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Two concepts—one of the coupled fixed point and the other of the generalized metric space—
play a very active role in recent research on the fixed point theory. The definition of coupled
fixed point was introduced by Bhaskar and Lakshmikantham (2006) while the generalized metric
space was introduced byMustafa and Sims (2006). In this work, we determine some coupled fixed
point theorems for mixedmonotone mapping satisfying nonlinear contraction in the framework of
generalized metric space endowed with partial order. We also prove the uniqueness of the coupled
fixed point for such mappings in this setup.

1. Introduction

Fixed point theory is a very useful tool in solving variety of problems in the control theory,
economic theory, nonlinear analysis and, global analysis. The Banach contraction principle
[1] is the most famous, most simplest, and one of the most versatile elementary results in the
fixed point theory. A huge amount of literature is witnessed on applications, generalizations,
and extensions of this principle carried out by several authors in different directions,
for example, by weakening the hypothesis, using different setups, and considering different
mappings.

Recently, the idea of generalizedmetric spaces was introduced and studied byMustafa
and Sims [2] originated from the concept of metric spaces. Some fixed point theorem in this
setup was first determined byMustafa et al. [3]; particularly, the Banach contraction principle
was established in this work. Since then several fixed point, coupled fixed point, and triple
fixed point theorems in the framework of generalized metric spaces have been investigated
in [4–11].
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In the recent past, many authors obtained important fixed point theorems in partially
ordered metric spaces, that is, metric spaces endowed with a partial ordering (see [12–24]).

The aim of this paper is to determine some coupled fixed point theorems for nonlinear
contractions in the framework of partially ordered generalized metric spaces.

2. Definitions and Preliminary Results

We will assume throughout this paper that the symbol R and N will denote the set of real
and natural numbers, respectively. In this section, we recall some definitions and preliminary
results which we will use throughout the paper. Mustafa and Sims [2] have recently
introduced the concept of generalized metric space as follows.

Let X be a nonempty set and a mapping G : X × X × X → R. Then G is called a
generalized metric (for short, G-metric) on X and (X,G) a generalized metric space or simply
G-metric space if the following conditions are satisfied:

(i) G(x, y, z) = 0 if x = y = z,

(ii) G(x, x, y) > 0, for all x, y ∈ X and x /=y,

(iii) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X and y /= z,

(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

We remark that everyG-metric onX defines ametric dG onX by dG(x, y) = G(x, y, y) +
G(y, x, x), for all x, y ∈ X.

Example 2.1 (see [2]). Let (X, d) be a metric space. The function G : X × X × X → [0,∞)
defined by

G
(
x, y, z

)
= max

{
d
(
x, y
)
, d
(
y, z
)
, d(z, x)

}
, (2.1)

or

G
(
x, y, z

)
= d
(
x, y
)
+ d
(
y, z
)
+ d(z, x), (2.2)

for all x, y, z ∈ X, is a G-metric on X.
The concepts of convergence and Cauchy sequences and continuous functions in G-

metric space are studied in [2].
Let (X,G) be a G-metric space. Then, a sequence (xn) is said to be convergent in (X,G)

or simplyG-convergent to x ∈ X if for every ε > 0 there existsN ∈ N such thatG(xn, xm, x) < ε,
for all n,m ≥N.

Let (X,G) be a G-metric space. Then, (xn) is said to be Cauchy in (X,G) or simply G-
Cauchy if for every ε > 0 there existsN ∈ N such that G(xn, xm, xk) < ε, for all n,m, k ≥ N. A
G-metric space (X,G) is said to be complete if every G-Cauchy sequence is G-convergent.

Let (X,G) be aG-metric space and f : X → X a mapping. Then, f is said to G-continu-
ous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever (xn)
is G-convergent to x, we have (f(xn)) G-convergent to f(x).
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Proposition 2.2 (see [2]). Let (X,G) be a G-metric space and (xn) a sequence in X. Then, for all
x ∈ X, the following statements are equivalent:

(i) (xn) is G-convergent to x,

(ii) G(xn, xn, x) → 0 as n → ∞,

(iii) G(xn, x, x) → 0 as n → ∞,

(iv) G(xn, xm, x) → 0 as n,m → ∞.

Proposition 2.3 (see [2]). Let (X,G) be a G-metric space and (xn) a sequence in X. Then, the
following statements are equivalent:

(i) (xn) is G-Cauchy,

(ii) For every ε > 0 there existsN ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥N.

Lemma 2.4 (see [2]). If (X,G) is a G-metric space then G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Let (X,G) be a G-metric space and F : X × X → X a mapping. Then, a map F is said
to be continuous [10] in (X,G) if for every G-convergent sequences xn → x and yn → y,
(F(xn, yn)) is G-convergent to F(x, y).

Quite recently, Bhaskar and Lakshmikantham [14] defined and studied the concepts
of mixed monotone property and coupled fixed point in partially ordered metric space.

Let (X,≤) be a partially ordered set and F : X × X → X a mapping. Then, a map
F is said to have mixed monotone property if F(x, y) is monotone nondecreasing in x and is
monotone nonincreasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 implies F
(
x1, y

) ≤ F(x2, y
)
,

y1, y2 ∈ X, y1 ≤ y2 implies F
(
x, y1

) ≥ F(x, y2
)
.

(2.3)

An element (x, y) ∈ X×X is said to be a coupled fixed point of the mapping F : X×X →
X if

F
(
x, y
)
= x, F

(
y, x
)
= y. (2.4)

The following class of functions are considered in [25]. Denote with Φ the set of all
functions ϕ : [0,∞) → [0,∞)which satisfy that

(i) ϕ is continuous and nondecreasing,

(ii) ϕ(t) = 0 if and only if t = 0,

(iii) ϕ(t + s) ≤ ϕ(t) + ϕ(s), for all t, s ∈ [0,∞).

ByΨwe denote the set of all functions ψ : [0,∞) → (0,∞)which satisfy limt→ r ψ(t) >
0, for all r > 0 and limt→ 0+ ψ(t) = 0.
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For example, functions ϕ1, ϕ2, ϕ3, ϕ3 ∈ Φ, where ϕ1(t) = kt (k > 0), ϕ2(t) = t/t + 1,
ϕ3(t) = ln(t + 1), and ϕ4(t) = min{t, 1}, and the functions ψ1, ψ2, ψ3 ∈ Ψ, where ψ1(t) = kt,
ψ2(t) = ln(2t + 1)/2, and

ψ3(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if t = 0, t = 1,

t

t + 1
, if 0 < t < 1,

t

2
, if t > 1.

(2.5)

3. Main Results

In this section, we establish some coupled fixed point results by considering a map on gener-
alized metric spaces endowed with a partial order.

Theorem 3.1. Let (X,�) be a partially ordered set, and let G be a G-metric on X such that (X,G) is
a complete G-metric space. Suppose that there exist ϕ ∈ Φ, ψ ∈ Ψ, and a mapping F : X × X → X
such that

ϕ
(
G
(
F
(
x, y
)
, F(u, v), F(s, t)

)) ≤ 1
2
ϕ
(
G(x, u, s) +G

(
y, v, t

)) − ψ
(
G(x, u, s) +G

(
y, v, t

)

2

)

,

(3.1)

for all x, y, u, v, s, t ∈ X with x � u � s and y � v � t where either u/= s or v /= t. Suppose F has a
mixed monotone property and also suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence (xn) is G-convergent to x, then xn � x, for all n,
(ii) if a nonincreasing sequence (yn) is G-convergent to y, then yn � y, for all n.

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled point; that
is, there exist x, y ∈ X such that F(x, y) = x and F(y, x) = y.

Proof. Let x0, y0 ∈ X be such that x0 � F(x0, y0) and y0 � F(y0, x0). We can choose x1, y1 ∈ X
such that x1 = F(x0, y0) and y1 = F(y0, x0). Write

xn+1 = F
(
xn, yn

)
, yn+1 = F

(
yn, xn

)
, (3.2)

for all n ≥ 1. Due to the mixed monotone property of F, we can find x2 � x1 � x0 and y2 �
y1 � y0. By straightforward calculation, we obtain

x0 � x1 � x2 � · · · � xn+1 � · · · ,
y0 � y1 � y2 � · · · � yn+1 � · · · .

(3.3)
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Using (3.1) and (3.2), we obtain

ϕ(G(xn+1, xn+1, xn))

= ϕ
(
G
(
F
(
xn, yn

)
, F
(
xn, yn

)
, F
(
xn−1, yn−1

)))

≤ 1
2
ϕ
(
G(xn, xn, xn−1) +G

(
yn, yn, yn−1

)) − ψ
(
G(xn, xn, xn−1) +G

(
yn, yn, yn−1

)

2

)

,

(3.4)

and similarly

ϕ
(
G
(
yn+1, yn+1, yn

))

= ϕ
(
G
(
F
(
yn, xn

)
, F
(
yn, xn

)
, F
(
yn−1, xn−1

)))

≤ 1
2
ϕ
(
G
(
yn, yn, yn−1

)
+G(xn, xn, xn−1)

) − ψ
(
G
(
yn, yn, yn−1

)
+G(xn, xn, xn−1)
2

)

.

(3.5)

Adding (3.4) and (3.5), we get

ϕ(G(xn+1, xn+1, xn)) + ϕ
(
G
(
yn+1, yn+1, yn

))

≤ ϕ(G(xn, xn, xn−1) +G
(
yn, yn, yn−1

))

− 2ψ

(
G(xn, xn, xn−1) +G

(
yn, yn, yn−1

)

2

)

.

(3.6)

Using the property ϕ(t + s) ≤ ϕ(t) + ϕ(s) for all t, s ∈ [0,∞), we get

ϕ
(
G(xn+1, xn+1, xn) +G

(
yn+1, yn+1, yn

))

≤ ϕ(G(xn, xn, xn−1) +G
(
yn, yn, yn−1

)) − 2ψ

(
G(xn, xn, xn−1) +G

(
yn, yn, yn−1

)

2

)

,

(3.7)

which implies that

ϕ
(
G(xn+1, xn+1, xn) +G

(
yn+1, yn+1, yn

)) ≤ ϕ(G(xn, xn, xn−1) +G
(
yn, yn, yn−1

))
. (3.8)

Since ϕ is nondecreasing, we have

G(xn+1, xn+1, xn) +G
(
yn+1, yn+1, yn

) ≤ G(xn, xn, xn−1) +G
(
yn, yn, yn−1

)
. (3.9)
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For all n ∈ N, set

sn = G(xn+1, xn+1, xn) +G
(
yn+1, yn+1, yn

)
, (3.10)

then a sequence (sn) is decreasing. Therefore, there exists some s ≥ 0 such that

lim
n→∞

sn = lim
n→∞

[
G(xn+1, xn+1, xn) +G

(
yn+1, yn+1, yn

)]
= s. (3.11)

Now we have to show that s = 0. On the contrary, suppose that s > 0. Letting n → ∞ in (3.7)
(equivalently, sn is G-convergent to s) and using the property of ϕ and ψ, we get

ϕ(s) = lim
n→∞

ϕ(sn) ≤ lim
n→∞

{
ϕ(sn−1) − 2ψ

(sn−1
2

)}
= ϕ(s) − 2 lim

sn−1 → s
ψ
(sn−1

2

)
< ϕ(s), (3.12)

which is a contradiction. Thus s = 0; from (3.11), we have

lim
n→∞

sn = lim
n→∞

[
G(xn+1, xn+1, xn) +G

(
yn+1, yn+1, yn

)]
= 0. (3.13)

Again, we have to show that (xn) and (yn) are Cauchy sequences in theG-metric space (X,G).
On the contrary, suppose that at least one of (xn) or (yn) is not a Cauchy sequence in (X,G).
Then there exists ε > 0, for which we can find subsequences (xk(j)), (xl(j)) and (yk(j)), (yl(j))
of the sequences (xn) and (yn), respectively, with k(j) > l(j) ≥ j, for all j ∈ N such that

αj = G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

) ≥ ε. (3.14)

We may also assume that

G
(
xk(j)−1, xk(j)−1, xl(j)

)
+G
(
yk(j)−1, yk(j)−1, yl(j)

)
< ε, (3.15)

by choosing k(j) to be the smallest number exceeding l(j), for which (3.14) holds. From (3.14)
and (3.15) and using the rectangle inequality, we obtain

ε ≤ αj = G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

)

≤ G(xk(j), xk(j), xk(j)−1
)
+G
(
xk(j)−1, xk(j)−1, xl(j)

)

+G
(
yk(j), yk(j), yk(j)−1

)
+G
(
yk(j)−1, yk(j)−1, yl(j)

)

< G
(
xk(j), xk(j), xk(j)−1

)
+G
(
yk(j), yk(j), yk(j)−1

)
+ ε.

(3.16)

Letting j → ∞ in the above inequality and using (3.13), we get

lim
j→∞

αj = lim
j→∞

[
G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

)]
= ε. (3.17)
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Again, by using rectangle inequality, we obtain

αj = G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

)

≤ G(xk(j), xk(j), xk(j)+1
)
+G
(
xk(j)+1, xk(j)+1, xl(j)+1

)
+G
(
xl(j)+1, xl(j)+1, xl(j)

)

+G
(
yk(j), yk(j), yk(j)+1

)
+G
(
yk(j)+1, yk(j)+1, yl(j)+1

)
+G
(
yl(j)+1, yl(j)+1, yl(j)

)

= sl(j) +G
(
xk(j), xk(j), xk(j)+1

)
+G
(
xk(j)+1, xk(j)+1, xl(j)+1

)

+G
(
yk(j), yk(j), yk(j)+1

)
+G
(
yk(j)+1, yk(j)+1, yl(j)+1

)
.

(3.18)

By using Lemma 2.4, the above inequality becomes

αj ≤ sl(j) + 2G
(
xk(j)+1, xk(j)+1, xk(j)

)
+ 2G

(
yk(j)+1, yk(j)+1, yk(j)

)

+G
(
xk(j)+1, xk(j)+1, xl(j)+1

)
+G
(
yk(j)+1, yk(j)+1, yl(j)+1

)
;

(3.19)

this implies that

αj ≤ sl(j) + 2sk(j) +G
(
xk(j)+1, xk(j)+1, xl(j)+1

)
+G
(
yk(j)+1, yk(j)+1, yl(j)+1

)
. (3.20)

Operating ϕ on both sides of the above inequality,

ϕ
(
αj
) ≤ ϕ(sl(j) + 2sk(j) +G

(
xk(j)+1, xk(j)+1, xl(j)+1

)
+G
(
yk(j)+1, yk(j)+1, yl(j)+1

))

= ϕ
(
sl(j) + 2sk(j)

)
+ ϕ
(
G
(
xk(j)+1, xk(j)+1, xl(j)+1

))
+ ϕ
(
G
(
yk(j)+1, yk(j)+1, yl(j)+1

))
.

(3.21)

Now we find the expressions ϕ(G(xk(j)+1, xk(j)+1, xl(j)+1)) and ϕ(G(yk(j)+1, yk(j)+1, yl(j)+1)) in
terms of ϕ and ψ by using (3.1) and (3.2); that is,

ϕ
(
G
(
xk(j)+1, xk(j)+1, xl(j)+1

))
= ϕ
(
G
(
F
(
xk(j), yk(j)

)
, F
(
xk(j), yk(j)

)
, F
(
xl(j), yl(j)

)))

≤ 1
2
ϕ
(
G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

))

− ψ
(
G
(
xk(j), xk(j), xl(j)

)
+G
(
yk(j), yk(j), yl(j)

)

2

)

,

(3.22)

ϕ
(
G
(
yk(j)+1, yk(j)+1, yl(j)+1

))
= ϕ
(
G
(
F
(
yk(j), xk(j)

)
, F
(
yk(j), xk(j)

)
, F
(
yl(j), xl(j)

)))

≤ 1
2
ϕ
(
G
(
yk(j), yk(j), yl(j)

)
+G
(
xk(j), xk(j), xl(j)

))

− ψ
(
G
(
yk(j), yk(j), yl(j)

)
+G
(
xk(j), xk(j), xl(j)

)

2

)

.

(3.23)
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Adding (3.22) and (3.23), we get

ϕ
(
G
(
xk(j)+1, xk(j)+1, xl(j)+1

))
+ ϕ
(
G
(
yk(j)+1, yk(j)+1, yl(j)+1

)) ≤ ϕ(αj
) − 2ψ

(
αj

2

)
. (3.24)

From (3.21) and (3.24), we obtain

ϕ
(
αj
) ≤ ϕ(sl(j) + 2sk(j)

)
+ ϕ
(
αj
) − 2ψ

(
αj

2

)
. (3.25)

Taking limit as j → ∞ on both sides of the above inequality, we get

ϕ(ε) ≤ ϕ(0) + ϕ(ε) − 2 lim
j→∞

ψ

(
αj

2

)
= ϕ(ε) − 2 lim

αj → ε
ψ

(
αj

2

)
< ϕ(ε), (3.26)

which is a contradiction, and hence (xn) and (yn) are Cauchy sequences in theG-metric space
(X,G). Since (X,G) is complete G-metric space, hence (xn) and (yn) are G-convergent. Then,
there exist x, y ∈ X such that (xn) and (yn) areG-convergent to x and y, respectively. Suppose
that condition (a) holds. Letting n → ∞ in (3.2), we get x = F(x, y) and y = F(y, x). Lastly,
suppose that assumption (b) holds. Since a sequence (xn) is nondecreasing andG-convergent
to x and also (yn) is nonincreasing sequence and G-convergent to y, by assumption (b), we
have xn � x and yn � y for all n. Using the rectangle inequality, write

G
(
x, x, F

(
x, y
)) ≤ G(x, x, xn+1) +G

(
xn+1, xn+1, F

(
x, y
))

= G(x, x, xn+1) +G
(
F
(
xn, yn

)
, F
(
xn, yn

)
, F
(
x, y
))
.

(3.27)

Applying the function ϕ on both sides of the above equation and using (3.1), we have

ϕ
(
G
(
x, x, F

(
x, y
))) ≤ ϕ(G(x, x, xn+1)) + ϕ

(
G
(
F
(
xn, yn

)
, F
(
xn, yn

)
, F
(
x, y
)))

≤ ϕ(G(x, x, xn+1)) + 1
2
ϕ
(
G(xn, xn, x) +G

(
yn, yn, y

))

− ψ
(
G(xn, xn, x) +G

(
yn, yn, y

)

2

)

.

(3.28)

Letting n → ∞, we get G(x, x, F(x, y)) = 0. Hence x = F(x, y). Similarly we obtain y =
F(y, x). Thus, we conclude that F has a coupled fixed point.

Corollary 3.2. Let (X,�) be a partially ordered set, and letG be aG-metric onX such that (X,G) is a
completeG-metric space. Suppose that F : X×X → X is a mapping having mixed monotone property.
Assume that there exists ψ ∈ Ψ such that for all x, y, u, v, s, t ∈ X,

G
(
F
(
x, y
)
, F(u, v), F(s, t)

) ≤ G(x, u, s) +G
(
y, v, t

)

2
− ψ
(
G(x, u, s) +G

(
y, v, t

)

2

)

,

(3.29)



Abstract and Applied Analysis 9

with x � u � s and y � v � t where either u/= s or v /= t. Suppose that either
(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence (xn) is G-convergent to x, then xn � x, for all n,
(ii) if a nonincreasing sequence (yn) is G-convergent to y, then yn � y, for all n.

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then there exist x, y ∈ X such
that F(x, y) = x and F(y, x) = y; that is, F has a coupled point in X.

Proof. Taking ϕ(t) = t in Theorem 3.1 and proceeding the same lines as in this theorem, we
get the desired result.

Corollary 3.3. Let (X,�) be a partially ordered set, and let G be a G-metric on X such that (X,G) is
a complete G-metric space. Suppose F : X × X → X is a mapping having mixed monotone property
and assume that there exists k ∈ [0, 1) such that

G
(
F
(
x, y
)
, F(u, v), F(s, t)

) ≤ k

2
[
G(x, u, s) +G

(
y, v, t

)]
, (3.30)

for all x, y, u, v, s, t ∈ X with x � u � s and y � v � t where either u/= s or v /= t. Suppose that either
(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence (xn) is G-convergent to x, then xn � x, for all n,
(ii) if a nonincreasing sequence (yn) is G-convergent to y, then yn � y, for all n.

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled point in
X.

Proof. Taking ϕ(t) = t and ψ(t) = ((1 − k)/2)t in Theorem 3.1 and proceeding the same lines
as in this theorem, we get the desired result.

Remark 3.4. To assure the uniqueness of a coupled fixed point, we shall consider the following
condition. If (Y,�) is a partially ordered set, we endowed the product Y × Y with

(
x, y
) � (u, v) iff x � u, y � v, (3.31)

for all (x, y), (u, v) ∈ Y × Y .

Theorem 3.5. In addition to the hypothesis of Theorem 3.1, suppose that for all (x, y), (s, t) ∈ X×X,
there exists (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable with (F(x, y), F(y, x)) and
(F(s, t), F(t, s)). Then, F has a unique coupled fixed point.

Proof. It follows from Theorem 3.1 that the set of coupled fixed points is nonempty. Suppose
(x, y) and (s, t) are coupled fixed points of the mappings F : X ×X → X; that is, x = F(x, y),
y = F(y, x), and s = F(s, t), t = F(t, s). By assumption there exists (u, v) in X × X such
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that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and (F(s, t), F(t, s)). Put u = u0 and
v = v0 and choose u1, v1 ∈ X such that u1 = F(u1, v1) and v1 = F(v1, u1). Thus, we can define
two sequences (un) and (vn) as

un+1 = F(un, vn), vn+1 = F(vn, un). (3.32)

Since (u, v) is comparable to (x, y), we can assume that (x, y) � (u, v) = (u0, v0). Then it is
easy to show that (un, vn) and (x, y) are comparable; that is, (x, y) � (un, vn), for all n. Thus,
from (3.1), we have

ϕ(G(uu+1, x, x)) = ϕ
(
G
(
F(uu, vn), F

(
x, y
)
, F
(
x, y
)))

≤ 1
2
ϕ
(
G(un, x, x) +G

(
vn, y, y

)) − ψ
(
G(un, x, x) +G

(
vn, y, y

)

2

)

,

(3.33)

ϕ
(
G
(
y, y, vu+1

))
= ϕ
(
G
(
F
(
y, x
)
, F
(
y, x
)
, F(vu, un)

))

≤ 1
2
ϕ
(
G
(
y, y, vn

)
+G(x, x, un)

) − ψ
(
G
(
y, y, vn

)
+G(x, x, un)
2

)

.

(3.34)

Using the property of ϕ and adding (3.33) and (3.34), we get

ϕ
(
G(uu+1, x, x) +G

(
vu+1, y, y

)) ≤ ϕ(G(un, x, x) +G
(
vn, y, y

))

− 2ψ

(
G(un, x, x) +G

(
vn, y, y

)

2

)

,
(3.35)

which implies that

ϕ
(
G(uu+1, x, x) +G

(
vu+1, y, y

)) ≤ ϕ(G(un, x, x) +G
(
vn, y, y

))
. (3.36)

Therefore,

G(uu+1, x, x) +G
(
vu+1, y, y

) ≤ G(un, x, x) +G
(
vn, y, y

)
. (3.37)

We see that the sequence (G(un, x, x) +G(vn, y, y)) is decreasing; there exists some ξ ≥ 0 such
that

lim
n→∞

[
G(un, x, x) +G

(
vn, y, y

)]
= ξ. (3.38)
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Now we have to show that ξ = 0. On the contrary, suppose that ξ > 0. Letting n → ∞ in
(3.35), we get

ϕ(ξ) ≤ ϕ(ξ) − 2ψ lim
n→∞

(
G(un, x, x) +G

(
vn, y, y

)

2

)

< ϕ(ξ), (3.39)

which is not possible. Hence ξ = 0. Therefore, (3.38) becomes

lim
n→∞

[
G(un, x, x) +G

(
vn, y, y

)]
= 0, (3.40)

which implies

lim
n→∞

G(un, x, x) = 0 = lim
n→∞

G
(
vn, y, y

)
. (3.41)

Similarly, we can show that limn→∞G(un, s, s) = 0 = limn→∞G(vn, t, t). We conclude that x = s
and y = t. Thus, F has a unique coupled fixed point.

Theorem 3.6. In addition to the hypothesis of Theorem 3.1, suppose that x0 and y0 are comparable.
Then, F has a unique fixed point.

Proof. Proceeding the same lines as in the proof of Theorem 3.1, we know that a mapping
F : X × X → X has a coupled fixed point (x, y). Now we need to show that x = y. Since
x0 and y0 are comparable, we can assume that x0 � y0. It is easy to show that xn � yn for
all n ≥ 0, where xn+1 = F(xn, yn) and yn+1 = F(yn, xn). Suppose that G(x, x, y) > 0, for all
x, y ∈ X with x /=y. Using the rectangle inequality, write

G
(
x, x, y

) ≤ G(x, x, xn+1) +G
(
xn+1, xn+1, yn+1

)
+G
(
yn+1, yn+1, y

)

= G(x, x, xn+1) +G
(
F
(
xn, yn

)
, F
(
xn, yn

)
, F
(
yn, xn

))
+G
(
yn+1, yn+1, y

)
.

(3.42)

Operating ϕ on both sides of the above inequality, we get

ϕ
(
G
(
x, x, y

)) ≤ ϕ(G(x, x, xn+1) +G
(
yn+1, yn+1, y

))
+ ϕ
(
G
(
F
(
xn, yn

)
, F
(
xn, yn

)
, F
(
yn, xn

)))
.

(3.43)

From (3.1), we have

ϕ
(
G
(
x, x, y

)) ≤ ϕ(G(x, x, xn+1) +G
(
yn+1, yn+1, y

))

+
1
2
ϕ
(
G
(
xn, xn, yn

)
+G
(
yn, yn, xn

)) − ψ
(
G
(
xn, xn, yn

)
+G
(
yn, yn, xn

)

2

)

.

(3.44)
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Similarly, we obtain

ϕ
(
G
(
y, y, x

)) ≤ ϕ(G(y, y, yn+1
)
+G(xn+1, xn+1, x)

)

+
1
2
ϕ
(
G
(
yn, yn, xn

)
+G
(
xn, xn, yn

)) − ψ
(
G
(
yn, yn, xn

)
+G
(
xn, xn, yn

)

2

)

.

(3.45)

Adding (3.44) and (3.45) and using the property of ϕ, we get

ϕ
(
G
(
x, x, y

)
+G
(
y, y, x

))

≤ ϕ(G(x, x, xn+1) +G
(
yn+1, yn+1, y

))
+ ϕ
(
G
(
y, y, yn+1

)
+G(xn+1, xn+1, x)

)

+ ϕ
(
G
(
xn, xn, yn

)
+G
(
yn, yn, xn

)) − 2ψ

(
G
(
xn, xn, yn

)
+G
(
yn, yn, xn

)

2

)

.

(3.46)

Letting n → ∞ in the above inequality, we get

ϕ
(
G
(
x, x, y

)
+G
(
y, y, x

)) ≤ ϕ(0) + ϕ(0) + ϕ(G(x, x, y) +G(y, y, x))

− 2 lim
n→∞

ψ

(
G
(
xn, xn, yn

)
+G
(
yn, yn, xn

)

2

)

,
(3.47)

which implies that

ϕ
(
G
(
x, x, y

)
+G
(
y, y, x

))
< ϕ
(
G
(
x, x, y

)
+G
(
y, y, x

))
, (3.48)

which is not possible, and hence G(x, x, y) = 0. Thus x = y, whence the result.

Theorem 3.7. Let (X,�) be a partially ordered set, and let G be a G-metric on X such that (X,G)
is a complete G-metric space. Let F : X × X → X be a mapping such that F has a mixed monotone
property and F(x, y) � F(y, x) whenever x � y. Suppose that there exist ϕ ∈ Φ and ψ ∈ Ψ such that
for all x, y, u, v, s, t ∈ X, (3.1) holds with x � u � s, y � v � t and x ≺ y where either u/= s or v /= t.
Assume that either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence (xn) is G-convergent to x, then xn � x, for all n,
(ii) if a nonincreasing sequence (yn) is G-convergent to y, then yn � y, for all n.

If there exist x0, y0 ∈ X such that x0 � y0, x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled
point; that is, there exist x, y ∈ X such that F(x, y) = x and F(y, x) = y.
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Proof. Let x0, y0 ∈ X be such that x0 � F(x0, y0) and y0 � F(y0, x0). We can choose x1, y1 ∈ X
such that x1 = F(x0, y0) � x0 and y1 = F(y0, x0) � y0. Since x0 � y0, we have F(x0, y0) �
F(y0, x0). Accordingly,

x0 � x1 = F
(
x0, y0

) � F(y0, x0
)
= y1 � y0. (3.49)

Continuing this process, we can construct two sequences (xn) and (yn) in X such that

xn � F(xn, yn
)
= xn+1 � yn+1 = F

(
yn, xn

) � yn, (3.50)

for all n ≥ 0. Therefore,

x0 � x1 � x2 � · · · � xn � xn+1 · · · � yn+1 � yn � · · · � y2 � y1 � y0. (3.51)

The rest of the proof can be done on the same lines as in Theorem 3.1.

4. Example and the Concluding Remark

In the following, we construct an example of a G-metric space involving the idea of coupled
fixed point to see the applicability of our results.

Let X = N ∪ {0}. Define a mapping G from X3 to R by

G
(
x, y, z

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y + z, if x, y, z are all distinct and different from zero,
x + z, if x = y /= z and all are different from zero,
y + z + 1, if x = 0, y /= z and y, z are different from zero,
y + 2, if x = 0, y = z/= 0,
z + 1, if x = 0 = y, z /= 0,
0, if x = y = z.

(4.1)

Then (X,G) is a complete G-metric space [10]. Let us consider a partial order � on X be such
that x � y holds if x > y, 3 divides (x −y), and 3 � 1 and 0 � 1 hold, for all x, y ∈ X. Consider
a mapping F : X ×X → X defined by

F
(
x, y
)
=

{
1, if x ≺ y,
0, otherwise.

(4.2)

Suppose that s � u � x ≺ y � v � t holds. Therefore, we have F(x, y) = 1 = F(u, v) = F(s, t).
It follows that G(F(x, y), F(u, v), F(s, t)) = 0.

Now, applying the function ϕ to this equality and then using the hypothesis of this
function, we see that (3.1) is satisfied since the left-hand side of (3.1) becomes 0. For x0 = 81
and y0 = 0, Theorem 3.7 is applicable. In this case, the coupled fixed point is not unique.
Hence (0, 0) and (1, 0) are two coupled fixed points of F.

We remark that inequality (3.1) is not satisfied when s = u = x = y = 3, v = 0, and t = 1,
and hence Theorem 3.1 does not work for this example. We know that a G-metric naturally



14 Abstract and Applied Analysis

induces a metric dG given by dG(x, y) = G(x, y, y) + G(x, x, y) [2], but inequality (3.1) does
not reduce to any metric inequality with the metric dG due to the condition that either u/= s
or v /= t. Hence our theorems are more general, different from the classical results, and do not
reduce to fixed point problems in the corresponding metric space (X, dG).
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