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Abst rac t  

We establish the link between correlation-tmmune functions and orthogonal ar- 
rays. We give a recursive definition of any correlation-immune function of maximal 
degree. We describe the set of quadratic balanced correlation-immune functions of 
maximal order. Some constructions are then deduced. 

Introduction 

I n  a general type of running-key generator, the output  sequences of m Linear Feedback 
Shift Registers are taken as arguments of a single non linear combining function f. If 
the function f is not properly chosen, it can happen t h a t  the  generator structure is not 
resistant to a correlaiton attack: there is a statistical dependence between any small 
subset of the m subgenerator sequences and the keystream sequence (cf. a n  example in 

A function f which provides a n  immunity to  a correlation attack is called a correlnlzon- 
rrnrnune junclzon. T h e  t th-order  correlation-immune functions (denoted k-Cl functions) 
were introduced by T SIEGENTHALER in [ll]. X .  GUO-ZHEN and J . L .  MASSEY later 
gave an equivalent definition of the k-CI functions, using the WALSH transform of the 
boolean functions. I t  is their definition, recalled in Section 2, which is uyd in the present 
paper. 
M'e wish to show t h a t  Algebraic Coding Theory provides a n  alternative point of view 
for the concept of correlation-immunity. We present two new definitions of the k-CI 
functions, related to coding theory, and deduce some constructions. 

PI, P. 116). 

In Section 3 we point ou t  that  a k-CI function is a n  orthogonal array ofstrength 6 .  We 
later give a recursive definition of any k-CI function of maximal degree. Using algebraic 
properties - which are in fact properties of REED and MULLER codes (RM-codes) and 
subcodes of RM-codes - we show tha t  the recursive definition permits to obtain explicitly 
some k-CI functions 
In Section 4 we present some constructions. Using the recursive definition, we describe 
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a large class of 1-CI functions of maximal degree. We after give a full description of 
the set of the quadratric balanced correlation-immune function of maximal order. In the 
last paragraph we propose, in fact, an algorithm producing some balanced correlation- 
immune functions of maximal order. 
The present paper is a shortened version of the scientific report [3]; the reader can find 
in [3] more explanations and examples. 

2 Correlation-immune functions 

Let F = G F ( 2 )  and G = Fm. An element z of G is an rn-tuple ( . I , .  . . ,z,) over F. Let 
x E G and X E G ,  and  define their dot product as: x . X = zlXl + . . . + zmAm E F.  
Let f be a boolean function of rn binary variables. The Walsh transform of /(I) is the 
real-valued function over G: 

The set of the elements 2 E G such that f(z) = 1 is a binary array M x m , where 
iM is the weight of the  value o f f .  This array is the truth-table o f f .  
In  this paper, the weight of a binary vector u is always the Hamming weight, ie the 
number of nonzero components in u,  and is denoted by W(u). 

Definition 2.1 [7] Lef  k E [l, m - I]. The function f is kfh-order correlation immirne 
f i e  is a k-Cl func f ion)  if and only if its Walsh transform satisfies: 

F(X) = 0 ,  for 1s W(X) <_ t , ( 2 )  

where W(X) denotes the Hamming weight of the binary m-iuple X 

In the following, we denote by u(f) the binary vector {f(z) 1 z E G) and we say that 
o ( f )  is the value o f f .  In general we shall suppose that the value of a k-CI function J is 
balanced, ie that F ( 0 )  = 2"-' ; we shall say that the funcfion f is balanced. 

Proposition 2.1 [ll) Lei f be a k-CI function. 
d(f) 5 m - k. Moreooer i f f  is balanced then d(f) < m - t unless k = m - 1 . 

Let d(f) be the degree of f .  Then 

Hence i f f  is a (rn - 2)-CI function and is balanced , f is an affine €unction. T h e  only 
possible (m - 1)-CI functions are [Ill: f(z) = z1 + . .. + im + c 
In [Il l ,  T. SIEGENTHALER showed how to construct by iteration a limited family of L-CI 
functions : a L-CI function is obtained from two linear functions of rn- (k+ 1) variables. 

, c E F. 



3 Others definitions 

3.1 Orthogonal arrays 

The characterization given by X. GUO-ZEN and J.L. MASSEY [7] for correlation-immune 
functions, concept introduced by T. SIEGENTHALER [ll] was taken as Definition 2.1. 
That characterization corresponds precisely to the one by P. DELSARTE of orthogonal 
arrays, concept introduced by C.R. RAO [lo] - as we point out in Theorem 3.1 -. 

Definition 3.1 [6, Ch. 111 An M x rn matrix V with entr ies fom a se t  o f q  elements 
is called an orihogonal array  of size M ,  m constrainis, q levels, strength k ,  and index  p 

if any set of k columns of V contains all qk possible row vectors exactly p t imes.  Such 
an array is denoted by ( M , m , q ,  k) . Clearly M = pqk . 

Theorem 3.1 A boolean function f on G is  correlation immune of order k if m d  only 
if its truth table ts  an orihogonal a r r a y  ( M ,  m, 2, k) . 

Proof: Let f be a boolean function of rn variables. Let M be the weight of u ( f ) ;  let T 
be the truth-table o f f .  
1. Suppose that T is an orthogonal array ( M ,  rn, 2, k); let p = 2- 'M.  Let X E G such 
that W(X) = k. Then we have: 

= p ( I { y E Fk ; W(y) is even } I - I { y E Fk ; W(y) is odd } I ) = 0 . 

It is clear that an orthogonal array ( M ,  rn, 2, k )  is also an orthogonal array ( M ,  m, 2,  z )  

for i E [l, k]. Hence F(A)  = 0 for all X such that W(X) E [l, k]. So f satisfies (2) .  
2. Suppose that f is a k-GI function. Let X E G such that W(X) = k. Define the 
projection x : G - F' as 

We define the support s(z) of any element z E Fm by : s(z) = { i I z i  # 0 } . We now 
use the fact that T is an orthogonal array (MI m, 2, k) if and only if for any X E G such 
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that W(X) = k , then the  value q(g) defined above is v(g) = 2-'M, for all g E Fk 
For any A' E G with s(A') c .(A) , we have: 

F(A') = x(--l)A',r = x c (-1)X'." c r)(g)  (-l)+').g . 
rET g E F k  zET, g E F '  

On the other hand, denote by H the abelian group (F',+) and consider the abelian 
group algebra C H .  An element z E CH is denoted by CgEH zgXg . The Walsh-Fonrier 
transform i of z is given by 

i h  = C zg( -~ )h -g ,  for all h E H . 

Thus for z = CgEH q(g)Xg , we observe that for every A' such that s(A') C s(A) , then 
if .(A') = h , we have t h a t  F(X') = ih and therefore ih = 0 for every nonzero h. 
Hence inversing the Fourier transform z -+ i , we obtain: 

O E H  

v(g) = 2-' c ih(-l)"g = 2-'& = 2-' M . 0 
gEH 

Example  3.1 
t ab le  o j  f ;  we study the ironsposed array : 

m = 4 , M = 2*-' = 8 , f ( z )  = z1 + z3 + z 4  . Let  V be the truth 

1 1 0 0 0 0 1 1  2 1  

0 1 0 1 0 1 0 1  22 

0 0 1 1 0 0 1 1  2 3  

0 0 0 0 1 1 1 1  I 2 4  

i 7 =  [ 
Each Line of ? contains 4 times "0" and 4 times "1". 
Moreover any set of fwo lines of 
f is an 2-CI function. 

Thus f is an 1-CI funciion. 
contains all 2-dimensional vectors ezactly twice. SO 

3.2 A recursive definition 

The correlation-immune functions of maximal degree (for a fixed order), the value of 
which is balanced, are more interesting in applications; for this reason, we have chosen 
to present our results with these hypotheses. From now on we only consider balanced 
correlation-immune functions. 

Def in i t ion  3.2 A balanced k-CI function of m varinbles is said t o  be a c i (k ,  m) func- 
tion; such a function is said to have the mazirnal degree if and only if d(f) = m- (k+ 1). 
By convention a ci(0,  rn) function is a balanced function the degree of which equals m- 1. 



For any m, we denote by F the set of boolean functions of m variables xi, . . . , xm . 
Let f E 3" with degree 5 rn - 1. Using the polynomial form o f f ,  it is easy t o  prove 
that, after possibly permuting the  indices, then f can always be written as follows: 

f i  and f:! E 3"-l 
Wl) = 4 f 2 )  = 4 f )  
Wl + f 2 )  < d(f) 

(3 )  f = ( ~ r n  + 1) f l  + Zrn f2 

Theorem 3.2 Let fi  and f2 be funct ions derived from f by  (3). Let F1. and FZ be 
respectively ihe Walsh transforms of fl and f2. Then f is a c i ( k , m )  func t ion  if and 
only if: 

(i) fl and f2 are c i (k  - 1,m - I )  functions 

(ii) Fur a l l  A' E F'"-l with W(X')  = k we have: 

Fl(X') + F*(X') = 0 (4) 

Moreover f has maximal degree i f  and only if fl and f? have maximal degree. 

Proof: Let X E F", X = (A' ,€)  with E E F and A' E Fm-'. Let z' = (11, . .  . , zm-i )  . 
Then 

F ( X )  = Fl(X') + F2(X') . 

F ( 0 )  = Fl(0) + F2(0) = 2"-' ; 

1. Suppose that f satisfies (i) and (ii). In accordance with ( 5 ) ,  we have: 

if X is such that 0 < CV(X') < k then F(X) = 0, from (i); if X is such that W(X') = 
and E = 0 then F(X) = 0, from (ii). So f is a c i ( m ,  k) function. 
2. Suppose now tha t  f is a c i (k ,  m) function. Then for all X = (A') c) such that W(X) E 
[I, k] , formula (5) yields: 

0 = F@') + (-l)€ F2(X') . (6) 

For A = (0 ,  l), we obtain Fl(0) = F2(0). Then f l  and f2 are balanced. 
If 0 < W(X') < k , we obtain: Fl(X') = F2(X') for c = 1 and Fl(X')  = -F2(X' )  

for 6 = 0. Then Fl(X') = F*(X') = 0 - ie (i) is satisfied. If W(X') = k and c = 0, we 
obtain (ii) immediately from (6 ) .  
3. A c i (h ,  m) function has maximal degree m - ( k  + 1). A ci(k  - 1, m - 1) function has 



91 

maximal degree (rn - 1) - k. Since by definition d(f) equals d(fl) and d ( f 2 ) ,  then f h a s  
maximal degree if and  only if fl and f2 have maximal degree. 0 

REMARK : Theorem 3.2 means tha t  a c i (k ,m)  function, has its truth-table T in the 
following form ( p  is t he  transposed T): 

t o o  . . .  O O I l l  . . .  111 

- 2-1 and TQ are orthogonal arrays (2m-2, rn - 1,2, k - l ) ,  
- let p = 2m-k-1; let u E Fk and a set of k rows containing a times u in TI 
and b times u in p2; then u f b = p .  

- 

3.3 Correlation-immune functions and Reed-Muller codes 

Recall tha t  G = Fm. T h e  Reed-Muller code of length 2m and order r ,  denoted by 
R(r,m),  can be identified with the  set of the boolean functions of rn variables and of 
degree 5 r. The codewords are the  values of the functions. Let f E 3"'; the order of the 
correlation-immunity of f is obtained in studying the weights of the coset f + R(1, m): 
for each A E G I  the function hx : z E G - z.X is an element of R(1,m); then 

F(X) = 0 - W (  .(f) + v ( h x )  ) = 2-l . (7 )  

Thus f is c i ( k ,  rn) if a n d  only if for all A ,  with W(A) < k , then f +hx has weight 2"-'. 
The writing o f f  as in (3) means tha t  fi  and fi are in R(d(f), m -  1) and in a same coset 
of the code R ( d ( f )  - 1, m - 1). I t  appears in Theorem 3.2 that it will be interesting to 

know the codewords g of weight 2m-2 of a coset f l  + R ( d ( f )  - 1, m - 1) and,  for such 9's 

the weights of the codewords of the coset g + R(1, rn). So it Seems difficult to obtain the 
overall description of the  set of the  c i ( k , r n )  functions, because this problem is related 
with open problems o n  Reed-Muller codes. However some well-known properties may be 
used: 
1. In Corollaries 4.1 and  4.2 we use some transformations which preserve a given coset 
and carry a balanced word in another balanced word. 
2. We are able to easily construct ci(1, m) functions, because the set of the  ci(0, m') 
functions is well-known for any m'. So we can prove in the following Section tha t  Theorem 
3.2 expresses a constructive definition of k-CI functions with maximal degree. 
A ci(0,  m') function is a function of degree m' - 1 and of m' variables, the value of 
which has weight 2"'-l. T h e  class of the functions ci(0, m') was studied in [2] and [5]; 

I 
I 

I 
I 
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it is very simple to construct such a function : let V ( g )  be the truth-table of a function g 
of m' variables and of weight 2'"l-I . Then the degree of g is rn' - 1 if and only if there 
exists an hyperplane H of Fm' such that the size of the set V ( g )  h H is odd (see the 
construction of f l  in Example 4.1). The  number N of such functions g can be calculated 
with formulae given in [2]; for small values of m', we obtain: 

m ' - 3  a N = 5 6 ; m ' = 4  a N = 1 2 0 0 0 ;  
m' = 5 3 N = 582 284 160 ; 
m' = 6 , 3 N = 1.803.989.388.148.674.048 . 

4 Construction of correlation-immune functions 

4.1 Extending an orthogonal array to a stronger one 

In accordance with Theorem 3.1 and 3.2, we shall construct a k-CI function by extending 
the truth-table of a (k- l)-CI function to an orthogonal array of strength k. So we define 
two simple applications on Fm which preserves the zero8 of the Walsh transform. 

Proposition 4.1 Let f E 3m and denote b y  u the weight of ihe value o f f ;  lei  us define 
the applications from T" onio iiself: 

A :  f H l + f ;  (8) 

s1, : f - f o r ,  . (9) 

f o r a f  G a n d r ,  : z E  G -+ x + a ,  

Lef F ,  F' and F" be the Walsh transforms o f f ,  A ( f )  and Q , ( f )  respectively. Then  f o r  
all X in G ,  X # 0 ,  we have: 

( i )  F'(X) = -F(X) (ii) F"(x)  = (-1p5 F ( X )  . 

Moreover F'(O) = 2m - Y and F"(O) = F(0j = v . 

Proof: By definition we have F'(X)+F(X) = C+E~,(t)=o (-l)Z.A+z,E~J(z)=l (-1j"X ; 

this sum equals 0 if A # 0 and  equals 2"' otherwise. Formula (ii) and the value of F"(0)  
become from: 
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Then from (i) of Proposition 4.1 and from Theorem 3.2 we immediatly have: 

Corollary 4.1 Let f 1  E Fm-'. Then the function o f  m variabfes ( 1 1 , .  . . , x,) 

IS a c i ( k ,  m) function t f  and only i f  f l  I S  a cz(k - 1 ,  m - 1) function; moreover f has 
mammal degree i f  and only i f  fi  has mazimal degree. 

Corollary 4.2 Let k be an odd integer. Let a E Fm-l ,  a = (1,1,. . . ,1); r, and R, are 
denoted b y  TI and 01. Let fl  E F"-'. Then the function of m variables ( X I , .  . . , X m )  

zs a c i ( k ,  m) function i f  and only i f  f l  IS a c i ( k  - 1, m - 1) function; moreover f has 
mazrmal degree zf and only i f  fl has maximal degree. 

Proof: Since a = (1,1,. . ., l ) ,  formula(ii) of Proposition 4.1 becomes F"(X) = (-1)"("F(A: 
When t is odd we can apply Theorem 3.2 wi th  f 2  = i2,(fi).o 

REMARK : If k is even we can also apply Theorem 3.2 with f2 = A(nI( f1) ) ;  indeed cal- 
culating the Walsh transform of f i  with F" given above, we then see by (i) of Proposition 
4.1, that formula (ii) of Theorem 3.2 is satisfied. 

REMARK : Starting from functions given by (10) and (ll),  the construction of SIEGEN- 
THALER permits to obtain other correlation-immune functions. Indeed his algorithm 
is based on this result: let f be a boolean func f ion  defined b y  (3); if f l  and f2 are 
c i (k ,  rn - 1) functions, then f is a c i ( t ,  rn) function. Note that the order is not increased 
in that construction. 

REMARK : In fact, Corollary 4.1  is obvious. It consists in the addition of a variable; that 
i s  an addition of a binary symmetric channel having capacity zero [ll].  

Example 4.1 A construction of a c i ( k ,  m) functions using Corollaries 4.1 and 
4.2. We ezplatned an Section 3.3 how we can construct a cz(0, m - 1) function; from 
Corollanes 4.1 and 4 2 thaf yields the construction of  at least one ci(1,m) funct ion 
First assume that rn = 5 and f l  E T4 Let H be the hyperplane generated b y  the basts 
{ E I , I z , T ~ } .  The following array shows the values o f f l ,  A ( f l )  and Q;(f;) The value of 
f i  has weighf 8 .  The transposed truth-table o f f ;  is such that the set n H has 5 
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elements.  Then f1 i s  a c i ( O , 4 )  function - ie a balanced function of degree 9 - 

' 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  
O O O O l l l l O O O O f l l l  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1  
1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0  
1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0  

According to Corollary 4.2,  the function f' = f1 + z g ( f l +  Ol(f1)) IS a ci(l ,5) Juuncfzon 
with degree 3 .  The polynomial forms  of f l  and f '  a re  

The iruih-table T off' i s  an orthogonal array (16,5,2,1): 

1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0  

0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1  
0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  

0 1 1 ' 0  1 0  1 1 0  0 1 0  1 0  0 1 

4.2 Quadratic balanced correlation-immune functions of maxi- 
mal order 

Let f be a boolean function on G, and define V X E G : f ~ ( z )  = f ( z )  +x.X , According 
to Definition 3.2, the function f is a c i ( k , m )  function, k > 0, if and only if for any A 
such that 0 < W(X) 2 k the function j A  is balanced. Indeed, for any X # 0, we have: 

E(-l)'(Z)+s-A = C ( - l ) "  - 2 c f(x)(-I)" A = - 2 F ( X )  , 
+€C r E G  I E G  

where C+EG(-l) 'k(r) equals zero if and only if fx is balanced. We say that f is quadratic 
if and only if i t s  degree equals ezactly 2 (i.e. f E R ( 2 , m ) \ R ( l , r n ) ) .  If f is quadratic, 
then fx is also quadratic. Then we can determine whether f~ is balanced or not (for 
instance see [4]): 
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Lemma 4.1 Let g be a quadratic boolean functton. Let the symplectrc f o r m  assocraded 
with 9: 

$9 : (Z,!!) - d o )  + g(z) + !dY) + !7(z + Y) i 

Recall that the kernel of +g IS the subspace of G: Eg = { x E G 1 Vy E G, 4g(x, y) = 0 } 
(of even codimension). 
constant. 

T h e n  g 1s balanced t f  and only if i t s  restriction to  E,  1s not 

Theorem 4.1 A cz(m-3, m) quadratic functron takes one o f i h e  polynomial forms given 

Moreover, we can obtain all ihe ci(m-3, m) quadratic functrons by applying several t imes 
Corollaries 4.1 and 4.2 to ci(O,3) quadratic functions.  

in (121, (13), (14) or (15). 

Proof: For any function f of degree 2 on G,  define: A,  = { A E G I fx is not balanced } . 
By definition, the immunity order o f f  is equal to the smallest weight of the elements of 
A j  minus 1. In accordance with Lemma 4 .1 ,  A! is the set of all X E G such that. f; is 
constant on Ef, or, equivalently: 

A, = { X E G I VZ, z E El : f ( Z )  + f(0) = X.Z } . 

The function f + i (0 )  is linear on E j ,  and is therefore the restriction to E, of a t  least 
one linear form on G. As the linear forms on G all are of the type z + X.z , At has  at 
least one element. Let AO E A,;  then we have: A, = { X E G I Vx E E f ,  A.z = A o . 2  } . 
We denote by E/’ the linear space: Ef = { X E G I V r  E E j ,  X.x = 0 )  . Then A 
is in  A, if and only if X + XO is in Ef; A,  is an affine subspace of G, of direction Ef, 
and therefore of even dimension. We will now determine such subspaces, and deduce the 
corresponding functions f .  

Let A be an affine subspace of G ,  of even dimension, and whose elements have weights 
at least equal to m-2.  Let { e l , .  . . , e m }  be the natural basis of G, and the space A‘ = 
.A + eo, where eo = el + . . . + em . So A’ is an affine-subspace, of even dimension, whose 
elements have weights at most equal to 2; it is clear that we can determine equivalently 
A or A’. If A’ contains 0 ,  then it is the linear space equal to: 

where i ,  j and k are distincts elements of [I, m]. 
If A‘ contains a t  last one element of weight 1, then it is equal to: 
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where i, j, It  and I are distincts elements of 11, m]. 

Now we are  able to  examine the four possible definitions of A J :  

(i) Aj  = A(’) + eo (ii) AJ = A(2) + eo 
(iii) Aj  = A(3) + eo (iv) AJ = A(4) + eo 

Let the  function g : I E G -+ z i z j  . Clearly E, = E l .  There exists only one 
syrnplectic form admit t ing EJ as kernel, since EJ has codimension 2 and since there 
exists only one non-zero syrnplectic form on a linear space of dimension 2 .  So f belongs 
to the  same coset of the code R( 1, rn) as g .  Hence there exists X E G and 6 E F such 
that :  f(z) = g(z) + X.z + c .  Since g is not balanced, then X must be in A , .  So we 
obtain the  algebraic normal form o f f :  

f = z i t j  + C 
t ~ [ 1 , ~ l - t : , J l  

zt + c i q  + cjx, + 6 , Ei E F, c j  E F, c E F . (12) 

For rn=3 the  following functions are clearly balanced: 

Indeed their expressions all contain a linear function which is linearly independant froni 
11 and z2 and so they are ci(O,3) functions. By using Corollary 4.1, m - 3 times, we 
obtain the following ci(m - 3, m) functions: 

By permuting the  variables we can check tha t  all ci(m - 3 , m )  functions described by 
(12) are then obtained. 

m 
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Now the following functions are balanced, since their expressions all contain a linear 
function which is linearly independant from 2 1  + z2 and zl + 13; 50 they are ci(O,3) 
functions: 

Now the following functions are balanced, since their expressions all contain a linear 
function which is linearly independant from 11 +q  and z3; SO they are c i ( 0 , 3 )  functions: 

( 2 1  -t 2 2 ) ( 2 1  + 2 3 )  + 21  + 2 2  -k 2 3  

( 2 1  + 4 ( t l  + 4 + 21 + 2 3  

, (z1 + 2 2 ) { 2 1  + 2 3 )  + 1 2  + 1 3  1 

(I1 + 22)(21 + 2 3 )  + 2 1  + 2 2  . , 

We then obtain all the functions described by (14), for the same reaSOns as in (i) .  

(iv) Aj = {eo + e i  + ej, eo + e i  + e k ,  eo + er + e j ,  eo + el + e k }  . Then 

Ef = { 0, ej + el. ,  e; + er , e; + ej + e k  + er } El = {z E G I zj  + 11: = I, + II = 0 1,  
and f(z) = (zj + zt)(z, + 21) + X.2 + E with E Aj , where 

Let US consider once again the ci(0,3) functions using in (iii). Using Corollary 4.2  with 
m = 4, we obtain the ci(  1,4) functions: 

(21  + 22)(23 + z4) + 2 2  + 23 
(21 + zZ)(Z3 + 2 4 )  + Z2 

I 

I 

(tl + 2 2 ) ( 2 3  + 24) + 21 + 2 3  , 
( X I  + 22)(23 + 2 4 )  + 21 . 

so we can u ~ l c  Corollary 4.1 and obtain all the functions described by (15). 0 

REMARK : It is easy to check that all the ci(O,3) functions we use in the proof, are 
equivalent; that is natural since their symplectic forms have the same rank and since 
they all are balanced. 

In accordance with (12), (13), (14) and (15), we can state the number of the c i (m-3 ,  m) 
quadratic functions: 
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3 1  112 

Corollary 4.3 Let Qm be ihe number of ci(m - 3, m) quadratic functions. Then;  

(16) 
1 

Qm = j m ( m  - 1)(3m - 2)(m + 1) . 

56 I 56 

Proof: Counting the functions described by (12), (13), (14) and (15), we obtain respec- 
ti vel y : 

4 
5 
6 
7 
8 

Corollary 4.4 I f  an orthogonal array (2m-1,  m, 2, m - 3) (with index 4) is the truth 
table of a quadratic boolean funciion, that funci ion is given b y  ( l2 ) ,  (13), (14) or  (15). 
The number of such orthogonal a w a y  is given b y  (16). 

2016 840 200 
65472 36456 520 

4194176 1828008 1120 
536870656 300503336 2128 

137438952960 60273666600 3696 

There are NQm = (2" - 1)2m+' , u = , quadratic functions. One can see, with 

the following array, that few of them are ci(m - 3, m) quadratic functions. We denote 
by BQm the number of balanced quadratic functions. 

4.3 More balanced correlation-immune functions of maximal or- 
ders 

Proposition 4.2 Let r E [ I ,  m[ , g a boolean function on Fm-r, and 4 a mapping 
from Fm-' to  F' .  Lei f be the boolean funct ion f such defined: 

D = F' x Fm-' , V (t, y) E D ~ ( z , Y )  =< 2 ,  #(Y) >r +g(y) , (17) 

where <, >' denofes the usual dois product on F'. Then f is a ci(R,m) function, with 

k2 inf  { W(d(y)) I Y EFm-' } - 1 . 
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The function z + < a + d(y), t >r is a linear form on Frl and therefore is either null 
or balanced. Then 

L = 2' c ( - l )dY)+<b>v>"-r  

YE+-'(.) 

Hence: a $? #(F"'-') L = 0 . Let p = inf { W(d(y)) I y E F"-' } - 1 . If 
W ( a )  + W(6)  5 p then a does not belong to $(Fm-') and L = 0 . That  means : for all 
X = ( a ,  6) , X E D, such that W(X) 5 p 1  the function f x  is balanced. T h e n  f is c i ( k ,  m), 
with k 2 ,u. 0 

Corollary 4.5 There exist functions of type (1 7), which have degree m - r + 1 and are 
ci(r - 2 ,  m)  - 1.e. ihey  have a maximum immunity order for  their degree. 

Proof: Let r > 2 ; then m - r 5 rn - 2 . We get $(y) = (4l(y) + 1,. . . &(y) + 1) : 

9i : Fm-' -+ F , V(di) n V(+j) = 0 , 3i : IV(+hi)l is odd (18) 

( V ( 4 ; )  is the truth-table of 4i):Then , for any y E Fm-' , the weight of d(y) is at least 
equal to r - 1. Therefore f is a c i (r  - 2 ,  m) function; moreover f has degree m - r + 1, 
since one of the function +i has degree rn - r .  0 

Example 4.2 A construction of a ci(2,7) function using corollary 4.5. We g e l  

rn = 7 and r = 4. Using Corollary 4.5, we are able to  construct a c i (2 ,7)  funciion f of 
matimal degree d( f )  = 4. We choose the 4i 's, salisfying (18): 

0 1 0 1 0 1 0 1  
2 6  l o  

0 0 0 0 1 1 1 1  
41 27 I 0 0 1 0 1 0 0 1  

1 0 0 0 0 0 1 0  
0 1 0 1 0 0 0 0  
0 0 0 0 0 1 0 0  

2 1 
44 
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In accordance with Theorem 3.2, we can construct two c i ( 1 , 6 )  functions: 
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