y [i] = 0 for
w − r ≤ i ≤ w − 1.

Finally, for our analysis we will denote the Hamming weight of x (that is,
the number of one’s in the binary representation of x) by |x|.

2 Description of SHA-2

SHA-2 consists of four phases: padding, parsing, message scheduling and register
update.

Padding: Suppose that the length of the message, M, is l bits. Append the bit
1 to the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation l+k+1 ≡ 448 (mod512) (resp. l+k+1 ≡
896 (mod1028)). Then append the 64-bit (resp. 128-bit) block that is equal to

the number l expressed using a binary representation. The length of the padded
message should now be a multiple of 512 (resp. 1024) bits.

Parsing: The padded message is parsed into N 512-bit (resp. 1024-bit) blocks,
M (1),M (2), . . . ,M (N). The 512 (resp. 1024) bits of the input block are expressed
as sixteen 32-bit (resp. 64-bit) words. The first 32 bits (resp. 64 bits) of message
block i are denoted M (i)

0 , the next 32 bits (resp. 64 bits) are M (i)
1 , and so on up

to M (i)
15 .

Message Scheduling: The message schedule is applied to each message block
individually. The message schedule first assigns the message wordsM (i)

0 , . . . ,M
(i)
15

to the values of the input words W0, . . . ,W15. The remainder of the input words
W16, . . . ,W63 (resp. W16, . . . ,W79) are determined using the recurrence formula:

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16,

where σ0, σ1 are linear functions. For SHA-224/256, the functions σ0, σ1 act on
32-bit inputs and produce 32-bit outputs:

σ0(X) = ROTR7(X)⊕ROTR18(X)⊕ SHR3(X),
σ1(X) = ROTR17(X)⊕ROTR19(X)⊕ SHR10(X).

For SHA-384/512, the functions σ0, σ1 act on 64-bit inputs and produce 64-bit
outputs:

σ0(X) = ROTR1(X)⊕ROTR8(X)⊕ SHR7(X),
σ1(X) = ROTR19(X)⊕ROTR61(X)⊕ SHR6(X).

Register Update: The accumulation register has 8 words of state A, B, C, D,
E, F , G, H. For the first block of the message, these words are initialized to pre-
determined constants. For the remaining blocks of the message, the words are ini-
tialized to the intermediate hash value that results from from the preceding mes-
sage block. Following initialization, 64 rounds (resp 80 rounds) of the compres-
sion function are applied to the expanded input sequence {Wi}. The t-th round
of the compression function modifies the accumulation register using input word
Wi and pre-determined constant Ki as input. The compression function uses
addition modulo 232 (resp. 264) and four non-linear functions:CH,MJ,Σ0, Σ1.
SHA-224/256 uses functions with 32-bit inputs and 32-bit outputs, defined as:

CH(X,Y, Z) = (X ∧ Y)⊕ (X ′ ∧ Z);
MJ(X,Y, Z) = (X ∧ Y)⊕ (Y ∧ Z)⊕ (Z ∧X);

Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X);
Σ1(X) = ROTR6(X)⊕ROTR11(X)⊕ROTR25(X).

SHA-384/512 uses functions with 64-bit inputs and 64-bit outputs, with CH
and MJ defined as above and Σ0, Σ1 defined as:

Σ0(X) = ROTR28(X)⊕ROTR34(X)⊕ROTR39(X);
Σ1(X) = ROTR14(X)⊕ROTR18(X)⊕ROTR41(X).

The compression function modifies the accumulation register according to the
following algorithm:

T1i = H +i Σ1(Ei) + CH(Ei, Fi, Gi) +Ki +Wi;
T2i = Σ0(Ai) +MJ(Ai, Bi, Ci);
Hi+1 = Gi; Gi+1 = Fi; Fi+1 = Ei; Ei+1 = Di + T1i;
Di+1 = Ci; Ci+1 = Bi; Bi+1 = Ai; Ai+1 = T1i + T2i.

After all of the 64 (resp. 80) input words have been input to the accumulating
register, the resulting values of the state are added modulo 232 (resp. 264) to the
initialized values of the state. These values become the new intermediate hash
value. If this is the last message block, the new intermediate hash value is output
as the resulting message digest. Otherwise, the algorithm proceeds to updating
the register using the next message block.

3 Gilbert-Handschuh Corrective Patterns

The Chabaud-Joux approach to finding collisions divides the task into two sep-
arate analyses:

“First one considers the injection in one of the words Wi of a ... differ-
ence, and one identifies the corresponding corrective patterns, i.e. sets of
differences in the subsequent words Wi+j that cancel with high probabil-
ity the resulting differences in the state registers after a few rounds.Then
we search for low weight sequences of [corrective] patterns satisfying the
linear recurrence of the message schedule.” [4]

The corrective pattern represents two sequences of inputs {Wi} and {W ∗
i } to the

compression function. The first run is the sequence of internal state values and
function outputs that result when inputting the sequence {Wi} and the second
run is the sequence of internal state values and function outputs that result
when inputting the sequence {W ∗

i }. For any input word, internal state value or
function output, then we represent the value during the first run using X and
the value during the second run by X∗. The XOR-difference in this value X is
defined as ∆X = X ⊕X∗.

Gilbert and Handschuh employed the following strategy for finding high prob-
ability corrective patterns.

“Obviously, ... the best strategy is to inject a one bit difference in a
given message word Wi, and for each consecutive round, to disable the
propagation into the register A by appropriate corrective patterns of
the next message words. Allowing for more than a single bit difference
is not realistic as each Σ function automatically multiplies the Ham-
ming weight of the difference by three in each step, and trying to match
these bit locations using several initial difference bits implies a fatal de-
crease of the probability to obtain such differential collisions. Therefore

we believe that no other strategy can provide a sufficiently low weight
perturbation pattern, hence an acceptable overall collision probability.
The pattern has been obtained in a straightforward manner by setting
the following equalities: let Wi be the word containing the perturbative
one-bit difference. Then we define the next eight word differences by:
Wi+1 = Σ1(Wi)⊕Σ0(Wi); Wi+2 = Σ1(Σ0(Wi)); Wi+3 = 0; Wi+4 = Wi;
Wi+5 = Σ1(Wi)⊕Σ0(Wi); Wi+6 = 0; Wi+7 = 0; Wi+8 = Wi.” [4]

The corrective pattern of Gilbert and Handschuh [4] is shown in table 1. In
this table we have represented

α1 = ∆Wi, β3 = Σ0(∆Wi), γ3 = Σ1(∆Wi)), ε9 = Σ1(Σ0(∆Wi)).

The number after the Greek letter is there to remind us of the Hamming weight
of the difference. For SHA-224/256

ε9 = ROTR1(α1)⊕ROTR6(α1)⊕ROTR8(α1)
⊕ROTR13(α1)⊕ROTR15(α1)⊕ROTR19(α1)
⊕ROTR24(α1)⊕ROTR27(α1)⊕ROTR28(α1),

while for SHA-384/512

ε9 = ROTR5(α1)⊕ROTR11(α1)⊕ROTR16(α1)
⊕ROTR42(α1)⊕ROTR46(α1)⊕ROTR48(α1)
⊕ROTR52(α1)⊕ROTR53(α1)⊕ROTR57(α1).

j ∆H ∆G ∆F ∆E ∆D ∆C ∆B ∆A ∆Wi+j

0 - - - - - - - - α1

1 - - - α1 - - - α1 β3⊕ γ3

2 - - α1 β3 - - α1 - ε9

3 - α1 β3 - - α1 - - -

4 α1 β3 - - α1 - - - α1

5 β3 - - α1 - - - - β3⊕ γ3

6 - - α1 - - - - - -

7 - α1 - - - - - - -

8 α1 - - - - - - - α1

Table 1. The low-weight corrective pattern proposed by Gilbert and Handschuh [4].
The values in row i shows the differences in the state prior to applying the compression
function to Wi.

The probability of the corrective pattern is the product of two probabilities:
the probability of the XOR-differences proceeding correctly through the addi-
tion operations; and the probability of the XOR-differences proceeding correctly

through the CH and MJ operations. (The XOR-differences proceed through the
Σ functions with probability one, since these functions are linear.)

Our results agree with [4] regarding the probability 2−18 to account for the
CH and MJ operations. However, [4] claims a probability 2−48 to account for
the addition operations, resulting in a total probability of 2−66. In Section 7,
we show that corrective patterns can be constructed that have probablity 2−39

when the initial state is unknown and 2−9 when the intial state is known. This
increase in probability is obtained by using addition-differences and the noting
that any differences in the MSB always propagates correctly through the addition
operation.

3.1 Analysis of the Message Schedule

Gilbert and Handschuh [4] analyzed the message schedule in order to obtain some
lower bounds on the complexity of finding collision. Their goal was to show that
the complexity of finding a collision exceeds the complexity of a birthday attack:
2n/2. In their analysis of SHA-224/256, they noted that

“...at least 3 different patterns must be combined to follow the correct
message schedule.

If two of these patterns are applied, the probability to obtain a
differential collision becomes lower than 2−132 whereas the complexity
of a birthday attack on SHA-256 only represents 2128 computations on
average.” [4]

They concluded that SHA-256 resists the Chabaud-Joux attack. In their analysis
of SHA-384/512, they noted that

“...at least 5 different patterns must be combined to follow the correct
message schedule.

If four of these patterns are applied, the probability to obtain a
differential collision becomes lower than 2−264 whereas the complexity
of a birthday attack on SHA-512 only represents 2256 computations on
average.” [4]

They concluded that SHA-384/512 also resists the Chabaud-Joux attack.
A triple (IHV,M,M∗) denotes a intermediate hash value, a first run message

block M , and a second run message block M∗ that has been constructed from
M∗ so the input words {Wi} and {W ∗

i } differ according to a specified corrective
pattern.

The probabilities of [4] are computed for the average case. That is, those
authors assume that the message block M is uniformly distributed and the
intermediate hash value is uniformly distributed. Under these assumptions, [4]
claims that the probability of a collision in the output is smaller than 2−132

(resp. 2−264). Alternatively, one may read this as saying that more than 2132

(resp. 2264) triples are required to find a triple that results in a collision. Quite
reasonably, the authors of [4] compared this complexity to the complexity of

2256/2=128(resp. 2512/2=256)) of a simple collision attack, and concluded that
SHA-2 resists the attack.

Unfortunately, this does not tell the whole story. Let 1/N denote the proba-
bility of the collision. If, given a message, it is possible for an attacker to construct
N triples for which M is a block of the original message, then then there is likely
to be a collision in at least one of these triples. This means that the attacker will
have has performed a second pre-image attack with complexity N . Moreover,
if SHA-2 is to be considered secure, then the complexity of the attack should
be greater than the second pre-image bound of 2n which is significantly greater
than the birthday attack bound of 2n/2.

For example, suppose that the probabilities obtained in [4] are accurate,
and the probability of a collision is 2−132 (resp. 2−264). This suggests that if
an attacker can obtain 2132 (resp. 2264) triples from a given message, then the
attacker can perform a second pre-image attack with complexity 2132 (resp.
2264). This complexity is far below the second pre-image bound of 2256 (resp.
2512). This result would be a serious concern if not that the probability is an
upper bound. That is, the analysis of [4] obtained unrealistic upper bounds on
the probability by using an extremely simple analysis. We doubt that there are
any differences in a message block that result in only 3 (resp. 5) occurrences of
the highest probability corrective pattern. So the analysis of [4] only shows that
the complexity of a second pre-image attack is greater than 2132 (resp. 2264);
and this does not reveal if SHA-2 is secure or otherwise.

It is interesting to note that SHA-2 will not accept messages of length great
than 264 (resp. 2128) which may (in the few of some) nullify the previous com-
ments.

Remember that the process complexities listed above correspond to the cor-
rective pattern found by Gilbert and Handschuh. The complexity is reduced
significantly when using the higher probability of our corrective patterns. The
data complexity is also reduced. In short, the case for SHA-2 begins to look
doubtful.

4 Goals in finding a Corrective Pattern

The Gilbert-Handschuh corrective pattern [4] causes a collision when certain
conditions are satisfied. Those authors do not detail what these conditions are
and it is unclear whether these conditions would be placed on the input words
or the register states. Our corrective pattern examines the compression function
in detail to specify how the attacker can cause a collision.

We begin by presuming that the attacker has been specified a multi-block
message (the first-run message) and corresponding message digest, for which the
attacker must find another message (the second-run message) that hashes to
the same message digest. Note that the message schedule is deterministic, so an
attacker will know the value of all first-run input words {Wi}.

There are three classes of actions the attacker performs in our attack:

1. The attacker assumes that certain bits in the register (at a particular round)
satisfy a given condition when hashing the first-run message.

2. The attacker guesses the value of certain bits in the register (at a particular
round) when hashing the first-run message.

3. Based on the assumed and guessed values of bits, and the known values of
the first-run input words, the attacker determines the value of second-run
input words {W ∗

i } that will cause a collision.

The corrective pattern results in equal register states when the assumed condi-
tions are satisfied and when the values assigned to the guessed bits are correct.
We will presume that corrective patterns may then combined to determine one
or more second-run message blocks that may result in a collision (that is, the
second-run message blocks may result in the same intermediate hash value as
the first-run message blocks). The collision occurs when the set of assumed con-
ditions are satisfied and when the values assigned to the set of guessed bits are
correct. If ng denote the number of bits that are guessed (in hashing the first-
run message), then there are 2ng second-run message blocks that are determined
from each first-run message block. At this point in time, we have not conducted
the analysis of the message schedule to determine how to find this second-run
message block; we have only analyzed the compression function.

Suppose the attacker has no information about the initial register states. The
attacker attempts to find a collision at every message block until the attacker
finds a message block for which the assumed conditions have been satisfied.
Thus, if pa denotes the probability that all the assumed conditions are satisfied
(in hashing the first-run message) then the data complexity (the number of mes-
sage blocks required) is 1

pa
. At every one of these message blocks, the attacker

attempts every possible combination of guesses in the off-chance that the as-
sumed conditions are satisfied at that message block. The resulting amount of
computation (the process complexity) is 1

pa
· 2ng since both the assumed condi-

tions and the guessed bits must be correct.
Note that the assumed conditions and guessed bits relate to the first-run

message. When being used as hash function then the attacker knows the initial
register states. Thus, once the first-run message is specified, then the attacker
knows the value of every bit of every register state in every every of every message
block. The implications are worrying.

– When the initial register states are unknown, then the attacker tests each
message block under the assumption that the the conditions are satisfied
and guesses bits at every message block. However, when the initial register
states are known, then the attack can simply observe if the conditions are
satisfied and only guesses bits at those message blocks where the conditions
are satisfied. In other words, the attacker dos not need to guess the bits at
every message block. This alone reduces the process complexity to 1

pa
+ 2pg .

– Further, the attacker now knows the value of the guessed bits, so the attacker
only needs to trial one guess for the bits. Thus, once the attacker finds a first-
run message block where the assumptions are satisfied, then the attacker

needs only construct one second-run message block. This reduces the process
complexity to 1

pa
.

Hence, the complexity is dominated by two factors: the complexity of determin-
ing the second-run message blocks that might cause a collision, and the proba-
bility of satisfying the corresponding assumed conditions. We begin by focussing
on determining corrective patterns that minimize the number of assumptions.
At this point in time, we have spent very little time studying how we determine
the second-run message blocks that might cause a collision.

5 Addition-XOR Corrective Patterns

Our approach is somewhat different to [4]. Rather than considering only XOR-
differences, we also consider addition-differences δX = X∗−X. Both differences
are useful. An analysis of the Σ functions with respect to XOR differences is
simple, while analysis of Σ functions with respect to addition differences is quite
complex. However, the remainder of the compression function is best analyzed
using addition differences. Lemma 1 describes what information is sufficient re-
late XOR-differences and addition-differences.

Lemma 1. If ∆X = λ, then δX can be determined if X[i] is known for every
i < 31 (resp. i < 63) such that λ[i] = 1.

Proof. For every i such that λ[i] = 1, it is known that X∗[i] = X[i] − 1. For
every i such that λ[i] = 0, it is known that X∗[i] = X[i] Thus

X =
∑

i:λ[i]=1

X[i] · 2i +
∑

i:λ[i]=0

X[i] · 2i,

X∗ =
∑

i:λ[i]=1

X∗[i] · 2i +
∑

i:λ[i]=0

X∗[i] · 2i,

=
∑

i:λ[i]=1

(1−X[i]) · 2i +
∑

i:λ[i]=0

X[i] · 2i,

δX = X∗ −X ≡
∑

i:λ[i]=1

(1− 2X[i]) · 2i,

which depends only on the bits X[i] such that λ[i] = 1. For i = 31 the value of
(1 − 2X[i]) · 2i ≡ 231 (mod 232) is independent of X[31]. Similarly, for i = 63
the value of (1 − 2X[i]) · 2i ≡ 263 (mod 264) is independent of X[63]. Thus δX
can be determined if X[i] is known for every i < 31 (resp. i < 63) such that
λ[i] = 1. ut

Note that the attacker can turn a “guess” into an “assumed condition” by
only testing one guess for that value. In the following description I have mini-
mized the sum of the number of assumed conditions and the number of guessed
bits. Tables 3 and 4 describe the possible corrective patterns that result when
some of the internal values have been assumed.

6 The Corrective Patterns

j H G F E D C B A δWi+j Ass. Gue.

0 ∆ - - - - - - - - δEi+1 = δAi+1 = δ0 α̂1 α̂1
δ - - - - - - - -

1 ∆ - - - α1 - - - α1 −δΣ1(Ei+1)− δΣ0(Ai+1) α1,α1 β̂3

δ - - - δ0 - - - δ0 = −δ1,1 − δ1,2 β̂3 γ̂3

2 ∆ - - α1 β3 - - α1 - −δCHi+2 − δΣ1(Ei+2) α1 α1

δ - - δ0 −δ1,2 - - δ0 - = −δ2,1 − δ2,2 β3 ε̂9

3 ∆ - α1 β3 - - α1 - - −δCHi+3 = −δ3 α1 α1
δ - δ0 −δ1,2 - - δ0 - - β3

4 ∆ α1 β3 - - α1 - - - −δHi+4 − δCHi+4 α̂1 β3
δ δ0 −δ1,2 - - δ0 - - - = −δ0 − δ4

5 ∆ β3 - - α1 - - - - −δHi+5 − δCHi+5 - α1

δ −δ1,2 - - δ0 - - - - − δΣ1(Ei+5) γ̂3
= δ1,2 − δ5,1 − δ5,2

6 ∆ - - α1 - - - - - −δCHi+6 = −δ6 - α1
δ - - δ0 - - - - -

7 ∆ - α1 - - - - - - −δCHi+7 = −δ7 - α1
δ - δ0 - - - - - -

8 ∆ α1 - - - - - - - −δHi+8 = −δ0 - -
δ δ0 - - - - - - -

Total Assumed 4|α1|+ 2|α̂1|+ 1|β3|+ 1|β̂3|+ 0|γ̂3|+ 0|ε̂9|
Total Guessed 5|α1|+ 1|α̂1|+ 2|β3|+ 1|β̂3|+ 2|γ̂3|+ 1|ε̂9|

Table 2. A summary of the corrective pattern using addition based differences.

Table 2 summarizes the corrective pattern. Recall that α1 represents a single-
bit difference, with β3 = Σ0(α1), γ3 = Σ1(α1) and ε9 = Σ1(Σ0(α1) ∧ α1′) =
Σ1(β3∧α1′). For each round, the rows beginning with ∆ and δ list the XOR dif-
ferences and addition differences the respectively. The third last column (headed
by “δWi+j”) lists the additive-differences δWi+j required for the corrective pat-
tern. The second last column (headed by “Ass.”) lists the bit positions where
the attacker must assume conditions on register states, while the last column
(headed by “Gue.”) lists the bit positions where the attacker must guess bits.
The last two columns indicate the bits positions at which a condition has been
applied and bit positions where bits have been guessed.

Tables 3, 4 and 5 describe the corrective pattern in detail. The following
notation is used:

– For each round, the first two rows (the rows beginning with ∆ and δ) list
the XOR differences and addition differences respectively.

– Each difference (α1, β3, γ3, ε9) is allocated a row for showing the values of
the register states at the bits where the bit differences is one. The first set

of rows (with M@...) show the assigned values during the first run and the
second set of rows (with M∗@...) show the assigned values during the second
run.
• The values J, L, Q, q3, q4 R and S correspond to guesses of bits in the

first run that change in the second run. These values must be correctly
guessed by the attacker for the corrective pattern to be successful.

• The values ξi, i ∈ {2, 3, 5, 6, 7} and ψi, i ∈ {3, 4} correspond to guesses
of bits that are equal in both the first and second run. These values
must be correctly guessed by the attacker for the corrective pattern to
be successful.

• The values X,Y, Z do not need to be guessed: they are shown for the
purposes of indicating bits of register state values that are equal.

– The remaining rows explain what conditions are required to be placed on
the register values and function outputs. At each such row
• The first column indicates if this condition places an assumption on the

register values (denoted “Ass”.), or if an state value must be guessed
(denoted “Gue”.) or if the internal values determine the value(s) for Wi

(denoted “Det.”).
• The next column(s) indicates what values are assigned. We use the no-

tation X = U ;λ to indicate that the attacker assigns either an internal
condition(s) X[i] = U [i], at the bit(s) where λ[i] = 1; or to indicate that
the attacker assigns the guessed value(s) U [i] to the value(s) X[i] at the
bit(s) where λ[i] = 1. Any relevant consequences of assigning this values
are also noted.

• The last two columns show the bit positions for which assumed condi-
tion are made (headed by “Ass.”) and the bit positions for which bits
which are guessed (headed by “Gue.”). These are the important factors
in determining the complexity

– The table is ended with a summary of the number of bits assumed and
guessed for the rounds in that table.

The principle idea is to guess sufficient bits of the internal state during the
first run, so that we can determine the addition-differences that would generate
or cancel the XOR differences. While the table refers to input words W0, . . . ,W8

and the associated register states, the reader should note that the difference pat-
tern can be applied to any sequence of input words Wi, . . . ,Wi+8. The notation
W0, . . . ,W8 is used to keep the table at a reasonable width.

6.1 Detailed Explanation of Table 3: Rounds 0 to 2

Round 0

Guess E1 = J;α̂1. The attacker wants to inject an XOR-difference ∆E1 = α1.
Guessing the value of the bits of E1 at the bit where α̂1[i] = 1 gives the
attacker sufficient information to determine the corresponding addition dif-
ference δE1 . We use the value J to denote the guess for these bits. This step
requires the attacker to guess bit position(s) indicated by α̂1.

Determine Corresponding δE1. Note that E∗
1 = J ⊕ α1 = J′;α̂1. The ad-

dition difference δE1, which we denote δ0, is computed as δ0 = E∗
1 − E1 =

(J⊕ α1)− J.
Determine required δW0. Note that injecting any addition-difference χ be-

tween W0 and W ∗
0 will cause the addition-difference χ to occur between

between E1 and E∗
1 . Thus, to cause the addition difference δ0 to occur be-

tween the pair E1 and E∗
1 , the attacker injects the difference δW0 = δ0

between W0 and W ∗
0 . Note that this will also have the effect of causing the

addition-difference δ0 between between A1 and A∗
1.

Assume that the condition A1 = E1;α̂1 holds. If this condition holds, then

∆A1 = A∗
1 ⊕A1 = (E1 + δ0)⊕ E1 = (E1 ⊕ α1)⊕ E1 = α1.

If this condition does not hold, then the injected difference will result in more
than one bit of difference in A1, and the complexity of causing a collision
will increase. This step requires the attacker to make assumptions on bit
position(s) indicated by α̂1.

For the remaining rounds, the attacker tries to cancel out the internal differ-
ences in the register states by ensuring that δAi+1 = δT1i + δT2i = 0.

Round 1

Assume that internal conditions result in ∆CH1 = 0. Since E∗
1 = E1 ⊕

α1, the CHOOSE function will choose the value of F1 = F ∗
1 ;α1 at one run

and the value of G1 = G∗
1;α1, at the other run. The attacker could guess that

G1 = F1;α1, or the attacker could guess that G1 = F ′
1;α1. In the first case,

where the attacker guesses that G1 = F1;α1, then ∆CH1 = δCH1 = 0, and
the attacker does not need to guess the values of G1 and F1. In the second
case, where the attacker guesses that G1 = F ′

1;α1, then the attacker knows
that ∆CH1 = α1, but the attacker cannot determine δCH1 without also
guessing either G1 or F1. So the second case requires the attacker to guess
an additional bit of information. Consequently, we choose the first case in
order to minimize the total amount of bits guessed and conditions assumed.
Thus, in this step, the attacker assumes that G1 = F1;α, (which also means
that G∗

1 = F ∗
1 ;α1), which gives ∆CH1 = 0. We will denote the value of G1;α

by X: the attacker does not need to guess this value; we have just shown this
value in the table to indicate that the values are equal. This step requires
the attacker to make assumptions on bit position(s) indicated by α1.

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

0 ∆ - - - - - - - - - - ? - - - α1 α1
δ - - - - - - - - - - δ0 - - - δ0 δ0

M@α1 X X Y Y J J J
M∗@α1 X X Y Y J′ J′ J′

Gue. E1 = J; α̂1 δE1
def
= δ0 = (J⊕ α)− J α̂1

Det. δW0 = δE1 = a ⇒ δE1 = δ0 ⇒ δA1 = δ0

Ass. A1 = E1 = J; α̂1 ⇒ ∆A1 = ∆E1 = α1 α̂1

Round 0: δW0 = δE1 Ass. α̂1 Gue. α̂1

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

1 ∆ - - - α1 - - - α1 - γ3 ? - β3 β3 β3 -
δ - - - δ0 - - - δ0 - δ1,1 −δ1,2 - δ1,2 δ1,2 −δ1,2 -

M@α1 X X J Y Y J ξ2 Y
M@β3 Z Z Q Q′

M@γ3 L
M∗@α1 X X J′ Y Y J′ ξ2 Y
M∗@β3 Z Z Q′ Q
M∗@γ3 L′

Ass. ∆CH1 = 0: G1 = F1;α1 ⇔ F0 = E0
def
= X; α1 α1

∆MJ1 = 0: C1 = B1;α1 ⇔ B0 = A0
def
= Y ; α1 α1

Gue. Σ1(E1) = L; γ̂3 ⇒ δΣ1(E1)
def
= δ1,1 = (L⊕ γ3)− L γ̂3

Σ0(A1) = Q; β̂3 ⇒ δΣ0(A
∗
1)

def
= δ1,1 = (Q⊕ β3)−Q β̂3

Det. δW1 = −δΣ1(E1)− δΣ0(A
∗
1) ⇒ δW1 = −δ1,1 − δ1,2

⇒ δE2 = −δ1,2, δA2 = 0

Ass. E2 = Σ0(A1)
′ = Q′; β̂3 ⇒ E∗

2 = Q, ∆E2 = β3 β̂3

Round 1: δW1 = −δΣ1(E1)− δΣ0(A1) Ass. α1, α1, β̂3 Gue. β̂3, γ̂3

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

2 ∆ - - α1 β3 - - α1 - ξ2 ε9 - - - - - -
δ - - δ0 −δ1,2 - - δ0 - δ2,1 δ2,2 - - - - - -

M@α1 X X J ξ2 Y Y J Y J;ξ2 ξ3 Y
M@β3 Z Z Q′ ψ3

M@ε9 R
M∗@α1 X X J′ ξ2 Y Y J′ Y J′;ξ2 ξ3 Y
M∗@β3 Z Z Q ψ3

M∗@ε9 R′

Ass. ∆CH2 = 0; β3 G2 = F2;β3 ⇔ E1 = E0
def
= Z; β3 β3

Gue. E2(= E∗
2) = ξ2; α1 ⇒ CH2 = J;ξ2, CH

∗
2 = J′; ξ2 α1

⇒ δCH2
def
= δ2,1 = (J⊕ ξ2)− J.

Ass. ∆MJ2 = 0: A2 = C2 = Y ; α1 α1

Gue. Σ1(E2) = R; ε9 ⇒ δΣ1(E2)
def
= δ2,2 = (R⊕ ε9)−R ε̂9

Det. δW2 = −δCH2 − δΣ1(E2) ⇒ δW2 = −δ2,1 − δ2,2

Round 2: δW2 = −δCH2 − δΣ1(E2) Ass. α1, β3 Gue. α1, ε̂9

Rounds 0 to 2: Assumed Conditions 3|α1|+ 1|α̂1|+ 1|β3|+ 1|β̂3|+ 0|γ̂3|+ 0|ε̂9|
Rounds 0 to 2: Bits Guessed 1|α1|+ 1|α̂1|+ 0|β3|+ 1|β̂3|+ 1|γ̂3|+ 1|ε̂9|

Table 3. Details of the corrective pattern for rounds 0 to 2.

Note 1. If α1 = 2w−1, then the attacker does not have to guess G2[i] or
F2[i] in the second case in order to determine the corresponding additive
difference. This means that, if α1 = 2w−1, then the attacker may guess
the value of (G2[i] ⊕ F2[i]) (rather than assuming that G2[i] ⊕ F2[i] = 0)
as the attacker can detemine the addition-difference to cancel the resulting
difference. Thus, if α1 = 2w−1, then one of the assume conditions becomes
a guessed bit.

Assume that internal conditions result in ∆MJ1 = 0. Observe thatB1 =
B∗

1 , and C1 = C∗
1 . The attacker could guess that B1 = C1;α, or the attacker

could guess that B1 = C ′
1;α. In the first case, then the output of the MAJOR-

ITY function is the value (B1) in both runs, and thus ∆MJ = δMJ = 0;
the attacker does not have to input a difference in W1 in order to cancel this
difference. In the second case, then the output of the MAJORITY function
has MJ1 = J;α, and MJ∗1 = J′;α so ∆MJ1 = α, and δMJ1 = δ0 = δT21.
In this case, the attacker will want a difference δT11 = −δ0, in order to have
∆A1 = δA1 = 0. This will inject a difference between E2 and E∗

2 . Cancelling
this difference in further rounds would add significant complexity. This would
result in the attacker guessing further bits of state. Consequently, we choose
the first case in order to minimize the total amount of bits guessed and con-
ditions assumed. Thus, in this step, the attacker assumes that B1 = C1;α,
(which also means that B∗

1 = C∗
1 ;α), which gives ∆MJ1 = 0. We will de-

note the value of B1;α by Y : the attacker does not need to guess this value;
we have just shown this value in the table to indicate that the values are
equal. This step requires the attacker to make assumptions on bit position(s)
indicated by α1.

Guess Σ1(E1) = L;γ̂3. Assuming that the assigned values are correct, then the
attacker knows that ∆E1 = α1, and thus ∆Σ1(E1) = Σ1(∆E1) = γ3. The
attacker needs to know the addition-difference δΣ1(E1) so that the attacker
can insert the necessary difference in δW1 to cancel this difference out in
the compression function. That is, the attacker needs to know the value of
Σ1(E1) at the bits where γ̂3[i] = 1. Each bit of Σ1(E1) has inputs from
three bits, and the attacker has only assigned values to one of these bits.
Consequently, the attacker needs to guess the value of the bits of Σ1(E1)
at the bits where γ̂3[i] = 1. This gives the attacker sufficient information to
determine the corresponding addition difference δΣ1(E1). We use the value
L to denote the guess for these bits. This step requires the attacker to guess
bit position(s) indicated by γ̂3.

Guess Σ0(A1) = Q;β̂3. Assuming that the assigned values are correct, then the
attacker knows that ∆A1 = α1, and thus ∆Σ0(A1) = Σ0(∆A1) = β3. The
attacker needs to know the addition-difference δΣ0(A1) so that the attacker
can insert the necessary difference in δW1 to cancel this difference out in
the compression function. That is, the attacker needs to know the value of
Σ0(A1) at the bits where β̂3[i] = 1 Each bit of Σ0(A1) has inputs from
three bits, and the attacker has only assigned values to one of these bits.
Consequently, the attacker needs to guess the value of the bits of Σ0(A1)

at the bits where β̂3[i] = 1. This gives the attacker sufficient information to
determine the corresponding addition difference δΣ0(A1). We use the value
Q to denote the guess for these bits. This step requires the attacker to guess
bit position(s) indicated by β̂3.

Determine required δW1. The attacker injects an addition-difference between
W1 and W ∗

1 in order to cancel the differences so that δA2 = 0. Thus
δW1 = −δΣ1(E1) − δΣ0(A1) = −δ1,1 − δ1,2. A by-product of injecting this
difference is that δT11 = −δ1,2 and δE2 = −δ1,2.

Assume that the condition E2 = Σ0(A1);β̂3 holds. If this condition holds,
then

∆E2 = E∗
2 ⊕ E2 = (E2 − δ1,2)⊕ E2 = (Σ0(A1)⊕ β3)⊕Σ0(A1) = β3.

If this condition does not hold, then the injected difference will result in more
than one bit of difference in A1, and the complexity of causing a collision
will increase. This step requires the attacker to make assumptions on bit
position(s) indicated by β̂3.

Round 2

Assume the internal conditions give ∆CH3 = 0;β3. That is, the attacker
wishes to get ∆CH2[i] = 0, at the bits where β3[i] = 1. The attacker knows
that the CHOOSE function will choose the value of F2 = F ∗

2 ;β3, at one run
and the value of G2 = G∗

2;β3, at the other run. For the three bits where
β3[i] = 1, the attacker could guess that G2[i] = F2[i], or the attacker could
guess that G2[i] = F ′

2[i]. In the first case, where the attacker guesses that
G2[i] = F2[i], then ∆CH2[i] and the attacker does not need to guess the
values of G2[i] and F2[i] as there is no difference to cancel. In the second
case ,where the attacker guesses that G2[i] = F ′

2[i], then the attacker knows
that ∆CH2[i] = 1, but the attacker cannot determine the corresponding
addition-difference δCH2 without also guessing either G2[i] or F2[i]. So the
second case requires the attacker to guess an additional bit of information.
Consequently, for each bit where β3[i] = 1, the we choose the first case in
order to minimize the total amount of bits guessed and conditions assumed.
Thus, in this step, the attacker assumes that G2 = F2;β3, (which also means
that G∗

2 = F ∗
2 ;β3), which gives ∆CH2 = 0;β3. We will denote the value of

G2;β3 by Z: the attacker does not need to guess this value; we have just
shown this value in the table to indicate that the values are equal. This step
requires the attacker to make assumptions on bit position(s) indicated by β̂3.

Guess E2 = ξ2;α1, and infer ∆CH2 and δCH2. Observe that E2 = E∗
2 ;α.

The value of E2 affects where the CHOOSE function outputs F2 and F ∗
2

or G2 and G∗
2 in the first and second run respectively. Let i denote the bits

position where α1 = 1.
– If E2[i] = 1, then the CHOOSE function outputs F2[i] = J[i], and F ∗

2 [i] =
J′[i], in the first and second run respectively. Thus ∆CH2 = α1, and
since the value of CH2[i] is known, the attacker also knows δCH2 = δ0.

– If E2[i] = 0, then the CHOOSE function outputsG2[i], andG∗
2[i] = G2[i],

in the first and second run respectively. Thus ∆CH2 = δCH2 = 0, and
the attacker does not have to input a difference in W2 in order to cancel
this difference.

Thus, if E2 = E∗
2 = ξ2;α1, then ∆CH2 = ξ2, and δCH2 = 0, when xi2 = 0

and δCH2 = α1 when ξ2 = δ0. This step requires the attacker to guess bit
position(s) indicated by α1.

Assume that internal conditions result in ∆MJ2 = 0. Observe thatA2 =
A∗

2, and C2 = C∗
2 = Y . The attacker could guess that A2 = C2;α, or

the attacker could guess that A2 = C ′
2;α. In the first case, then the out-

put of the MAJORITY function is the value (A2) in both runs, and thus
∆MJ = δMJ = 0; the attacker does not have to input a difference in W2

in order to cancel this difference. In the second case, then the output of the
MAJORITY function has MJ2 = J;α, and MJ∗2 = J′;α, so ∆MJ2 = α,
and δMJ2 = δ0 = δT22. In this case, the attacker will want a difference
δT12 = −δ0, in order to have ∆A2 = δA2 = 0. This will inject a differ-
ence between E3 and E∗

3 . Cancelling this difference in further rounds would
add significant complexity. This would result in the attacker guessing fur-
ther bits of state. Consequently, we choose the first case in order to mini-
mize the total amount of bits guessed and conditions assumed. Thus, in this
step, the attacker assumes that A2 = C2 = Y ;α, (which also means that
A∗

2 = C∗
2 = Y ;α), which gives ∆MJ2 = 0. This step requires the attacker to

make assumptions on bit position(s) indicated by α1.
Guess Σ1(E2) = R;ε̂9. Assuming that the assigned values are correct, then the

attacker knows that ∆E2 = β3 and thus ∆Σ1(E2) = Σ1(∆E2) = ε9. The
attacker needs to know the addition-difference δΣ1(E2) so that the attacker
can insert the necessary difference in δW2 to cancel this difference out in
the compression function. That is, the attacker needs to know the value of
Σ1(E2) at the bits where ε̂9[i] = 1, Each bit of Σ1(E2) has inputs from
three bits, and the attacker has only assigned values to one of these bits.
Consequently, the attacker needs to guess the value of the bits of Σ1(E2)
at the bits where ε̂9[i] = 1. This gives the attacker sufficient information to
determine the corresponding addition difference δΣ1(E2). We use the value
R to denote the guess for these bits. This step requires the attacker to guess
bit position(s) indicated by ε̂9.

Determine required δW2. The attacker injects an addition-difference between
W1 and W ∗

1 in order to cancel the differences so that δA3 = 0. Thus
δW2 = −δCH2 − δΣ1(E2) = −δ2,1 − δ2,2. A by-product of injecting this
difference is that δT12 = 0, and δE3 = 0.

6.2 Detailed Explanation of Table 4: Rounds 3 to 5

Round 3

Guess the value of E3 = E∗
3 = ξ3;α1. Let i denote the bits position where

α1 = 1.
– If E3[i] = 1, then the CHOOSE function outputs F3[i] and F ∗

3 [i] = F3[i]
in the first and second run respectively. Thus ∆CH3[i] = 0, and the
attacker does not have to input a difference in W3 in order to cancel a
difference.

– If E3[i] = 0, then the CHOOSE function outputs G3[i] = J[i] and G∗
3[i] =

J′[i] in the first and second run respectively. Thus ∆CH3[i] = α1[i], and
since the value of CH3[i] is known, the attacker also knows that the
corresponding addition-difference is δ0.

Thus, if E3[i] = E∗
3 [i] = ξ3[i], then ∆CH3 = τ3[i] = ξ′3[i] ∧ α1. Let δ3

denote the corresponding addition-difference. We will use this information
to compute δCH3 at a later step This step requires the attacker to guess bit
position(s) indicated by α1.

Guess the value of E3 = E∗
3 = ψ3;β3. Let i denote one of the three bit posi-

tions where β3[i] = 1.
– If E3[i] = 1, then the CHOOSE function outputs F3[i] = Q[i], and
F ∗

3 [i] = Q′[i], in the first and second run respectively. Thus∆CH3[i] = 1,
and since the value of CH3[i] is known, the attacker also knows the
corresponding additive difference.

– If E3[i] = 0, then the CHOOSE function outputs G3[i] and G∗
3[i] = G3[i],

in the first and second run respectively. Thus ∆CH3[i] = 0, and the
attacker does not have to input a difference in W3 in order to cancel a
difference.

Thus, if E3 = E∗
3 = ψ3;β3, then ∆CH3 = ψ3. This step requires the attacker

to guess bit position(s) indicated by β3.
Compute δCH3. After guessing E3 = E∗

3 = ξ3;α1, and E3 = E∗
3 = ψ3;β3, the

attacker has determined ∆CH3 and knows the values of CH[i] ad the bit
positions where ∆CH3 = 1. Hence the attacker has enough information to
determine δCH3

def= δ3, where

δCH3 = (J3 ⊕ τ3)− J′3 + (Q ∧ ψ3)− ((Q ∧ ψ3)⊕ ψ3).

Assume that the internal conditions result in ∆MJ3 = 0. Observer that
A3 = A∗

3, and B3 = B∗
3 . The attacker could guess that A3 = B3;α, or the

attacker could guess that A3 = B′
3;α. In the first case, then the output of

the MAJORITY function is the value (A3) in both runs, and thus ∆MJ =
δMJ = 0; the attacker does not have to input a difference in W3 in order to
cancel this difference. In the second case, then the output of the MAJORITY
function has MJ3 = J;α, and MJ∗3 = J′;α, so ∆MJ3 = α, and δMJ3 =
δ0 = δT23. In this case, the attacker will want a difference δT13 = −δ0,
in order to have ∆A3 = δA3 = 0. This will inject a difference between E3

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 MJ Σ0 Ei+1 Ass. Gue.

3 ∆ - α1 β3 - - α1 - - τ3 ⊕ ψ3 - - - -
δ - δ0 −δ1,2 - - δ0 - - δ3 - - - -

M@α1 X J ξ2 ξ′3 Y J Y Y J;ξ̂3 ξ5
M@β3 Z Z Q′ ψ3 Q′;ψ′4 ψ′4
M∗@α1 X J′ ξ2 ξ′3 Y J′ Y Y J′;ξ̂3 ξ5
M∗@β3 Z Z Q ψ3 Q;ψ′4 ψ4

Gue. E3 = ξ3;α1 ⇒ CH3 = J;τ3, CH
∗
3 = J′;τ3 where τ3 = ξ′3 ∧ α1 α1

E3 = ψ3;β3 ⇒ CH3 = Q;ψ3 and CH3 = Q;ψ3 β3

Det. δCH3
def
= δ3 = (J3 ⊕ τ3)− J′3 + (Q ∧ ψ3)− ((Q ∧ ψ3)⊕ ψ3)

Ass. ∆MJ3 = 0 ⇒ A3 = B3 = Y ;α1 α1
Det. δW3 = −δCH3 = −δ3
Round 3: δW3 = −δCH3 Ass. α1 Gue. α1, β3

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 MJ Σ0 Ei+1 Ass. Gue.

4 ∆ α1 β3 - - α1 - - - µ4 - - - α1
δ δ0 −δ1,2 - - δ0 - - - δ4 - - - δ0

M@α1 J ξ2 ξ3 ξ5 J Y Y µ4 Y J
M@β3 Z Q′ ψ3 ψ4 Q′;µ̂4

M∗@α1 J′ ξ2 ξ3 ξ5 J′ Y Y µ4 Y J′

M∗@β3 Z Q ψ3 ψ4 Q;µ̂4

Gue. E4 = ψ4;β3 ⇒ CH4 = Q′;µ4 and CH4 = Q;µ4 β3
where µ4 = ψ′4 ∧ β3

Det. δCH4
def
= δ4 = (Q ∧ µ4)− ((Q ∧ µ4)⊕ µ4)

Det. δW4 = −δH4 − δCH4⇒ δW4 = −δ0 − δ4

Ass. E5 = D4 = J;α1 ⇒ δE5 = δD4 = δ0 α̂1

Round 4: δW4 = −δH4 − δCH4 Ass. α̂1 Gue. β3

Hi Gi Fi Ei Di Ci Bi Ai CH Σ1 MJ Σ0 Ei+1 Ass. Gue.

5 ∆ β3 - - α1 - - - - τ5 γ3 - - -
δ −δ1,2 - - δ0 - - - - δ5,1 δ5,2 - - -

M@α1 ξ2 ξ3 ξ5 J Y Y ξ6
M@β3 Q′ ψ3 ψ4

M@γ3 S
M∗@α1 ξ2 ξ3 ξ5 J′ Y Y ξ6
M∗@β3 Q ψ3 ψ4

M∗@γ3 S
Det. δH5 = −δ1,2

Gue. F5 = ξ5;α1. Attacker infers CH5;α1 and CH∗
5 ;α1 α1

Det. ⇒ ∆CH5
def
= τ5 = (ξ5 ⊕ ξ3) ⇒ δCH5

def
= δ5,1 = CH∗

5 − CH5

Gue. S Σ1(E5) = S;γ3 ⇒ δΣ1(E5)
def
= δ5,2 = (S⊕ γ3)− S. γ̂3

Det. δW5 = −δH5 − δCH5 − δΣ1(E5) = δ1,2 − δ5,1 − δ5,2

Round 5: δW5 = −δH5 − δCH5 − δΣ1(E5) Ass. Gue. α1, γ3

Rounds 3 to 5: Assumed Conditions 1|α1|+ 1|α̂1|+ 0|β3|+ 0|β̂3|+ 0|γ̂3|+ 0|ε̂9|
Rounds 3 to 5: Bits Guessed 2|α1|+ 0|α̂1|+ 2|β3|+ 0|β̂3|+ 1|γ̂3|+ 0|ε̂9|

Table 4. Details of the corrective pattern for rounds 3 to 5.

and E∗
3 . Cancelling this difference in further rounds would add significant

complexity. This would result in the attacker guessing further bits of state.
Consequently, we choose the first case in order to minimize the total amount
of bits guessed and conditions assumed. Thus, in this step, the attacker
assumes that A3 = B3 = Y ;α, (which also means that A∗

3 = B∗
3 = Y ;α),

which gives ∆MJ3 = 0. This step requires the attacker to make assumptions
on bit position(s) indicated by α1.

Determine required δW3. The attacker injects an addition-difference between
W3 and W ∗

3 in order to cancel the differences so that δA4 = 0. Thus
δW3 = −δCH3 = −δ3. A by-product of injecting this difference is that
δT13 = 0, and δE4 = 0.

Round 4

Determine δH4. Note that the difference in E1 has now propagated to the top
of the register so δH4 = δE1 = δ0.

Guess the value of E4 = E∗
4 = ψ4;β3. Let i denote the bits position where

β3 = 1.
– If E4[i] = 1, then the CHOOSE function outputs F4[i] and F ∗

4 [i] = F4[i],
in the first and second run respectively. Thus ∆CH4[i] = 0, and the
attacker does not have to input a difference in W4 in order to cancel a
difference.

– If E4[i] = 0, then the CHOOSE function outputs G4[i] = Q′[i], and
G∗

4[i] = Q[i], in the first and second run respectively. Thus ∆CH4[i] =
β3[i], and since the value of CH4[i] is known, the attacker also knows
that the corresponding addition-difference is δ0.

Thus, if E4 = E∗
4 = ψ4, then ∆CH4 = µ4 = ψ′4 ∧ β3, with CH4 = Q′ ∧ µ4,

and CH4 = Q ∧ µ4 This step requires the attacker to guess bit position(s)
indicated by β3.

Determine δCH4. Since CH4[i] is known at the bit positions where ∆CH[i] =
0, the attacker can determine δCH4, which we denote by δ4:

δCH4 = (Q ∧ µ4)− (Q′ ∧ µ4).

Determine required δW4. The attacker injects an addition-difference between
W4 and W ∗

4 in order to cancel the differences so that δA5 = 0. Thus
δW4 = −δH4 − δCH4 = −δ0 − δ4. A by-product of injecting this differ-
ence is that δT14 = 0, and since δD4 = δ0, this implies that δE5 = δ0.

Assume that the condition E5 = D4;α̂1 holds. If this condition holds, then

∆E5 = E∗
5 ⊕A5 = (E5 + δ0)⊕ E5 = (D4 ⊕ α1)⊕D4 = α1.

If this condition does not hold, then the injected difference will result in more
than one bit of difference in E5, and the complexity of causing a collision
will increase. This step requires the attacker to make assumptions on bit
position(s) indicated by α̂1.

Round 5

Determine δH5. Note that the difference in E2 has now propagated to the top
of the register so δH5 = δE2 = −δ1,2.

Guess F5 = ξ5;α1, and infer δCH5. Observe that F5 = F ∗
5 . The CHOOSE

function will choose the value of F5 = F ∗
5 = ξ5;α1, at one run and the value

of G5 = G∗
5 = ξ3;α1, at the other run. This will give ∆CH5 = (ξ3 ⊕ ξ5). If

the ∆CH5 = 0, then the attacker does not need to cancel out the difference.
If ∆CH5 = α1, then the attacker knows the value of CH5 at this bit, so the
attacker is able to determine δCH5, which we denote by δ5,1.

Guess Σ1(E5) = S;γ̂3. Assuming that the assigned values are correct, then the
attacker knows that ∆E5 = α1 and thus ∆Σ1(E5) = Σ1(∆E5) = γ3. The
attacker needs to know the addition-difference δΣ1(E5) so that the attacker
can insert the necessary difference in δW1 to cancel this difference out in
the compression function. That is, the attacker needs to know the value of
Σ1(E5) at the bits where γ̂3[i] = 1. Each bit of Σ1(E5) has inputs from
three bits, and the attacker has only assigned values to one of these bits.
Consequently, the attacker needs to guess the value of the bits of Σ1(E5)
at the bits where γ̂3[i] = 1. This gives the attacker sufficient information to
determine the corresponding addition difference δΣ1(E5) which we denote
by δ5,2. We use the value S to denote the guess for these bits. This step
requires the attacker to guess bit position(s) indicated by γ̂3.

Determine required δW5. The attacker injects an addition-difference between
W5 and W ∗

5 in order to cancel the differences so that δA6 = 0. Thus
δW5 = −δH5 − δΣ1(E5) − δCH5 = −δ1,2 − δ5,1 − δ5,2. A by-product of
injecting this difference is that δT15 = 0, and δE6 = 0.

6.3 Detailed Explanation of Table 5: Rounds 6 to 8

Hi Gi Fi Ei Di Ci Bi Ai Wi CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

6 ∆ - - α1 - - - - - ξ6 - - - - - - -
δ - - δ0 - - - - - δ6 - - - - - - -

M@α1 ξ′3 ξ5 J ξ6 Y J;ξ6 ξ7
M∗@α1 ξ′3 ξ5 J′ ξ6 Y J′;ξ6 ξ7

Gue. E6 = ξ6; α1 ⇒ CH6 = J;ξ6, CH
∗
6 = J′;ξ6 α1

Det. δCH6
def
= δ6 δ6 = (J⊕ ξ6)− J

Det. δW6 = −δ6
Summary of Round 6: δW6 = −δCH6 = −δ6 α1

Hi Gi Fi Ei Di Ci Bi Ai Wi CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

7 ∆ - α1 - - - - - - τ7 - - - - - - -
δ - δ0 - - - - - - δ7 - - - - - - -

M@α1 ξ5 J ξ6 ξ7 J;τ7
M∗@α1 ξ5 J′ ξ6 ξ7 J′;τ7

Gue. E7 = ξ7; α1 ⇒ CH7 = J;τ7, CH
∗
7 = J′;τ7 α1

where τ7 = ξ′7 ∧ α1.

Det. δCH7
def
= δ7 δ7 = (J⊕ τ7)− J

Det. δW7 = −δCH7 = −δ7
Summary of Round 7: δW7 = −δ7 α1

Hi Gi Fi Ei Di Ci Bi Ai Wi CH Σ1 T1 MJ Σ0 T2 Ei+1 Ai+1 Ass. Gue.

8 ∆ α1 - - - - - - - - - - - - - - -
δ δ0 - - - - - - - - - - - - - - -

M@α1 J
M∗@α1 J′

Det. δH8 = δ0
Det. δW8 = −δH8 = −δ0
Summary of Round 8: δW8 = −δ0

Rounds 6 to 8: Bits Guessed 2|α1|+ 0|α̂1|+ 0|β3|+ 0|β̂3|+ 0|γ̂3|+ 0|ε̂9|

Table 5. Details of the corrective pattern for rounds 6 to 8.

Round 6

Guess E6 = E∗
6 = ξ6;α1, and infer ∆CH6 and δCH6. Observe E6 = E∗

6 ;α1.
The value of E6 affects where the CHOOSE function outputs F6 and F ∗

6 or
G6 and G∗

6 in the first and second run respectively. Let i denote the bits
position where α1 = 1.
– If E6[i] = 1, then the CHOOSE function outputs F6[i] = J[i], and F ∗

6 [i] =
J′[i], in the first and second run respectively. Thus ∆CH6 = α1, and
since the value of CH6[i] is known, the attacker also knows δCH6 = δ0.

– If E6[i] = 0, then the CHOOSE function outputs G6[i] and G∗
6[i] = G6[i],

in the first and second run respectively. Thus ∆CH6 = δCH6 = 0, and

the attacker does not have to input a difference in W6 in order to cancel
this difference.

Thus, if E6 = E∗
6 = ξ6;α1, then ∆CH6 = ξ6, and δCH6 = 0, when xi6 = 0

and δCH6 = α1, when ξ6 = δ0. Let δ6 denote the value of δCH6. This step
requires the attacker to guess bit position(s) indicated by α1.

Determine required δW6. The attacker injects an addition-difference between
W6 and W ∗

6 in order to cancel the differences so that δA7 = 0. Thus
δW6 = −δCH6 = −δ6. A by-product of injecting this difference is that
δT16 = 0, and δE7 = 0.

Round 7

Guess the value of E7 = E∗
7 = ξ7;α1. Let i denote the bits position where

α1 = 1.
– If E7[i] = 1, then the CHOOSE function outputs F7[i] and F ∗

7 [i] = F7[i],
in the first and second run respectively. Thus ∆CH7[i] = 0 and the
attacker does not have to input a difference in W7 in order to cancel a
difference.

– If E7[i] = 0, then the CHOOSE function outputs G7[i] = J[i], and
G∗

7[i] = J′[i], in the first and second run respectively. Thus ∆CH7[i] =
α1[i], and since the value of CH7[i] is known, the attacker also knows
that the corresponding addition-difference is δ0.

Thus, if E7[i] = E∗
7 [i] = ξ7[i], then ∆CH7 = τ7[i] = ξ′7[i] ∧ α1. Let δ7

denote the corresponding addition-difference. This step requires the attacker
to guess bit position(s) indicated by α1.

Determine required δW7. The attacker injects an addition-difference between
W7 and W ∗

7 in order to cancel the differences so that δA8 = 0. Thus
δW7 = −δCH7 = −δ7. A by-product of injecting this difference is that
δT17 = 0, and δE8 = 0.

Round 8

Determine δH8. Note that the difference in A1 has now propagated to the top
of the register so δH8 = δA1 = δ0.

Determine required δW8. The attacker injects an addition-difference between
W8 and W ∗

8 in order to cancel the differences so that δA9 = 0. Thus
δW8 = −δCH8 = −δ8. After injecting this differece, all the internal con-
ditions have been canceled and the register states in the first and second
runs are equal.

7 Complexity

The probability that the assumptions hold is is equal to 2−u where u is the total
number of bits that have assumptions placed on them. Table 6 indicates that
u = 4|α1| + 2|α̂1| + 1|β3| + 1|β̂3|. An exception occurs when α1 = 2w−1 (See

Rounds 0 to 2: Assumed Conditions 3|α1|+ 1|α̂1|+ 1|β3|+ 1|β̂3|+ 0|γ̂3|+ 0|ε̂9|
Rounds 3 to 5: Assumed Conditions 1|α1|+ 1|α̂1|+ 0|β3|+ 0|β̂3|+ 0|γ̂3|+ 0|ε̂9|

Total Assumed Conditions 4|α1|+ 2|α̂1|+ 1|β3|+ 1|β̂3|+ 0|γ̂3|+ 0|ε̂9|
Rounds 0 to 2: Bits Guessed 1|α1|+ 1|α̂1|+ 0|β3|+ 1|β̂3|+ 1|γ̂3|+ 1|ε̂9|
Rounds 3 to 5: Bits Guessed 2|α1|+ 0|α̂1|+ 2|β3|+ 0|β̂3|+ 1|γ̂3|+ 0|ε̂9|
Rounds 6 to 8: Bits Guessed 2|α1|+ 0|α̂1|+ 0|β3|+ 0|β̂3|+ 0|γ̂3|+ 0|ε̂9|

Total Bits Guessed 5|α1|+ 1|α̂1|+ 2|β3|+ 1|β̂3|+ 2|γ̂3|+ 1|ε̂9|
Total Number of Bits 9|α1|+ 3|α̂1|+ 3|β3|+ 2|β̂3|+ 2|γ̂3|+ 1|ε̂9|

Table 6. A summary of number of assumed conditions and guessed bits in the correc-
tive pattern.

Note 1 in analysis of Round 1), in which case u = 3|α1|+ 2|α̂1|+ 1|β3|+ 1|β̂3|.
For each message block, where the conditions are assumed to hold, the attacker
attempts 2v guesses for bits of the internal state, v is the total number of bits
that are guessed. Table 6 indicates that v = 5|α1|+2|α̂1|+1|β3|+2|β̂3|+1|ε̂9|.
An exception occurs when α1 = 2w−1 (See Note 1 in analysis of Round 1), in
which case v = 6|α1|+2|α̂1|+1|β3|+2|β̂3|+1|ε̂9|. For most single-bit differences
α1, these values are:

|α̂1| = |α1| = 1; |β̂3| = |β3| = 3; |γ̂3| = 3; |ε̂9| = 9; so
u = 4 · 1 + 2 · 1 + 1 · 3 + 1 · 3 + 0 · 3 + 0 · 9 = 12,
v = 5 · 1 + 1 · 1 + 2 · 3 + 1 · 3 + 2 · 3 + 1 · 9 = 30.

Thus, the probability of the assumed conditions being true is 2−12 and for
each block where the conditions are assumed to hold, the attacker attempts
230 guesses for bits of the internal state. This indiates a total complexity of 242:
assuming that the initial register states are unknown.

The complexity can be deceased by choosing α1 such that one or more of the
differences α1, β3, γ3,ε9 has the MSB equal to 1. The effect of this is to reduce the
corresponding weight(s) of α̂1 β̂3, γ̂3, or ε̂9. If the difference α1 = 0x80000000 is
chosen, then α̂1 = 0x00000000 and the probability is increased from 242 to 239:
assuming that the initial register states are unknown. However, we note that
that one of the assumed conditions has also become guess, so the probability of
the assumed conditions being true is 2−9 and for each block where the conditions
are assumed to hold, the attacker attempts 230 guesses for bits of the internal
state.

In the case of SHA-224/256, the probability is also increased to 2−39 when
α1 = 0x00001000, for which

β3 = 0x80400400, γ3 = 0x00080042, ε9 = 0xa2130850,
β̂3 = 0x00400400, γ̂3 = 0x00080042, ε̂9 = 0x22130850,

so the Hamming weights of both β̂3 and ε̂9 have decreased by one.

These two corrective patters appears to have the minimum probability for
corrective patterns based on single-bit differences.

7.1 Known Initial States

When computing an un-keyed hash of a message, then the initial register states
are known to the attacker. As noted in Section 4, this reduces the complexity
significantly for two reasons: the attacker can test the assumptions independently
of guessing bits; and the attacker no longer has to guess bits since the values
can be computed by the attacker. This reduces, to 29, the complexity of finding
a corrective pattern that results in equal register states.

8 Conclusion

New corrective patterns for the SHA-2 register are presented. The probabbility
of the corrective pattern is 2−39 when the intial register states are unknown, and
2−9 when the initial register states are known. This probability voids the previous
analysis that concluded that the SHA-2 algorithms resist Chaboud-Joux attacks.
However, we cannot conclude (from our results) whether the SHA-2 algorithms
are sufficiently secure or not. A more detailed analysis of the message schedule
is required. We have not yet attempted such an analysis, but recommend this as
an worthwhile venture for any cryptologist.

References

1. Eli Biham, Rafi Chen New results on SHA-0 and SHA-1 Short talk presented at
CRYPTO 2004 Rump Session, 2004.

2. F. Chabaud and A. Joux, Differential Collisions in SHA-0, Advances in Cryptology-
CRYPTO’98, Lecture Notes in Computer Science, vol.1462, pp.56-71, Springer-
Verlag, 1998.

3. National Institute of Standards and Technology, Federal Information Processing
Standards (FIPS) Publication 180-2, Secure Hash Standard (SHS), February, 2004.

4. H. Gilbert and H. Hanschuh, Security Analysis of SHA-256 and sisters, Selected
Areas in Cryptography, SAC 2003, Ottawa, Canada, Lecture Notes in Computer
Science, vol. 3006, M. Matsui and R. Zuccheratopp (Eds), pp. 175-193, Springer,
2004.

5. A. Joux, Collisions in SHA-0 Short talk presented at CRYPTO 2004 Rump Session,
2004.

6. A. Menezes, P van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press LLC, 1997.

7. X. Wang, D. Feng, X. Lai and H. Yu, Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report 2004/199, see
http://eprint.iacr.org/

