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Abstract—Aortic flow and pressure result from the interac-
tions between the heart and arterial system. In this work, we
considered these interactions by utilizing a lumped parameter
heart model as an inflow boundary condition for three-
dimensional finite element simulations of aortic blood flow
and vessel wall dynamics. The ventricular pressure–volume
behavior of the lumped parameter heart model is approxi-
mated using a time varying elastance function scaled from a
normalized elastance function. When the aortic valve is open,
the coupled multidomain method is used to strongly couple
the lumped parameter heart model and three-dimensional
arterial models and compute ventricular volume, ventricular
pressure, aortic flow, and aortic pressure. The shape of the
velocity profiles of the inlet boundary and the outlet
boundaries that experience retrograde flow are constrained
to achieve a robust algorithm. When the aortic valve is
closed, the inflow boundary condition is switched to a zero
velocity Dirichlet condition. With this method, we obtain
physiologically realistic aortic flow and pressure waveforms.
We demonstrate this method in a patient-specific model of a
normal human thoracic aorta under rest and exercise
conditions and an aortic coarctation model under pre- and
post-interventions.

Keywords—Blood flow, Time varying elastance function,

Coupled multidomain method.

INTRODUCTION

Computational simulations of blood flow are used

to study the cardiovascular system in a variety of

applications31 including the study of the hemody-

namics of healthy and diseased blood vessels,3,18,30 the

design and evaluation of vascular medical devices,15,28

the planning of vascular surgeries, and the prediction

of the outcomes of the surgeries.16,26,32 With advances

in computing power and numerical methods, such

simulations are being extensively used for applications

where experimental data are limited or unavailable.

However, due to the complex characteristics of the

cardiovascular system, many challenges remain in

quantifying realistic velocity and pressure fields. One

of these challenges is the development of boundary

conditions. Previously, we showed how the velocity

and pressure fields of the same computational domain

can change significantly depending on the choice of

outflow boundary conditions.35 Outflow boundary

conditions affect flow distribution, the range of the

computed pressure, reflection and attenuation of the

pressure wave, and the shape of the flow and pressure

waveforms. In an effort to develop appropriate out-

flow boundary conditions, alternate methods to couple

the computational domain with reduced-order zero-

dimensional and one-dimensional analytic and

numerical models have been proposed.5,16,19,35 We

developed a new method, the coupled multidomain

method, to couple outflow boundaries with simple

analytic models such as a resistance, impedance, or

3-element Windkessel model, and obtained physiologi-

cally realistic flow rate and pressure fields in complex

models.35

In contrast to developments made in the area of

outflow boundary conditions, little progress has been

reported for the development of an inflow boundary

condition despite the fact that proximal to the inflow

boundary, there is also an upstream part of the car-

diovascular system that interacts with the computa-

tional domain. Conventionally, a flow or pressure
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waveform obtained from experiments is utilized as an

inflow boundary condition. In consequence, the bidi-

rectional interactions between the downstream com-

putational domain and the upstream portion of the

cardiovascular system are ignored. Furthermore, when

using prescribed flow or pressure waveforms, the uti-

lized inflow boundary condition is only valid for one

particular physiologic condition. To simulate a differ-

ent physiologic condition, a different inflow boundary

condition must be assigned. Without experimental

data available for different physiologic conditions, a

different flow or pressure waveform needs to be con-

structed based on available literature data.

Fundamentally, aortic blood flow and pressure

result from the interactions between the heart and

arterial system. The aortic flow and pressure change as

the cardiac properties change and vice versa. To study

how the changes in cardiac properties and arterial

system influence each other, the inflow boundary

condition should model the interactions between them.

For example, to treat a failing heart, physicians can

either provide the patient with an inotrope to enhance

the contractility of the heart or vasodilators, which

reduce the afterload of the heart.1 These treatment

options will change both the aortic flow and pressure

and the cardiac properties due to the interactions

between them. To predict the outcome of the treatment

satisfactorily, it is essential to understand the interac-

tions between the heart and arterial system.

A variety of heart models ranging from lumped

parameter to three-dimensional models have been

developed to simulate the relaxation, filling, contrac-

tion, and ejection phases of the heart.10,11,17,21,24,29 In

particular, lumped parameter heart models approxi-

mate global characteristics of the heart using simple

hydraulic models of a resistance, capacitance, induc-

tance, pressure source, and diode, resulting in time-

varying ordinary differential equations of flow and

pressure. Several previous studies have utilized these

lumped parameter heart models to calculate aortic flow

and pressure using lumped parameter, one-dimensional

and three-dimensional models of the aorta.6,16,17,24

However, for previous work with three-dimensional

aortic models, the coupling between the computational

domain and lumped parameter heart model was explicit

and the simulations were computed with the assump-

tion of rigid vessel walls.

In this paper, we used the coupled multidomain

method35 to implicitly couple a lumped parameter

heart model24 to a subject-specific three-dimensional

finite element model of the aorta. We utilized an aug-

mented Lagrangian method to enforce constraints on

the shape of the velocity profiles on the inlet boundary

and outlet boundaries that experience retrograde

flow.12 Using this implicit coupling method along with

the constraints on the velocity profile shape, we greatly

increased the realism of three-dimensional aortic blood

flow simulations coupled to a lumped parameter heart

model. We also incorporated deformable wall proper-

ties of the blood vessels using the coupled momentum

method.4

This paper is organized as follows. First, we present

a method for strongly coupling a lumped parameter

heart model to a three-dimensional finite element

model of the aorta. We then demonstrate this method

by applying it to simulations of blood flow in a subject-

specific thoracic aorta model to study changes in car-

diac properties and aortic flow and pressure for rest

and light exercise conditions. Finally, we demonstrate

the utility of this method by applying it to compute the

reduction in cardiac load when comparing the pre-

intervention and post-intervention hemodynamic con-

ditions of a subject-specific thoracic aorta model with

an aortic coarctation.

METHODS

Three-Dimensional Finite Element Simulations

of Blood Flow and Vessel Wall Dynamics

Blood flow in the large vessels of the cardiovascular

system can be represented as a Newtonian fluid.18 The

vessel walls can be approximated using a linear elastic

model within the physiologic range of pulse pressure.

The governing equations for the fluid consist of the

incompressible Navier–Stokes equations, whereas the

motion of the vessel wall is governed by the elastody-

namics equations. Initial and boundary conditions as

well as fluid–solid interface conditions are required for

the fluid and solid domains. In the method described

herein, we assume a fixed fluid mesh and small dis-

placements of the vessel wall.

For fluid domain X with its boundary C and solid

domain X
s with its boundary C

s, the following equa-

tions are solved for velocities ~v; pressure p, and wall

displacement ~u.4

Given ~f : X� ð0;TÞ ! R3; ~f s : Xs � ð0;TÞ ! R3;
~g : Cg � ð0;TÞ ! R3; ~g s

: C
s
g � ð0;TÞ ! R3;~v0 : X !

R3; ~u0 : X
s ! R3 and ~u0;t : X

s ! R3; find ~vð~x; tÞ;
pð~x; tÞ; and ~uð~xs; tÞ 8~x 2 X; 8~xs 2 X

s; 8t 2 ð0;TÞ such
that the following is satisfied:

q~v;tþq~v �r~v¼�rpþdivð s
�
Þþ~f for ð~x;tÞ2X�ð0;TÞ

divð~vÞ¼ 0 for ð~x;tÞ 2 X�ð0;TÞ

qs~u;tt¼r� r
�

sþ~f s for ð~xs;tÞ 2 X
s�ð0;TÞ ð1Þ

where s
�
¼lðr~vþðr~vÞTÞ

and r
�

s¼C
�
:
1

2
ðr~uþðr~uÞTÞ

KIM et al.2154



with Dirichlet boundary conditions:

~vð~x; tÞ ¼ ~gð~x; tÞ for ð~x; tÞ 2 Cg � ð0;TÞ

~uð~x s; tÞ ¼ ~g sð~x s; tÞ for ð~xs; tÞ 2 C
s
g � ð0;TÞ

ð2Þ

Neumann boundary condition:

~t~n ¼ ½�p I
�
þ s
�
�~n¼ ~hð~v;p;~x; tÞ for ð~x; tÞ 2 Ch � ð0;TÞ

ð3Þ

fluid–solid interface condition:

~t~n ¼ r
�

s~n ¼ ~hsð~v; p; ~x; tÞ for ð~x; tÞ 2 C
s
h � ð0;TÞ ð4Þ

and initial conditions:

~vð~x; 0Þ ¼~v0ð~xÞ for ~x 2 X

~uð~xs; 0Þ ¼ ~u0ð~x
sÞ for ~xs 2 X

s

~u;tð~x
s; 0Þ ¼ ~u0;tð~x

sÞ for ~xs 2 X
s

ð5Þ

Density q and dynamic viscosity l of the blood and

density qs of the vessel walls are assumed to be con-

stant. C
�

is a fourth-order tensor of material constants.

Additionally, ~f is the external body force on the fluid

domain, and ~f s is the external body force on the solid

domain.

The boundary C of the fluid domain is divided into

Dirichlet boundary portion Cg and Neumann bound-

ary portion Ch. These boundaries satisfy ðCg [ ChÞ ¼ C

and Cg \ Ch ¼ /: Note that for this study, when the

aortic valve is open, the inlet boundary is included

in the Neumann boundary portion Ch, not in the

Dirichlet boundary portion Cg to enable coupling

with a lumped parameter heart model. Therefore, the

Dirichlet boundary portion Cg only consists of the inlet

and outlet rings of the computational domain when the

aortic valve is open. In what follows, these rings are

fixed in time and space.4

The Neumann boundary portion Ch consists of the

inlet and outlet surfaces of the computational domain

when the aortic valve is open. We divide the Neumann

boundary portion Ch into inlet surface Cin and the set

of all the outlet surfaces, Ch¢, such that ðCin [ C
0
hÞ ¼ Ch

and Cin \ C
0
h ¼ /: For the outlet boundaries, we utilize

the coupled multidomain method35 to prescribe the

impedance of lumped parameter models approximat-

ing the downstream vasculature networks of the car-

diovascular system not included in the computational

model. The lateral surface of the fluid domain coin-

cides with a membrane approximation for the vessel

wall as modeled using the coupled momentum method

for fluid–solid interaction.4 In this work, the coupled

multidomain method is used on inlet surface Cin to

couple a lumped parameter heart model to the com-

putational domain. Similar to the treatment of the

outflow boundary conditions, in this method, a lumped

parameter heart model is used to define the operators

M ¼ ½M
�m

; ~Mc�Cin
and H ¼ ½H

�m
; ~Hc�Cin

which approxi-

mate the traction and velocity fields of the inlet surface:

ð�p I
�
þ s
�
Þj
Cin

� M
�m

ð~v; pÞ þH
�m

� �

Cin

~vj
Cin

� ~Mcð~v; pÞ þ ~Hc

h i

Cin

ð6Þ

Then, the resulting weak form is as follows:
Z

X

~w�ðq~v;t þ q~v�r~v�~f Þþr~w :ð�p I
�
þ s
�
Þ

n o

d~x

�

Z

X

rq�~vd~xþ f

Z

C
s

~w�qs~v;tþr~w : r
�

sð~uÞ
n o

ds

�f

Z

@Ch

~w�~hsdlþ

Z

C
s

q~v�~nds�

Z

C
0
h

~w�~hdsþ

Z

C
0
h

q~v�~nds ð7Þ

þ

Z

C�Ch

q~v�~nds

�
Z

Cin

~w�ðM
�m

ð~v;pÞþH
�m

Þ�~ndsþ
Z

Cin

qð ~Mcð~v;pÞþ ~HcÞ�~nds

¼0

where f is the wall thickness. The boxed terms now

couple the lumped parameter heart model to the

computational domain using the operators, M and H

that are specific to the lumped parameter heart model,

which is described below.

A stabilized semi-discrete finite element method was

employed based on the ideas developed in Brooks and

Hughes,2 Franca and Frey,7 Taylor et al.,33 and

Whiting et al.36

Time-Varying Elastance Function

The contraction and relaxation of a ventricle is

approximated using a time-varying elastance func-

tion.25,29 Elastance is the instantaneous ratio of ven-

tricular pressure Pv(t) and ventricular volume Vv(t)

according to the following equation:

PvðtÞ ¼ EðtÞ � VvðtÞ � V0½ � ð8Þ

Here, V0 is a constant correction volume, which is

recovered when the ventricle is unloaded.

Each subject has a different time-varying elastance

function depending on his or her contractility, vascular

loading, heart rate, etc. However, if the elastance func-

tion is normalized with amaximum elastance value, and

tmax, the time difference between the onset of systole and

the time at the maximum elastance value, the same

normalized elastance function is obtained regardless of

contractility, vascular loading, heart rate, and heart

diseases.25,29 This normalized elastance function is

scaled to approximate the measured cardiac output,

pulse pressure, and contractility of each subject.
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Lumped Parameter Heart Model Used

to Define Operators

A lumped parameter heart model coupled to an inlet

surface is shown in Fig. 1.24 For this study, we only

consider the left side of the heart, but the same method

can be applied to the right side of the heart. The

heart model consists of constant left atrial pressure

PLA, mitral valve, atrio-ventricular valvular resistance

RA-V, atrio-ventricular inductance LA-V, aortic valve,

ventriculo-arterial valvular resistance RV-art, ventricu-

lo-arterial inductance LV-art, and left ventricular pres-

sure. The left ventricular pressure is modeled with

time-varying elastance E(t). An atrio-ventricular induc-

tance LA-V and ventriculo-arterial inductance LV-art

were added to the model proposed by Segers et al.24 in

order to simulate the inertial effects of blood flow.

In systole, when the left ventricular pressure rises

above the aortic pressure, the aortic valve opens and

enables the interactions between the ventricle and the

arterial system (Fig. 2). During this phase, aortic flow

and pressure arise naturally through the interactions

between the lumped parameter heart model and the

three-dimensional finite element model of the aorta.

In diastole, when the aortic flow is reversed, the

aortic valve closes. There is no aortic inflow from the

ventricle during this phase. Ventricular pressure and

volume are determined independently of the three-

dimensional finite element model of the aorta, and are

a function of the time-varying elastance function and

the lumped parameter heart model. The ventricular

pressure decreases as the ventricle is relaxed in diastole.

When the ventricular pressure falls below the left atrial

pressure, the mitral valve opens and the left atrial flow

and left ventricular pressure are determined by the

interactions between the left ventricle and the left

atrium. The mitral valve closes when the left atrial flow

is reversed (Fig. 2).

When the aortic valve is open, aortic flow is a

function of the aortic pressure and ventricular pres-

sure. Moreover, aortic flow is coupled to the ventric-

ular volume as the ventricle ejects blood to the aorta.

Thus, using the lumped parameter heart model

described above, aortic flow Q(t) is coupled to aortic

pressure P(t), ventricular volume Vv(t), and the

time-varying elastance function E(t) through the

following equation:

PðtÞ ¼ EðtÞ � VvðtÞ � V0f g �QðtÞ � RV�art �
dQ

dt
� LV�art

¼ EðtÞ � VvðtaoÞ �

Z t

tao

QðsÞds� V0

� �

�QðtÞ � RV�art �
dQ

dt
� LV�art ð9Þ

where tao is the time the aortic valve opens.

Using this equation, the operators M and H are

defined as follows:

M
�m

ð~v;pÞ þH
�m

� �

Cin

¼�EðtÞ � VvðtaoÞ þ

Z t

tao

Z

Cin

~v �~ndCds�V0

� �

I
�

ð10Þ

� RV�art þLV�art

d

dt

� �
Z

Cin

~v �~ndC I
�
þ s
�
�ð~n � s

�
�~nÞ I

�

~Mcð~v;pÞ þ ~Hc

h i

Cin

¼~vj
Cin

Using these operators, the traction and velocity fields

of the inlet surface of the aortic model are now

strongly coupled to the lumped parameter heart model

and solved implicitly while the aortic valve is open.

When the mitral valve is open, atrial flow is a

function of left atrial pressure PLA and the left ven-

tricular pressure, which is coupled to the left ventric-

ular volume. The atrial flow QLA(t) is computed

through the following equation:

PLA¼EðtÞ � VvðtÞ�V0f gþQLAðtÞ �RA�Vþ
dQLA

dt
�LA�V

¼EðtÞ � VvðtmoÞþ

Z t

tmo

QLAðsÞds�V0

� �

ð11Þ

þQLAðtÞ �RA�Vþ
dQLA

dt
�LA�V

where tmo is the time the mitral valve opens.

P LA   

R A- V   L A- V   R V-ar t   L V-ar t   

( )  E t  

FIGURE 1. Lumped parameter heart model.24
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Opening and Closure of the Aortic Valve

The heart model is always coupled to the three-

dimensional finite element model of the aorta but the

interactions between the heart model and the aorta

occur only when the aortic valve is open. In diastole

and part of systole, the aortic valve remains closed,

thus, there is no flow from the ventricle. To accom-

modate this change, the inlet boundary is switched

from a Neumann boundary to Dirichlet boundary

when there is no flow (Fig. 2). When the ventricular

pressure rises above the aortic pressure again, the inlet

boundary changes back from a Dirichlet boundary to a

Neumann boundary. Finally, the boundary changes

back to a Dirichlet boundary when there is retrograde

aortic flow.

Constraints on the Shape of the Velocity Profiles

of the Inlet and the Outlets with Retrograde Flow

In our approach, we weakly enforce boundary

conditions such that the normal traction is a function

of the flow rate using the coupled multidomain

method.35 If the shape of the inlet velocity profile is

free of constraints, it often results in an irregular

profile prone to numerical instability. To resolve this

issue, an augmented Lagrangian method was used to

weakly enforce a shape of the inlet velocity profile as

was done for retrograde outlet flows in Kim et al.12

The following axisymmetric velocity profile is pre-

scribed after constructing a circular shape for the inlet

surface:

vnð�; tÞ ¼ �vðtÞ �
nþ 2

n
1�

r

R

� �n� �

ð12Þ

where vn is a normal velocity, �vðtÞ is the mean normal

velocity, r is the distance between a point on the con-

strained surface and the center of the surface and R is

the radius of the constrained surface. In-plane veloci-

ties are zeroed out weakly using additional constraints.

A profile order n is chosen to approximate a parabolic

(n = 2) or increasingly flat velocity profile based on the

measured inflow waveform, inlet radius, and cardiac

cycle. If the outlets have retrograde flow, constraints

with the same profile order are enforced on the shape

of the outlet velocity profiles to achieve a robust

algorithm. The assumption of circular faces and the

above choice of profile function were made without

loss of generality.

Setting Up Initial Conditions Using Reduced-Order

Models

To determine an appropriate initial condition, the

three-dimensional finite element model of the aorta

was replaced with a 3-element Windkessel model and

run until a converged solution was obtained. Based on

this converged solution describing a full cardiac cycle,

one time point was selected and set as an initial con-

dition for the lumped parameter heart model and the

aortic flow and pressure of the three-dimensional finite

element model of the aorta.

Choice of the Parameter Values of the Lumped

Parameter Heart Model

The parameter values of the lumped parameter

heart model were optimized to approximate the mea-

sured cardiac output and pulse pressure. Initially, the

following parameter values were chosen based on

measured values and literature data.17,23

tmax ¼

T
3
; at rest, where T is the measured

cardiac cycle.

0:5T; during exercise.

8

>

<

>

:

Emax ¼
c � R

T
, where R is the total resistance

of the systemic circulation and 1 � c � 2:

V0 ¼ Vesv �
0:9Psys

Emax

; where Vesv is an end-systolic

volume and Psys is a systolic pressure.

RV�art ¼ 10 dynes s/cm5

RA�V ¼ 10 dynes s/cm5

LV�art ¼ 0:6879 dynes s2=cm5

LA�V ¼ 0:6670 dynes s2=cm5

Emax and V0 were modified iteratively to minimize the

difference between the computed cardiac output and

pulse pressure and the measured cardiac output and

pulse pressure based first on the simulation results of

the lumped models and then the three-dimensional

finite element solver. The iterations were continued

until the computed cardiac output, pulse pressure, and

flow distribution to each outlet matched the target

subject-specific data within 5.0% relative difference.

Simulation Details

For the simulations presented here, we assumed that

blood can be described as a Newtonian fluid with a

density of 1.06 g/cm3 and a dynamic viscosity of

0.04 dynes/cm2 s. As a first approximation, we

assumed that the blood vessel walls can be modeled as

a linear elastic material with Poisson’s ratio of 0.5, a

wall density of 1.0 g/cm3, and a wall thickness of

0.1 cm. The values of these material parameters are all

physiologically reasonable. We utilized anisotropic

Coupling a Heart Model to 3D FE Aorta Model 2157



finite element mesh generation techniques with refine-

ment on the exterior surfaces and five boundary lay-

ers.20 The solutions were run until the relative changes

in pressure fields at the inlet and the outlets were

smaller than 1.0% compared to the solutions from the

previous cardiac cycle.

The computer models used in the simulations were

constructed from magnetic resonance imaging data.

Each model started from the root of the aorta, ended

above the diaphragm, and included the main upper

branch vessels: right subclavian, left subclavian, right

carotid, and left carotid arteries. For the inlet, we

coupled the lumped parameter heart model described

before. For the outlets, we assigned three-element

Windkessel models to represent the downstream vas-

culature networks that are absent in the three-dimen-

sional computational domains. Flow distribution to

each outlet was based on data measured using cine

phase contrast magnetic resonance imaging (cine

PC-MRI) and literature data.37 Boundary conditions

were adjusted to match both the flow distribution and

the measured brachial artery pulse pressure.14,27 For a

normal thoracic aorta model, we attempted to match

the brachial pulse pressure at the level of the

descending thoracic aorta based on the experiments

conducted by Hope et al.,9 which demonstrated that

brachial pressure is in the same range of the aortic

pressure at the level of the diaphragm for normal

subjects.

RESULTS

A Subject-Specific Thoracic Aorta Model at Rest

and During Exercise

In these simulations, we studied how cardiac prop-

erties change as the resistance of the lower extremities

decreases due to the increase of flow demand during

light exercise. A subject-specific thoracic aorta com-

puter model of an eleven-year-old male subject was

constructed (Fig. 3). Solutions were obtained using a

1,916,167 element and 345,069 node mesh with a time

0 
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step size of 0.16 ms to simulate a resting condition and

0.1 ms to simulate a light exercise condition. The shape

of the velocity profiles of the inlet and of all the outlets

were constrained to an axisymmetric shape with a

profile order of seven. To simulate light exercise, the

resistance value of the descending thoracic aorta was

decreased in order to increase flow to the lower

extremities. The cardiac cycle was shortened to simu-

late increased heart rate until the systolic pressure

matched the systolic pressure of the resting state in the

thoracic aorta. For simplicity, the boundary conditions

of the upper branch vessels were unchanged. The

parameter values of the Windkessel models are shown

in Fig. 3 along with the time-varying elastance func-

tion and the parameter values of the lumped parameter

heart model. The same time-varying elastance function

was used for both rest and light exercise conditions.

Wall deformability was also modeled. A Young’s

modulus of the vessel walls was chosen to be

6.04 9 106 dynes/cm2 so that a maximum deformation

of 11% was obtained based on cine PC-MRI data at

the level of the ascending and descending thoracic

aorta. The same value of Young’s modulus was used

for the exercise simulation. The simulations were run

for a total of six cardiac cycles until the flow rate and

pressure fields yielded periodic solutions.

In Fig. 4, computed pressure and flow waveforms of

the inlet and the outlets are shown for rest and exercise

conditions. The pressure–volume loops of the left

ventricle for both conditions are also shown. The

measured cardiac output of the subject was 3.4 L/min

for the resting condition. The computed cardiac output

of the subject was 3.5 L/min for the resting condition

and 6.4 L/min during exercise. These values for rest

and exercise are within the normal cardiac indices for

children when scaled to body surface area.22 The body

surface area of this subject was 1.45 m2 and the cardiac

index was 2.41 L/min/m2 for the resting condition and

4.41 L/min/m2 during exercise. The estimated cardiac

output based on these cardiac indices was 3.5 L/min

for a resting condition and 6.4 L/min for an exercise

condition, respectively. The measured brachial pulse

pressure of the subject at rest ranged from 63 to

106 mmHg. The computed brachial pulse pressure of

the subject ranged from 62 to 106 mmHg for the

resting condition and from 65 to 103 mmHg for the

light exercise condition. The computed left ventricular

pressure ranged from 7 to 104 mmHg for the resting

condition and from 8 to 109 mmHg for the light

exercise condition. The stroke volume was 56 cm3 for

the resting condition and 64 cm3 for the light exercise

condition (see Fig. 4). Increase in the cardiac output

was mainly due to the shortening of the cardiac cycle,

not due to the increase of the stoke volume. The

cardiac work over one cardiac cycle increases little as

the stroke volume and the operating pressure range of

the left ventricle does not increase much. However, the

cardiac work over a fixed duration of time is greater

for the light exercise condition resulting from the

shortened cardiac cycle.

Figure 4 shows that the upper branch vessels expe-

rience retrograde flow in diastole. Retrograde flow to

the upper branch vessels becomes severe in the light

exercise condition even though the same boundary

conditions were assigned to the upper branch vessels

likely due to the increased flow demand to the

descending thoracic aorta. The descending thoracic

aorta has positive flow in diastole. Figure 4 also shows

the pressure waveforms of the upper branch vessels

and the descending thoracic aorta. The pressure

waveform of the descending thoracic aorta decays

faster during exercise compared to the resting condi-

tion.

In Fig. 5, volume rendered velocity magnitudes are

shown for peak systole, late systole, and mid-diastole

in order to illustrate complex flow features in the

thoracic aorta resulting from the high inertia of blood

traveling through the arch and the presence of the

great vessels. Note the different scales for mid-diastole.

These complex flow features are more pronounced in

late systole when the aortic flow is decelerating. For

the light exercise condition, positive flow to the

descending thoracic aorta in diastole resulted in

persistent flow complexity compared to the resting

condition (Fig. 5C and c).

Mean wall shear stress and oscillatory shear index

for the resting condition and the light exercise con-

dition are also plotted in Fig. 6. For the light exercise

condition, mean wall shear stress increased as a

higher flow was ejected from the left ventricle. Few

zones with shear stress less than 10 dynes/cm2 remain

with exercise. The oscillatory shear index for the light

exercise condition was decreased in the descending

thoracic aorta as the descending thoracic aorta had

higher flow but increased in the upper branch vessels

as these vessels experienced higher retrograde flow in

diastole.

A Thoracic Aorta Model with an Aortic Coarctation

at Pre-Intervention and Post-Intervention

In these simulations, we studied how the afterload

changes as a coarctation in the descending thoracic

aorta is removed. We constructed a subject-specific

thoracic aorta model of a ten-year-old female subject

with an aortic coarctation (Fig. 7). For the pre-inter-

vention case, when the aortic coarctation is still pres-

ent, the solutions were obtained using a 2,647,619

element and 475,866 node mesh with a time step size of

0.025 ms. Note that a small time step size was chosen

Coupling a Heart Model to 3D FE Aorta Model 2159



to adequately resolve the complex flow features distal

to the aortic coarctation. The shape of the velocity

profiles at the inlet and all the outlets was constrained

to an axisymmetric shape with a profile order of six.

The parameter values of the Windkessel models are

shown in Fig. 7 along with the time-varying elastance
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function and the parameter values of the lumped

parameter heart model. A constant Young’s modulus

for the vessel wall was chosen to be 8.78 9 106 dynes/

cm2 so that a maximum deformation of 10% was

obtained. This matched the wall deformation at the

level of the ascending and the descending thoracic

aorta based on cine PC-MRI data.

To simulate a post-intervention case, a ‘‘virtual

surgery’’ was performed computationally by translat-

ing and joining the aorta proximal and distal to the

coarctation using surgical guidelines.13 The solutions

of the post-intervention case were obtained using a

2,501,074 element and 449,968 node mesh with a time

step size of 0.13 ms. We ran two separate simulations

for the post-intervention case. First, we maintained the

same contractility of the left ventricle to simulate blood

flow and pressure right after removing the coarctation

in the descending thoracic aorta. Second, we decreased

the maximum elastance value, representing the con-

tractility of the left ventricle, until the computed car-

diac output matched the cardiac output measured for

the pre-intervention case to approximate the autoreg-

ulatory mechanisms of the cardiovascular system. To

highlight the effect of treatment of the coarctation, the

outlet boundary conditions were unchanged from the

pre-intervention case to the post-intervention case. The

same value of Young’s modulus was used for the post-

intervention simulation. For the pre-intervention and

post-intervention cases, simulations were run for up to

six cardiac cycles, until the flow rate and pressure fields

yielded periodic solutions.

In Fig. 8, computed flow and pressure waveforms of

the inlet and outlets and pressure–volume loops of the

left ventricle are shown for the pre-intervention case
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and two post-intervention cases. The measured cardiac

output of the subject was 6.5 L/min for the pre-

intervention case. The computed cardiac output of the

subject was 6.7 L/min for the pre-intervention case,

8.1 L/min for the post-intervention case with the same

contractility of the left ventricle, and 6.5 L/min for the

post-intervention case with the decreased contractility

of the left ventricle. These values for the resting con-

dition are within the normal cardiac output range for

children with an aortic coarctation when scaled to

body surface area. The body surface area for this patient

was 0.93 m2 with the preoperative cardiac index of

7.18 L/min/m2 and the postoperative cardiac index of

6.98 L/min/m2.22 The cardiac output computed from

these cardiac indices was 6.7 L/min for the pre-

intervention case and 6.5 L/min for the post-intervention

case. The measured brachial pulse pressure of the

ten-year-old subject before the intervention ranged from
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68 to 142 mmHg. The computed left subclavian pulse

pressure of the subject ranged from 65 to 144 mmHg for

the pre-intervention case, from 101 to 137 mmHg for the

post-intervention case with the same contractility, and

from 86 to 127 mmHg for the post-intervention case with

the reduced contractility. The computed descending

thoracic aortic pulse pressure of the subject ranged from

63 to 90 mmHg for the pre-intervention case, from 100

to 130 mmHg for the post-intervention case with the

same contractility, and from 85 to 110 mmHg for the

post-intervention case with the reduced contractility. The

computed pulse of the left subclavian artery changed

from 79 mmHg to 36 and 41 mmHg, respectively, as the

resistance at the aortic coarctation was relieved. The

maximum inflow rate increased as observed in Fig. 8.

Also, the flow waveforms at the descending thoracic

aorta demonstrate increased pulsatility as the coarctation

is removed. Cardiac work was computed using a trape-

zoidal integration scheme. For the pre-intervention case,

the computed cardiac work was 6900 mmHg cm3.

However, after finding a new homeostatic state after

the surgery, the computed cardiac work was

5900 mmHg cm3. The cardiac work of the left ventricle

was therefore acutely reduced by 14% relative to the pre-

intervention level.

In Fig. 9, volume rendered velocity magnitudes are

shown for peak systole, late systole, and mid-diastole

for pre-intervention case and the post-intervention case

after reaching a new homeostatic state. Note the dif-

ferent scales for mid-diastole. High velocity is observed

at the coarctation for the pre-intervention case. Flow

below the aortic coarctation becomes chaotic, espe-

cially in the deceleration phase and this complex flow

feature disappears slowly in diastole.

Figure 10 shows pressure contours for peak systole,

late systole, and mid-diastole for pre-intervention case

and the post-intervention case after reaching a new

homeostatic state. Note the fact that pressure proximal

to the coarctation is higher during the deceleration

phase of systole than at peak systole. We can observe a
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large pressure loss in the pre-intervention case due to

the coarctation of the aorta. The large pressure loss

disappears for the two post-intervention cases. The

operating pressure range is also higher for the pre-

intervention case compared to the post-intervention

case after reaching a new homeostatic state.

DISCUSSION

We have successfully developed and implemented an

inflow boundary condition that couples a lumped

parameter heart model to the inlet of a three-dimensional

finite element model of the aorta. We also used deform-

able wall properties developed in prior work to better

represent flow and pressure waveforms. Because we

considered deformable wall properties, when the aortic

valve was open, the only Dirichlet boundary conditions

were the inlet and outlet rings for each computational

domain. While previous work found that flow simula-

tions with few Dirichlet boundary conditions are unsta-

ble,8 our method is robust and stable due to the

constraints on the shape of the velocity profiles at the

inlet and the outlets of the computational domain.
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Using the lumped parameter heart model as an

inflow boundary condition, we studied how changes in

cardiac properties affect the arterial system and vice

versa. We simulated two different physiologic condi-

tions, first with a normal thoracic aorta model, and

then with a thoracic aorta model with an aortic

coarctation.

For the normal thoracic aorta model, we simulated

rest and light exercise conditions. To simulate a light

exercise condition, we only shortened the cardiac cycle

until we recovered the same systolic pressure after

decreasing the resistance of the lower extremities. In

reality, systolic pressure should be higher depending on

the degree of exercise but in this simulated light exer-

cise case, we did not consider the increase in the sys-

tolic pressure. From the simulation results, we

observed that shortening the cardiac cycle can increase

cardiac output significantly without changing the

contractility of the heart, and still maintain physiologic

pressures despite reductions in vascular resistance. We

also observed that, during exercise, a faster pressure

decay due to the lower resistance to flow in the lower

extremities augments ejection of blood from the heart

during late systole. Flow in the lower extremities

increased significantly, causing higher retrograde flow

in the upper branch vessels. For the aortic coarctation

model, we computed afterload for the pre-intervention

and post-intervention cases. As the coarctation was

removed for the post-intervention case, the total

resistance of the arterial system was reduced, relieving

the afterload of the left ventricle and the contractility

of the left ventricle was reduced accordingly. In the

pre-intervention case, although the measurement was

made in a resting state, the left ventricle had a short

cardiac cycle with high cardiac output, emulating an

exercise condition of a normal subject, a commonly

reported finding for patients with a native (i.e.,

uncorrected) aortic coarctation.34 To simulate the

post-intervention case, we decreased the maximum

elastance value until we obtained the same cardiac

output, approximating the autoregulatory mechanisms

in the cardiovascular system. Patients with an aortic

coarctation generally experience a decrease in the

cardiac output in addition to a decrease in the maxi-

mum elastance value after removing the coarctation.34

Yet, in this study, we only changed the maximum

elastance value assuming that the patient maintains the

same cardiac output. From the simulation results, we

observed that the operating pressure range for the

post-intervention case was lower compared to the pre-

intervention case, signifying a reduction in the after-

load of the left ventricle.

We have shown that this method can be used to

study the interactions between the heart and the arte-

rial system. However, this study has three primary

limitations. First, feedback control loops were not

present in the computational domain. Different phys-

iologic conditions simulated in this paper were all

modeled by manually changing the parameter values

of the lumped parameter heart model based on litera-

ture data. To replicate physiologic changes due to

changes in the heart function or arterial impedance, the

development of feedback control loops and models of

the autoregulatory mechanisms of the cardiovascular

system are needed.

Second, the tuning of the parameter values of the

lumped parameter heart model was complex and time

consuming. When the lumped parameter heart model

was implemented as an inflow boundary condition of a

three-dimensional finite element model of the aorta,

several parameter values were introduced and adjusted

to match subject-specific pulse pressure and cardiac

output through an iterative approach. To expedite the

study of the interactions between the heart and the

arterial circulation, automatic optimization of these

parameter values is necessary.

Third, uniform deformable wall properties were

assigned to each computer model despite the fact that

the vessel wall properties vary spatially. To compute

flow and pressure waveforms considering non-uniform

vessel wall properties, noninvasive methods to estimate

wall thickness and elastic (viscoelastic) wall properties

are needed. Additionally, the current deformable wall

model does not consider bending stiffness. The absence

of bending stiffness in the deformable wall model

resulted in oscillations of the flow and pressure wave-

forms due to the high inertia of blood flow traveling

through the arch of the aorta. More realistic deform-

able wall models with consideration of bending stiff-

ness may reduce the amplitude of these oscillations.

CONCLUSIONS

We have successfully implemented an inflow

boundary condition coupling a lumped parameter

heart model to the inlet of a three-dimensional finite

element model of the aorta. Although we only modeled

the left side of the heart and the systemic circulation,

the same approach can be applied to the right side of

the heart and the pulmonary circulation. We have

shown that interactions between the heart and the

systemic circulation can be studied using this method.

This approach can be applied to better understand

human physiology including how changes in the arte-

rial system affect cardiac properties or vice versa. It can

also be utilized to predict outcomes of cardiovascular

interventions as demonstrated with the patient-specific

thoracic aorta model with an aortic coarctation.
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