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feI'(4) which has an extension f not belonging to I'(B), or even corR
for some superalgebra B » A. To see this take as B the sup-norm dise
algebra of all continuons functions on the unit dise of the complex plane,
holomerphie in is interior and leb 4 = {we B: 2{0) = #(1)}. The maxima]
ideal space of A is the. closed unit dise with identified 0 and 1 and the
Silov boundary of 4 is the unit circle (with 1 identified with 0), So the
functional f(#) = #(0) = @(1) is in I'(4) and it has two extensions onto B:
fi(z) = (1) and fy(#) = #(0) such that fie I'(B) but f,¢ corB.

The following purely algebraic result can support the conjecture
that ¥(4) coincides with the family of all non-removable closed ideals
of A. Let B and P be arbitrary rings with unit elements. P is an extension
of B it there is an isomorphic imbedding of R into P sending the unit
of R into unit of 7. Call an ideal I of R non-removable if in any extengion P
of K the ideal Tis contained in a proper ideal of P. A subset § of R
“eonsists of joint divisors of zero if for any finite subset @@l e R
there is a non zero element ¢ R such that ny=0f%fori=1,2,.. 5

PRroPOSITTON 4. An ideal I of o commatative ring B is @ non-removable
ideal 4f and only if it eonsists of joint divisors of zero.

The proof can be obtained from a reasoning in [2].
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On cosine operator functions
and one-parameter groups of operators
by
J. KIBYNSKI (Warszawa)

Dedivated to Professor Antoni Zygmund

Abstract. If 4 is & complex number then

1
cos( — Ayt foos{—A)rdr
]

*) exp(z (04 é)) = 4 B —oo<< < ool
) — cos(—A¥t  cos{—A)k

a2t

The paper gives a gencralization of this formula to the case, when 4 is an unbonnded
linear operator in a2 Banach space.

1. Preliminaries.

1.1. ¥ B and ¥ are Banach spaces over the same, real or complex,
field of scalars then £ (#;F) denotes the space of all l'inea-r b(.mnded
operators from E to F. Let £ (E; #) denote #(E; F) equipped with the
topology of pointwise eonvergence (called also the gtrong top_ology).
An Z(B; F)-valued function of a real variable is called sfrongly continuous,

“or strongly continuously differentiable, if it is continuous or continuounsly

differentiable, when regarded a8 a mapping from (—c{o, oo) to Z(H; _E’)
For instance, by an applcation of the Banaeh-Steinhaus the?l'em, if
follows that a funetion K: (—oo, o) = Z(E; ) i§ strongly continuously
differentiable on { — oo, oo) if and only if for any fixed we F the F-Yaluid
function ¢-» K(f)w is continuously differentiable on (—oc, o0) in the
sense of the norm in F. ) ) ) o

1.2. Let F be a Banach space. A strongly confinuous ma:ppmg
G: (—oo0, co) »Z(B; F) is called a one-parameter strongly continuous
group of operaiors if G(0) =1 and

GG (s) = G{t+s)  for every s,%e (—o0, oo).

The infinitesimal generator of the one parameter group ¢ is the
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linear operator A from E to #, with the domain D(A) defined by the
conditions

1
D(4) m{m: me E,lim?(G(t)m—m) exists},

-0

L
Ao = ]im?(G(t)m—m) for me D{(4),
=0
where the limit is taken in the sense of the norm in A.
Ttis known (see e.g. [3], chapter IX) that if Gis a strongly continuoug
one-parameter group of bounded linear operators in a Banach space E
and if 4 is the infinitesimal generator of &, then

(1.2.1) there are constants M > 1 and & >0 such that
60 < Me™ for every te(—oo, oo;

(1.2.2) for every n =1,2,... the domain D(4") of 4" iz dense in E
and 4" is a closed operator from I to T;

(1.2.3) G(#)D(4) = D(4) for every te(—co, o) and, for every fixed
we D(4), the E-valued function ¢— &(f)x is continuously differ-
entiable on (—co, oo) in the senss of the norm in & and

G ()
dt

= AG()& = G(1) s, te (o0, oo).

) 1.3. Let B be a Banach space. A mapping ¥: (— oo, oo) 2 (H; B)
Is called cosine operator function if it satisties the d&’Alembert functional
equation

Fli45)+€(t—s) = 2F[)F(s)

for_s, te(—oo, o), and if, moreover, F(0) = 1. Ag it is easy Lo see, any
cosine. operator funetion is a pair function on (= o0,00), its. range being
2 eommutative family of operators. : ‘

The theory of Z(F; E)-valued strongly continuous cosine funclions
was. developped by M. Sova [2].

1t should be remarked, that in [2] a cosine operator funetion is defined
only on [0, co). However, as Sova proved, the range of any strongly
continuous cosine operator function defined dn [0, o0) iz a commutative
family of operators, and from this it follows easily, that the pair extension
onto ( —oo, oo} of such a cosine function satisties the 4’Alembert’s equation
on. whole (— oo, co). According to [2], the infinitesimal gemerator of an

icm®

On cosine operator funetions and ome-porameier groups of operalors 95

#(#; E)-valued cosine function € is the linear operator 4 from ¥ to X,
with the domain D(4), defined by the conditions

2
D{A) 2{96: s B, lim »t—g—(%‘(t)w—m) exists},
{ond

9 .
Ao =Iim —[#{N)a~z) for me D(4),
PV

the limit taken in the sense of the norm in E.

As proved by Sova [2], if B is a Banach spaee and if ¥ is an #(E ; E)-
valued strongly continuous cosine function with the infinitesimal generator
A, then . .

{1.3.1.}) the domain D(4)of 4 is dense in E and A iz a closed operator
from ¥ to E;

(1.3.2.) €()D(d) = D{4) for every tec(—oo, oo} and, for every fixed
#e¢ D(4), the B-valued function t > ¥ ()= is twice continuously
differentiable on (—oo, oo) in the sense of the norm in # and

2(g .
¢ dt(?ﬁ = AF{)w =¥ Az, —oco<i< oo.

The following lemma will be also useful in our further reasonings.
(1.8.3.) LmwmmA. Let B be a Banach space, I € be an P(E; B)-valued
Sfunction strongly econtinuous on (—oo, o) and let A be o closed linear
operator from E to E with & domain D(4) dense in B. If

(a) €(0).D(A) =« D{A) Jor svery te{—o0, o)
and ]

(b for amy fiwed me D(A) the H-valued funciion {— €{t)e is lwice
strongly continuously differentiable on (— oo, co) and we have

_di%;it)w = A% (@) =€) Ax for te(— oo, oo},
a7
F0)w = -and Cg)m =0,
t=0 .

then (1) is a cosine funetion and A is ifs infinilesimal generator.

- Proof. In order to prove that ¥ satisfies the d’Alembert funetional
equation it is sufficient to show that for any fixed x,¢ D(4) and any
fixed ¢ the E-yalued function

B(E) = B8+ (s —1) 2, —2F (8) € (1) %,
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vanishes identically on { —oo, o). As it is easy to ses, the funection 1 — ®(t)
hag the following properties:

~{a) ®()e D(A) for every e {—oo, o),

() t—>=(f) is twice continumously differentiable on (—co, o) in the
sense of the norm in B and 2" (1) = 4w(d) for te (— oo, co),

(v} =(0) =0, 4

3) 2(0) =¥ (s)e—F (s)v—2¢(s)¥ (0} = 0.
If we define a norm on D(4) by

lelpuy = l2lz+ |42z

then, by the closedness of 4, D(4) with the norn | llpay is & Banach
space. Moreover, by («) and (B), t — 2 (1) is a D (4)-valued function contin-
uous on (—ce, o) in the sense of the norm || oy 2nd, by (b), t.— AGIPPY
ig an £(D(4) ;E)~va1ued funetion tiice strongly continuously differ-
entiable on (—oco, o), For any te(—oo, co) let #'(t)c#(D(A); B) and
(B e F (D (4); E} denote the corvesponding derivatives at the point 1.
It follows that for any fixed ¢e¢{— oo, o) the F-valued function v — y(r)
=F(l—7)n(r) is continuounsgly differentiable on (—eco, o) in the sense
of the norm in Z and that ‘

¥'(v) = E(i—7)a' () =€ (t—r)a(a),

— 00 < T < oo,

Since y(1) = if’(ﬂ)m(t) = (1) by (b), and y(0) = €()x(0) = 0 by (y), we
have #(l) = [y'(v)dx, ie.
i)

i .
oft) = [ {#(t—)o' (0)—F (t—)a(r)}dr, —oo<t< oo

Byt(S) and (B) we have o'(1) = f Az(o)do. By (b) we have €' (1 — v)nic)
s [
= | #(o)Az(v)do. Therefore . '

0

. t = i i—x
#(£) ::f[f%’(t—r)Aw(g)d@] dr—f[f %’(U)Am(r)dcr] dr =0,
0 0 4] 0
by the Fubini theorem.

S0 we proved that ¥ is a cosine function and now it follows at once
‘_rll‘om (b) that if 4, denotes the infinitesimal generator of ¢ then 4 < 4,,
ie. D(A? < D(Aq)_and Aw = 4,2 for @c D{A). In order to prowe that
A= 4, it is sufficient to apply Lemma 2 from Section 3 of the author’s
paper [1].

However, the reasoning in [1] is complicated by the fact that the
general case of a locally convex sequentially complete space istreated
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there. Therefore we shall repeat the argumentation in a simplified version
for » Banach space. 'We have to prove that D(4,) < D(A).
If we D(A) then, by (b) and by the closedness of 4, we have ¥(f)x—a
‘ .

T iz
= [ [A¥(c)wdodr = A [ [¢(c)wdodr. Again by the closedness of A
00 00
and by the fact that D(4) is dense in F it follows that
t T
fffg(a)wdadreD(A)

[ ]

i
(*) and A [ [ 4(o)zdods = 4()o—a
¢ 0

for every #¢ F and fe(—oo, o). If me D(4,) then Iim 2‘ (%(t)m—ws)

=0

2t
= A0 and ]imh—ff?f(a)mdcrdr =g, so that, by (*) and py the elo-
0 B

sedness of 4, e D(A) and A% = Ay». Consequently D(4,) = D(4) and
the proof is eomplete.

1.4. In the sequel we shall consider one-parameter groups of operators
belonging to Z(E,x E,; ¥, x F,), where #; and E; are Banach spaces.
It will be convenient to write elements of B, x ¥, in the form of columns

@
(y)’ where z¢ B, y¢ B, and to represent any operator BeZL(H, x E;

B - (Bn Bls)
\Byn B/’

whose elements are operators By« Z{¥, ,; P, ;) defined by the condition

I, x Ey) as a matrix

that, for every column (:) « By X B,

B (W) Z(Bllm+312y)
Y By 2+ Byy ’

according to the common rule of multiplication of matrices. A similar
matricial representation may be used for any linear operator A from
B, x B,into E, x E,, baving domain of the form D(4) = D, x D,, where D,
ig 2 linear subset of H;.

2. Generalization of the formula (%),

THEOREM. Lol Ey be a Banach space and let A be a linear operator
from E, to B, with domain D(4), If E, i a Bonack space such that D(A)
< B, < E, and that the Banach space topology of By s not weaker than the
topology induced in B, by By, and if the operator o from B, x B, into B, x By,
with domain D{s7), defined by the conditions

01
(2.1) D(s7) = D(A) X Ey, gz=( ),

40
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is the infinitesimal gonerator of & sivongly continuous one-parameler group

@: (—o0, 00) > (B, X By; By X Ey), then A is the infinitesimal generotor

of a strongly continuous £ (By; B,)-valued cosine fumction (1),

(2.2) B, = {o: ze By, the Eyvalued function i— €(f)z is continuously
differentiable on (—oo, co} im the semse of the norm in H,y},

and t .
€(ya+ [ €(r)yds ‘
(2.3) sm)(f) - ’ ,(;”)eEle(,, —so< i< oo.
y 4% (t)w .
a

On the ather hand, if 4 is the infinitesimal generator of a strongly continuous
Z(By; By)-valued cosine function 4 (t) and if By is defined by (2.2), then T,
under the norm

A

(2.4) * llsy = lathg, + sup | =0

o=

y welly,

gy

besomes a Banasch space and the Jormula {2.3) defines a strongly continuous
one-parameler group F: (—oo, co) —~F (H, x B3 H, X By), whose infinites-
imal generator is the operator o defined by the conditions (2.1).

8. Proof of the part “from % to ", Hverywhere throughout this

section it iy assumed that B, is a Banach space, % is a strongly continnous
Z{Hy; By)-valued cosine funetion and 4 iz the infinitesimal generator

of €. We define the linear subset By of B, hy (2.2) and define the norm

I llz on B, by (2.4).
LEMMA. 3. 1 B, wnder the norm || |ig, is @ Banach space. We have €()iz,
d
eZ(By; B fﬁ Vot e £ (By; By) and mié’(t)l e (W, By for every

te (—-oc, oo}, where the integral is the Riemann mtem al of ‘& strongly contin-
wous & (By; Bo)valued function omd the derivaiive is taken im the sense
of the strong topology in Z(Ey; By). Moreover, the mappings

(2) (— 00, 00)2 §—» B (1) g e £ (Ty; By),
i

(b) (—co, )3 to> [€()dre s (Fy; By,
d

(c) (=00, 20)2 10— @) | «&(Hy; By)
)] 5

- are strongly contimuous.

Prootf. Tt follows from the d’Alembert funetional equation, that if
the function ¢ — ¥ (t)s is continuously differentiable on [0, 1] in the sense
of the norm in Fy, then z e ;. Therefore, by the theorem on term by term
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differentation, B, is a complete spaee under the norm | ||, . If & R
and se{—oco, o) ave fixed then the Ey-valued funetion {-+%(1)%(s)w
= €(s}¥(#)r is continuously differentiable om {—co, co) in the sense
of the norm in Hy, so that €(s)B, = F,. Sinece, for zc H,,

d
)2z, = 1€ H)elg, +ni§£1j A

(€)% (1))

By
d’%’(s}zv

=€ ﬁ’llzﬁr sup #(1)

Ey

< 1% ey 5y I2lz,
we gee that € (1), sf(El, E,). Moreover, if z< F,, then, by the A’ Alembert
equation,

€t +h) e —€ (Hals, = I€(L+ha—F@)al,

Zy

} FHt+hts)s dE{ith—sz dB{+s)r  dE(t—s)z |

1
e |
TR & i @ @ g,

i

whenee it follows that the mapping (a) is strongly confinuous. This implies
¢

that if @ By then also [¥(r)adreE, and
0

i

13
i(if(s)j ()mdr):—frg V€ (1) r=%d_if (Elr+ )0+ (r—s)abde

ds J
a

i
1 pldE(r+8)z d¥(z—8)x 1 1
_?J{ P }cl-r = 5 ¢z — 6 (—sa.

Now let we By. It follows from 1.3.1 and 1.3.2 that ¥, is dense in B, and
so there is a sequence m,, n =1,2,..., of elements of E,, such that

i
Im [z, &l = 0. If, for a fixed ¥, we put 3, = [ ¥(r)w,dr, then
o0 [

lim  sup

ns2o I8SL

= 0

t
{g(s)?/n_{g(«?)f‘g(r) adr i
H 11Fg
and

a#€(s)y 1 1
—‘—é{;—n = E??(H—s)m,!—g"ﬁ(t—s)mﬂ,
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a%(s)y,
go that Him  sup ‘ __L)i € (t+ s)a?+ #(t—s)i =0. Hence, by the
g0 0S8 | ds 7, ;
theorem on term by term dlffelenta.tlon,
(3.1)
' 1
f(f(r)mdre E, and ( (8) f% (7) wdr) E(t+s)o— 3 —E(t— s}
)

for every xe F, and s, e (— oo, oo). From (3.1} it follows Immediately

strongly

i
that [ @(v}dve?(Hy; F,) and that the
1]

(g€ Z(Ey; By) and that the

mapping (b} is

continuous. The statements that — &

mapping (¢) is strongly continuous are trivial consequences of the defini-
tions of #, and || HE
Imyia 3.2, The formula (2.3) defines a one-parameter strongly contin-
yous group (—oo, c0)3 i+ F(t)e L (B x By; By x E,y), whose infinites-
imal gemerator is the operator <of defined by (2.1).
Proof. It follows from Lemma 3.1 that #(f)e
for every fe(—oo, o), and that the . mapping (

e F(E % Ey; By x By) is strongly continuous. For any
t, 8¢ (—eo, o0) we have

Z(By X Hy; By X By)

—o0, 0o)3 {—F(f)

)eﬂleﬂo and

?(t)?(s)(z)
: ¢ (s)w : '
CHE(s)w+ [€(r)d - +E (1) [€(0)ydo + [ € (7)dr ¥ (s)y
! 0 0 )
“la i@ i :
2 wawse)+en T 1 2 (ew) €] +owe

and 8o, in order to prove that % is a group, we have to show that the
following equalities hold for any &, fe(—oo, oo), ¢ H, and ye Ey,

t
1° (E(t)%(s)w-l-of%(t)drdgd(:)m — G +5)w,
2° ‘f(t)}%(a)ydo’—k}?f( dr€(s)y = fﬁf Yydr,
1] o

a¥
(o)a) +e(y 12 L FELD,

3° d%t‘f
Et(()

0 @ :
4 a(%(t)ﬂf{g(a)yda) +FNE(s)y = F+9)y.
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Tt is easy to see, 3° and 4° follow from 1° and 2° by differentiation.
If ze H,, then
d%"
foe saf
ds

&
a
' dx J‘T W€ (s)s)dr = [€(5+35)0+¥(s ) a)dv

1 d 1
—~2~ = (%(1+s)w—%(s-1)w)dr=E%(t+

= %(t—.—s)m—%’(t)%(s)m
and so 1° is proved. Recalling that #(#) iz a pair function of { we have

1
s)m~3%’(s~t)m

8 3 3 4
fé’(t)ffg(a)dg+ff£(z)drfg(s) 1 f[{.’(H—a)—{-if(t-o-)]da'{—}ff‘é(r~ 8+

tis - t+s
+4(z+8))dr = [f + f f ] (r}dr =% [ €(yax h—f%(r)dr
~ t-g

and s0 2° is proved. Theref@re % is a one-parameter group "Let o, be

its mﬁmtesmml generator. If e D(4) then, by 1.3.2 and by Lemma 3.1,

dﬁg(t) .

i E{r)Axdr is
_’f () dade = ——

(—o0, o0) in the sense of the norm || Iz . Since €(f) is a pair funetion

an FE;-valued Zfunetion econtinuous -on

of , it follows that lim ~($§ tye —x) = 0 in the sense of the norm e,
Morem er 0

£
1 d€{t 1
lim ~—~——“— = ]inl—ﬁf(g(‘r)iiaﬁ(l‘t = Az
f0 dat i 1y
E,- O y< By then, by Lemma 3.1, { — € (f)y
— 00, 20} in. the sense of the norm

in the gense of the norm [ ||
is an H-valued function continuous on (
J s s0 that

1 ~
lim —J Flr)ydr = B0}y =1
-0 ¢ !
in the sense of the norm || {g,. Moreover, if y< K, then, since % (i) is pair,
o1 ’
Hm —(‘ﬁ(t)y—y] =
{0 i

in the sense of the norm f HEo' It follows, that if (;);D(Jd) = D{d)x B

T el ()~

in the sense of the norm in B, x E,. Thiz means that o < «,.
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On the other hand, if (m) e D{«,) then, by 1.2.3, the (E, X B,)-valued
fllnetion Y

%(i)m-{—fi‘g(r)ydr
i

tﬁﬂj(t)(m) -

Y 4% (1) »

dt

+ €{t)y)

is eontinuously differentiable on (—eco, co) in the sense of the norm in

de (1 :
B, x #,. It follows that ;t)w +%(t)ye B, for every te{—oc0, o) and
a#(t N ALY az(t
50 Y = ( d(t)m -+ {f(i)y) - ¢ E,. Therefore §-- (;t) = d(t)m~

- %’(t)y)—%(t)y iy an Ky-valued function eonfinuously differentiable on

(—co, oo} in the sense of the norm | |z, and so @e D(4). Hence D(s#,)
c D(4)x E, = D{(«). Since we already know, that & < &7, it follows
that 7 = o, and the proof is complete.

4. Proof of the part “from ¢ to ¥”. Everywhers throughout this
section it is assumed that B, and ¥, are Banach spaces such that I, « ¥,
and the Banach space topology of F, is not weaker then the topology
induced in W, by X,.

Moreover, it Is assumed that 4 is a linear operator from I, to B,
and that the operator & defined by (2.1) is the infinitesimal generator
of a strongly confinuous one parameter group #: (— oo, o) % (#, X Ey;
B, x B,). We have to prove that 4 ig the infinitesimal generator of a stroug-

ly eontinnous % (H,; B,)-valued cosine function #(4) and that (2.2) and

(2.3) hold,

LEnA 4.1. The operator A is closed as an operator from B, to B, and
its domain D(A) 48 dense in .

Proof. We have
D(A?) = {: we D(A), dae B} xD(A),

f)- ) e

and, according to 1.2.2, &* is & closed operator from B, x B, to B, x By,
with the domain D (&%) dense in B, x H,.

LEwwa 4.2, The operator A is the infinitesimal generator of an %2 (Hy; By)-
_ valued strongly continuous cosine function ¥ such that ¥ (1) B, = B, for
every fe{—oo, co), and for any fized x< B, the By -valued function t— C(t)a
is continuous on { —co, oc) in the sense of the norm in By and is continuously

.
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differentiable on { — oo, co) in the sense of the norm in E,. Moreover, the
formula (2.3) holds.
Proof. Represent #(f) as a matrix
G (t Gt
?(t =( 11() 1!( )).

Gau(t)  Gult)
Then any t - Gy (3) is a strongly continuous £ (¥, ,; B, )-valued function
and it follows from 1.2.3 that for any (;) e D(sZ), ie. for 2« D(A) and

yel,, and for any f<{— o0, oo} we have

(4.1)
(D) e , W (DY
dt T @ Gt} o+ Ga(t)y ) _ Ge(l) Az +Gult)y
a6y, (1) » i A6, (1) - (.AG,_I(U:?;_»}—AG-L% By h (Gzz (1) A+ Gay (T) y) ’
a .

where the derivatives in the first row are taken in the sense of the norm
in B, and the derivatives in the second row are taken in the sense of the
norm in E,.

Trom these equalities and from the fact that D{) is dense in K, x K,
it is easy to see that for F(1) = (.. (1) all the continuity and differentiability
properties stated in the lemma ave valid and moreover the formula (2.2)
holds. Therefore it remains only to preve that €{i) is an £ (K,; E,)-valued
cosine funetion and that 4 is its infinitesimal generator.

To that end we shall apply Lemma 1.3.3.

Let operators moe (&, X Hy; Ty) and Jye F(Hy; By x B,) be defined

by the formulae
i 0
T (y) =y Jy= (?,’)

Then € (1) = m@ (84, Iy D{4) © D(&?), e D) = DA}, Jg4 = 2T,
wd® = Ay, so that, by 1.2.2 and 1.2.3,

(1) #OD4A) = mZ (N F D(A) « m@ (3 D () =my D(#*) =D(4) .
and '
(i) - = nudnggt)f“w = me2* G () Iyt = 7B (D)L T 0
= Am@ (N = mZ (DI dx = A {)e = (1) Az
for any fe(— o0, o) and we D(A). We know from Lemma 4.1 that 4 is
closed and D(A4) is dense in H,. Therefore all the assumptions of Lemima
1.3.3 are satisfied and consequently % is @ cosine function and 4 i3 its
infinitesimal generator, '
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LEMMA 4.3. The equality (2.2) is true.

Proof. Let -
fa
)

= |2z, + Wiz,
£y % By

and put
= {#: weH,, the E,-valued function {-»%(H)x is continnounsly
differentiable on (— oo, o) in the sense of the norm in 7y}
and
4% ({)»
db

llolls? = lellz, -+ sup

o=l

£y

for every ze¢ K. According to Lemma 3.1, %] under the norm | s
is & Banach gpace. According to 1.2.1, there are constants 4 > 6 and M > 1
such that

@

()

i @

4.2 Z{t

(4.2) ” ( )(y)

for every Z ¢ B, x Hyand e (—o0, o). From 1.2.2 and from Lemma 3.2

At
< MMM
Eyx &y

By % Iy

it follows that D(4) is dense in B in the sense of the norm | Jlzt. From
Lemma 4.2 it follows, that B, c B?. Since D(4) < B, it follows, th‘wt B,
is dense in ] in the sense of the norm || |jz¢. Therefore the equality B! = E1
will follow, if we shall show, that there iz a constant ¢, sueh that

(4.3) T lle, < Olellg)  for every we H,.

If z¢ F,, then, by Lemma 4.2, (¢} is an B -valued function of f
continuous on ( —oo, co) in the sense of the norm | Iz, and so, by the
Lemma 4.2 by (2 3) and by (3.1}, we have

lollz, < 4}”[% )], +h“ fm_

< D, + Sup ]ll‘f(ﬂrs m~?(75—8)00HEI
5,10, 1

t
= D@z, ~1—2S,st}1[£1] ”d—i(‘g(S)uf% (r?w&t)‘iﬁl

for every xc E Therefore, inequality
13 EH

& 7 'E:l) .
(4.3) will be proved, if we sha]l show, that

d i
{4.4) H T (%’(s)f F () wdr) g

for every @< E; and s,fe (—oco, oo).

< Mé g ’

dt

Hy
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i)
If we D(A), then (O)E.D(,_q/), so that, by 1.2.3, (%) (g)el)(ﬂ) and

a¥ (t)» [
li24

consequently = m# (1) ( 0) ¢ By, Leb the operator m; e #( B, x By3Fy)

be  defined by the formula =, (;G) = I zeD(4), then, by the
Lemma 4.2, by (2.3) and 1.2.3, and by inequality {4.2), we have

ds
If 3B, then( )e.D(&z’), so that also (1) (g)ED(M’) and hence

i
| e, < e,

IEI £y E!EJ_

1
[ (ed = =,9(1) (g)sD(A It follows, that if z< B, then
0

&

“%(?(s f'tq"(‘r mdr)j[

But from equa,lﬂ;y( )We have, that if ¢ B,, then 4 f%’ Yade = AG., (1w
(e
=Gult)e =

< M Nﬂf?(r).wdfi

Ey

and so, inequality (4.4) is pmved. This completes

the proof of Lemma 4.3 and, at the same time, the whole proof of the
theorem. from Section 2. .
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