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We consider the problem of estimating the covariance of two diffusion processes when they are

observed only at discrete times in a non-synchronous manner. The modern, popular approach in the

literature, the realized covariance estimator, which is based on (regularly spaced) synchronous data, is

problematic because the choice of regular interval size and data interpolation scheme may lead to

unreliable estimation. We propose a new estimator which is free of any ‘synchronization’ processing

of the original data, hence free of bias or other problems caused by it.
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1. Introduction

The modelling and analysis of high-frequency financial data are growing in importance,

both in theory and in practice (see, for instance, Goodhart and O’Hara 1997 and Dacorogna

et al. 2001 for an overiew). In this paper, the problem of estimating the covariance of two

diffusion processes is studied when they are observed only at discrete times in a non-

synchronous manner.

In the literature Andersen et al. (2001) propose the use of prelimits of quadratic

variations as ‘estimators’ of variances and covariances of multivariate security price

processes. Although the theory underlying their methodology is not new, its practical

implications may be significant today. By the defining property of quadratic variations, we

are sure that the greater the sampling frequency the more accurately (realizations of) ‘true’

variances and covariances are obtained; these were long considered and treated as ‘latent’

variables when intraday data were hard to come by.

Suppose we have discrete observations of two security ‘prices’ – or ‘logarithmic prices’,

depending on the context – (P1
t i
, P2

t i
)i¼0,1,...,m of size mþ 1, which are taken from

continuous-time Itô semimartingales, 0 < t < T . We are interested in the covariation,

V :¼ hP1, P2iT , of two processes. Based on the sample, consider a statistic
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V�(m) :¼
Xm
i¼1

(P1
ti
� P1

ti�1
)(Pti

2 � P2
t i�1

), (1:1)

which is usually called the realized covariance estimator. We know that as

�(m) :¼ max1<i<mjti � ti�1j ! 0, V�(m) ! V in probability. Although it is not essential to

this scheme, it is often the case that equal spacing is chosen, that is, ti � ti�1 ¼ T=m (¼: h),

for each i, for practical reasons. For ease of treatment we will follow that convention in this

paper; however, the basic argument remains intact even if we replaced equal spacing by

arbitrary, non-random spacing.

There are two crucial points pertaining to practical implementation of (1.1). First, actual

transaction data are recorded at random times. Thus, two transaction prices are usually not

observed (or recorded) at the same time. Secondly, due to such randomness of spacing, a

significant portion of the original data sets should be missing at prespecified grid points.

Consequently, in order to make the scheme work, we must choose the common interval

length h first, and impute or interpolate the missing observations in some way. The cleaned

data sets are then utilized for the computation of (1.1) as if they were regularly and

concurrently observed, even if the two original processes may have very different

observation frequencies. (We will refer to this preprocessing of data sets as ‘synchroniza-

tion’.) As is clear from the construction, (1.1) must depend heavily on the choice of h. On

top of that, the methods of imputation may be another potential source of bias. Indeed,

some authors (for instance Barucci and Renò 2002) point out a potential bias caused by the

linear interpolation adopted by the aforementioned paper by Andersen et al. (2001) on

estimating volatilities. Not to mention that the choice of an imputation method must be

crucial for covariance estimation, too.

The impact of non-synchronous data on covariance measurement (daily returns or longer)

had been long studied in the finance and econometrics literature even before the age of

high-frequency data; see, for instance, Scholes and Williams (1977) and Lo and MacKinlay

(1990). In particular, empirical evidence for the dependence of correlation estimators of

high-frequency stock returns on sampling frequency is reported by Epps (1979). Using

intraday returns data (up to 10 minutes) on four US stocks, he finds that correlations have a

tendency to diminish as sampling frequency increases, known as the Epps effect. This

phenomenon has been observed across different markets. See, for instance, Renò (2003) and

the references therein. Regarding covariance/correlation estimation problems by use of non-

synchronous high-frequency data, the reader is suggested to refer to Lundin et al. (1999),

Muthuswamy et al. (2001), Brandt and Diebold (2003), and Tsay and Yeh (2003), for

instance. They independently proposed an estimation procedure to cope with non-

synchronicity in a various model assumption. Most of the existing approaches (not to

mention the realized covariance and the sample covariance), however, need intrinsically to

rely on synchronization of the original data – either explicitly or implicitly – due to their

construction. See Martens (2004) for a surveillance of some of the approaches mentioned

here and others. A few exceptions found in de Jong and Nijman (1997) and Malliavin and

Mancino (2002). We will comment on them in the remark in Section 2.2. Our model

assumption (that is, continuous-time diffusions) has commonality with Malliavin and

Mancino (2002); however, our estimation procedure is similar to none of the existing ones.
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Our first objective is to investigate the bias of the realized covariance estimator (1.1)

when processes are not synchronously observed. We will show in a simple model that the

realized covariance estimator has potentially a serious bias, especially when the regular

interval size h is small relative to the frequency of actual trades. The result may provide a

partial account for the Epps-type effects. Next, we will propose a new estimator which is

based only on original data, that is to say, which requires no prior synchronization of

transaction-based data. Since it is independent of the choice of h and of imputation of

missing values, it is free of extraneous biases or any other problems caused by them. Under

general conditions we will show consistency of the estimator as the observation time

intensity (which represents the liquidity of the market) increases to infinity. As a by-product

of the proof, unbiasedness will also be obtained when the diffusion processes have no drift.

Estimation problems of the diffusion parameter for diffusion processes based on discrete-

time samples have been well studied in statistics; see Prakasa Rao (1983; 1988), Yoshida

(1992), Genon-Catalot and Jacod (1993; 1994) and Kessler (1997), for instance. In

particular, Genon-Catalot and Jacod (1994) have discussed (synchronous) random sampling.

To the best of our knowledge, however, non-synchronous cases have seldom been

investigated.

2. Non-synchronous observations and downward biases

Throughout the paper, we will suppose that processes evolve continuously, in continuous

time, especially as diffusion-type processes. Detailed specifications will be given below.2

In this section, we aim to show why the de facto standard approach – the realized

covariance estimator – is inadequate. We consider a market with insufficient liquidity – but

not too excessive illiquidity – so that price observations are less and less frequent as the

sampling window shrinks. For simplicity of analysis, when imputing missing data, we adopt

the previous-tick (or piecewise constant) interpolation scheme (Dacorogna et al. 2001), that

is, we take Pk
t ¼ Pk

ti
, k ¼ 1, 2, where ti is the largest observation time before and including

time t. This should be reasonable, for it will produce no obvious extraneous bias when

estimating quadratic variations of univariate processes via (1.1) with P1 ¼ P2.

2.1. Continuous martingales with random-time sampling

To begin with, suppose P1 and P2 are L2 continuous martingales. Let (T 1,i)i¼0,1,2,... and

(T 2, j) j¼0,1,2,... be random times independent of P1 and P2, representing the ith and jth

observation times of P1 and P2, respectively, with T 1,0 :¼ 0 and T 2,0 :¼ 0. T 1,i and T 2, j

may be mutually dependent. Similarly, dependence may be allowed among (T 1,i) or (T 2, j).

Let — :¼ ((T 1,i)i¼0,1,2,..., (T 2, j) j¼0,1,2,...). Also, let N k be the counting process associated

with (T k,i), starting at N k
0 :¼ 0, k ¼ 1, 2. Let T 2]0, 1[ be a terminal time for observing

P1 and P2 (for instance T ¼ 1 day).

1 An alternative approach, which is often adopted in this growing area, is to model prices as pure jump processes;
see, for instance, Rydberg and Shephard (1999).
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Actual observation processes, denoted by P1 and P2, are defined as piecewise constant

processes by

P
k

t :¼ Pk
T k,i , t 2 [T k,i, T k,iþ1[, k ¼ 1, 2:

Suppose the observations are to be ‘synchronized’ on grid points (ih)i¼0,...,m, where h is the

given length of each interval and m ¼ T=h an integer, for simplicity. That is, ‘synchronized

observations’ are defined as discrete-time processes by

P
k,h

i :¼ P
k

ih, i ¼ 0, 1, . . . , m, k ¼ 1, 2,

which may be treated in continuous time as regularly spaced, piecewise constant processes.

In this set-up, the quantity of interest is the covariation of the two processes, hP1, P2iT
(or its expectation E[hP1, P2iT ], depending on the situation). To estimate this, we consider

the realized covariance estimator (1.1) with previous-tick interpolation, that is,

Vh :¼
Xm
i¼1

P
1,h

i � P
1,h

i�1

� �
P

2,h

i � P
2,h

i�1

� �
¼
Xm
i¼1

P
1

ih � P
1

(i�1)h

� �
P

2

ih � P
2

(i�1)h

� �

¼
Xm
i¼1

P1
�1(ih) � P1

�1((i�1)h)

� �
P2
�2(ih) � P2

�2((i�1)h)

� �
,

where �k(t) :¼ max0< j,1 T k, j: T k, j < t
� �

, the largest observation time of the kth security,

k ¼ 1, 2, up to and including time t. Note that if there is no jump of N k by time t, �k(t) ¼ 0,

k ¼ 1, 2.

Observe that we always have �k(t) < t for any t, and �k(s) < �k(t) for any s , t.

Moreover,

N k has no jumps in ](i� 1)h, ih] , �k(ih) < (i� 1)h

, �k(ih) ¼ �k((i� 1)h)

) Pk
� k (ih) � Pk

� k ((i�1)h) ¼ 0: (2:1)

Let Gk
i :¼ fN k jumps at least once in ](i� 1)h, ih]g, k ¼ 1, 2.

Throughout the paper, for a continuous-time process X , the increment of X over an

interval I :¼]a, b], 0 < a , b , 1, may be written as ˜X (I) :¼ X (b) � X (a).

Proposition 2.1. Vh has the expected value

E[Vh] ¼ E
Xm
i¼1

fhP1, P2i�1(ih)^�2(ih) � hP1, P2i�1((i�1)h)_�2((i�1)h)g1G1
i\G2

i

" #
:

If hP1, P2i is increasing (decreasing) almost surely, then

E[Vh] < (>)E[hP1, P2i�1(T )^�2(T)] for every h . 0:

Furthermore, if hP1, P2i is strictly monotone with positive probability and if
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P[�1(T ) _ �2(T ) . 0] . 0, then strict inequality holds if and only if P[�1(ih) 6¼ �2(ih)] . 0 for

some i 2 f1, . . . , m� 1g.

Proof. Let I k,i :¼ ]�k((i� 1)h), �k(ih)], i ¼ 0, 1, 2, . . . , k ¼ 1, 2. Observe first that

�1(ih) ^ �2(ih) > �1((i� 1)h) _ �2((i� 1)h) on G1
i \ G2

i : Due to (2.1),

E[Vh] ¼ E
Xm
i¼1

˜P1(I1,i)˜P2(I2,i)

" #
¼ E

Xm
i¼1

E ˜P1(I1,i)˜P2(I2,i)1G1
i\G2

i

����—
	 
" #

:

¼ E
Xm
i¼1

E ˜P1(I1,i
1 )þ˜P1(I i2)þ˜P1(I1,i

3 )
� �

˜P2(I2,i
1 )þ˜P2(I i2)þ˜P2(I2,i

3 )
� �

1G1
i\G2

i

����—
	 
" #

¼ E
Xm
i¼1

E ˜P1(I i2)˜P2(I i2)

����—
	 


1G1
i\G2

i

" #
¼ E

Xm
i¼1

˜hP1, P2i(I i2)1G1
i\G2

i

" #
,

where, for k ¼ 1, 2,

I
k,i
1 :¼ ]�k((i� 1)h), �1((i� 1)h) _ �2((i� 1)h)],

I i2 :¼ ]�1((i� 1)h) _ �2((i� 1)h), �1(ih) ^ �2(ih)],

I
k,i
3 :¼ ]�1(ih) ^ �2(ih), �k(ih)]:

We have used the orthogonality of increments of Pk in the fourth equality. Therefore, the first

assertion is obtained.

In particular, if hP1, P2i is increasing, then

Xm
i¼1

˜hP1, P2i(I i2)1G1
i\G2

i
<
Xm
i¼1

hP1, P2i�1(ih)^�2(ih) � hP1, P2i�1((i�1)h)^�2((i�1)h)

� �
¼ hP1, P2i�1(mh)^�2(mh) � hP1, P2i�1(0)^�2(0)

¼ hP1, P2i�1(T )^�2(T ):

The second assertion follows. The last assertion is immediate. h

Case of perfect synchronicity. If prices are observed synchronously (with probability one),

regardless of the monotonicity of hP1, P2i,

E[Vh] ¼ E hP1, P2i�1(T )

� �
for every h . 0:

The difference E hP1, P2i�1(T) � hP1, P2iT
� �

is the bias of Vh, which is no more than the cost

of ‘right-censoring’ by time T , that is due to the random sampling, the true values at T may

not in general be observable.
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2.2. Brownian motion with Poisson sampling

We now consider a special case, which would enable us to evaluate the downward (or

upward) bias more explicitly.

Let P1 :¼ W 1 and P2 :¼ W 2, where W 1 and W 2 are standard but correlated Brownian

motions with hW 1, W 2i t ¼ rt and r 2 ] � 1, 1[ constant. Let N1 and N2 be two

independent Poisson processes with intensity º1 (. 0) and º2 (. 0), respectively. These

processes are also independent of W 1 and W 2. Let T 1,i and T 2,i be the respective arrival

times of the ith Poisson jumps, with T 1,0 :¼ 0 and T 2,0 :¼ 0.

Note that, in light of Proposition 2.1, if r . (,) 0, then Vh is ‘downward’ (‘upward’)

biased, that is, E[Vh] , (.) rE[�1(T ) ^ �2(T )] for every h . 0. Moreover:

Proposition 2.2. As h#0,

E[Vh] ¼ r
º1º2

º1 þ º2
T � 1 � e�(º1þº2)T

º1 þ º2

 !
hþ O(h2):

That is, approximately linearly, E[Vh] vanishes as h decreases for any fixed intensities º1 and

º2.

Therefore, the downward bias (in magnitude) of the realized correlation, (1=T ) Vh, is

measured explicitly – here we assume the variances are known to be the unity – in the case

when the regular interval size h is small relative to the average trading intervals, 1=º1 and

1=º2.

Proof. Let �k(h) :¼ max0< j,1 T k, j: T k, j < h
� �

, the largest arrival time up to time h (. 0)

of N k . Again, we set Gk
i :¼ fN k jumps at least once in ](i� 1)h, ih]g, k ¼ 1, 2. From

Proposition 2.1,

E[Vh] ¼ E
Xm
i¼1

˜hP1, P2i(I i2)1G1
i\G2

i

" #

¼ r
Xm
i¼1

E �1(ih) ^ �2(ih) � �1((i� 1)h) _ �2((i� 1)h)
� �

1G1
i\G2

i

h i
:

Put

I(i) :¼ E �1(ih) ^ �2(ih)
� �

1G1
i\G2

i

h i
, II(i) :¼ E �1((i� 1)h) _ �2((i� 1)h)

� �
1G1

i\G2
i

h i
:

For notational convenience, put X 2,i :¼ �1(ih), Y2,i :¼ �2(ih), X 1,i :¼ �1((i� 1)h), Y1,i :¼
�2((i� 1)h) in what follows. We need the distributions of X 2,i ^ Y2,i and X 1,i _ Y1,i on

G1
i \ G2

i to compute I(i) and II(i).

For this purpose we require the following fact which will be invoked repeatedly. Suppose

that N is a Poisson process with intensity º (. 0) and that (T j) j¼0,1,2,... are its jump arrival

364 T. Hayashi and N. Yoshida



times with T 0 :¼ 0. Let �(h) :¼ max0< j,1 T j: T j < hf g, the largest arrival time up to a

given reference time h (. 0). Then, we claim,

P[�(h) < s, Nh > 1] ¼ e�ºh(eºs � 1), 0 , s < h: (2:2)

Indeed, when there are k (> 1) jumps in ]0, h], the largest jump time has the distribution of

the kth order statistic of k independent uniform random variables,

P[�(h) < sjNh ¼ k] ¼ s

h

� �k

, 0 , s < h:

Hence,

P[�(h) < s, Nh > 1] ¼
X1
k¼1

s

h

� �ke�ºh(ºh)k

k!
¼ e�ºh(eºs � 1), 0 , s < h,

as claimed.

To calculate I(i), put ~XX 2 :¼ X 2,i � (i� 1)h and ~YY2 :¼ Y2,i � (i� 1)h on G1
i \ G2

i . Due to

the weak Markov property of N1 and N2 at t ¼ (i� 1)h, if we put ~NN k
u :¼

N k
uþ(i�1)h � N k

(i�1)h, 0 < u < h, k ¼ 1, 2, which are new Poisson processes starting from

0 at t ¼ (i� 1)h, then

E[X2,i ^ Y2,i1G1
i\G2

i
jN 1

u, N 2
u, 0 < u < (i� 1)h] ¼ E[X 2,i ^ Y2,i1G1

i\G2
i
jN1

(i�1)h, N
2
(i�1)h]

¼ E[f ~XX 2 ^ ~YY2 þ (i� 1)hg1 ~GG1\ ~GG2 ],

where ~GGk :¼ f ~NN k jumps at least once in ]0, h]g, k ¼ 1, 2. Therefore,

I(i) ¼ E X2,i ^ Y2,i1G1
i\G2

i

h i
¼ E ~XX 2 ^ ~YY21 ~GG1\ ~GG2

� �
þ (i� 1)h � P ~GG1 \ ~GG2

� �
:

By (2.2) and the independence between (T 1,i) and (T 2, j), the first term can be evaluated

as

E ~XX2 ^ ~YY21 ~GG1\ ~GG2

� �
¼
ð h
~xx2¼0

ð h
~yy2¼0

~xx2 ^ ~yy2P �1(h) 2 d~xx2, ~NN1
h > 1

� �
P �2(h) 2 d~yy2, ~NN 2

h > 1
� �

¼
ð h
~xx2¼0

ð~xx2

~yy2¼0

~yy2 e�º1 h � º1eº
1~xx2

� �
e�º2 h � º2eº

2 ~yy2

� �
d~yy2d~xx2

þ
ð h
~yy2¼0

ð ~yy2

~xx2¼0

~xx2 e�º1 h � º1eº
1~xx2

� �
e�º2 h � º2eº

2 ~yy2

� �
d~xx2d~yy2:

The second term is given by

(i� 1)h � P ~GG1
� �

P ~GG2
� �

¼ (i� 1)h � 1 � e�º1 h
� �

1 � e�º2 h
� �

:

Turning to II(i), let Hi :¼ feither N1 or N2 jumps at least once in ]0, (i� 1)h]g: Then,

since X 1,i _ Y1,i ¼ 0 on Hc
i ¼ fneither N 1 nor N 2 jump in ]0, (i� 1)h]g,
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II(i) ¼ E X 1,i _ Y1,i1Hi
1G1

i\G2
i

h i

¼ E E X1,i _ Y1,i1Hi
1G1

i\G2
i

����N1
u, N

2
u, 0 < u < (i� 1)h

	 
 �
:

¼ E X 1,i _ Y1,i1Hi
E 1G1

i\G2
i

����N1
(i�1)h, N 2

(i�1)h

	 
 �

¼ E X 1,i _ Y1,i1Hi
½ �P ~GG1 \ ~GG2

� �
,

again due to the weak Markov property, as well as the stationarity of increments of N k ,

k ¼ 1, 2.

Notice, on Hi, that S :¼ X 1,i _ Y1,i is the last jump time, up to time (i� 1)h, of the

aggregate Poisson process N� :¼ N1 þ N 2 with intensity º� :¼ º1 þ º2. Using (2.2), we

have

P S < s, N�
(i�1)h > 1

h i
¼ e�º�(i�1)h eº

� s � 1
� �

, 0 , s < (i� 1)h,

so that

E X1,i _ Y1,i1Hi
½ � ¼

ð(i�1)h

s¼0

se�º�(i�1)h � º�eº
�
sds ¼ � 1

º�
þ (i� 1)hþ e�º�(i�1)h 1

º�
:

Therefore,

II(i) ¼ 1 � e�º1 h
� �

1 � e�º2 h
� �

� 1

º�
þ (i� 1)hþ e�º�(i�1)h 1

º�
	 


:

Now, after tedious asymptotic computation, we haveXm
i¼1

I(i) ¼ 1

2
º1º2T 2hþ � 1

6
º1º2T � 1

4
º1º2º�T 2

� �
h2 þ O(h3)

and Xm
i¼1

II(i) ¼ � º1º2

º�
T þ º1º2

2
T 2 þ º1º2

º�2
(1 � e�º�T )

	 

h� 1

4
º1º2º�T 2h2 þ O(h3):

Taking the difference,
Pm

i¼1 I(i) �
Pm

i¼1 II(i), and multiplying by r, we obtain the result. h

Remark 2.1. As far as we see in the literature, most of the existing approaches for covariance

estimation using non-synchronous data need to rely on synchronization of the original data in

one way or another due to their construction. A few exceptions include de Jong and Nijman

(1997) and Malliavin and Mancino (2002), both of which utilize the original and hence

circumvent problems caused by synchronization. De Jong and Nijman (1997) have proposed

a regression based approach, regressing observed cross products of returns on the number of

common time units to these returns under a discrete-time model with stationary increments.

Although it is not clear how to extend their approach to a continuous-time setting, it is
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worthy of mention. Malliavin and Mancino (2002) have proposed a Fourier transform based

estimator for the variance-covariance matrix of multivariate diffusion processes, which can

apply to data that are not synchronous in continuous time. Its statistical properties are yet to

be explored. Renò (2003) utilizes it to investigate numerically biases of Epps type for a

bivariate continuous-time version of the GARCH(1,1) process. Martens (2004) provides an

overview of some of the existing approaches and compares numerically their performance

assuming the (discrete-time) non-trading model of Lo and MacKinlay (1990).

The asymptotic analysis breaks down for liquid securities, that is, when h is small

relative to 1/º, and 1/º2. To deal with such situations, more complicated models may need

to be adopted. Also, when the variances are unknown and to be estimated, incorporation of

‘microstructure noise’ with the same spirit as Bandi and Russell (2003) and Zhang et al.

(2003) – they study ‘optimal’ use of high-frequency data (contaminated with such noise) for

volatility estimation – may provide a reasonable explanation for the Epps-type effects.

As mentioned in the paragraph of ‘Case of perfect synchronicity’ at the end of Section

2.1, the bias due to missing observations at T is inevitable in so far as we adopt random

sampling schemes. To simplify the discussion, we will therefore assume that processes are

observable at T (that is, T k,i will be replaced by T k,i ^ T, i > 1, k ¼ 1, 2, in terms of the

notation difined above) throughout the rest of the paper. Note that when the observation

frequencies explode this treatment will be asymptotically negligible.

3. Consistent estimation

3.1. The covariance estimator: main result

We will propose an estimator of the (cumulative) covariance of two diffusion processes

when they are recorded at random times, thus not necessarily regularly spaced. Estimators

such as (1.1) require that we transform such data sets into regularly spaced in advance; first

the length of each interval, h, will be chosen, then an appropriate imputation method is

conducted. As we have seen above, the choice of h and the method of imputation may

cause serious biases. Our proposed estimator is free of such arbitrariness.

Throughout the rest of the paper, we suppose that Pl follows the one-dimensional Itô

process

dPl
t ¼ � l

tdt þ � l
tdW

l
t, Pl

0 ¼ pl, l ¼ 1, 2,

with dhW 1, W 2i t ¼ r tdt, where r� 2 ] � 1, 1[ is an unknown, deterministic function, pl . 0

is a constant, � l
� is a progressively measurable (possibly unknown) function, and � l

� . 0 is a

deterministic and bounded (possibly unknown) function.

Let T 2]0, 1[ be an arbitrary terminal time for observing Pls. Let —1 :¼ (I i)i¼1,2,... and

—2 :¼ (J i)i¼1,2,... be random intervals reading from left to right, each of which partitions

]0, T ]. Let T 1,i :¼ infft 2 I iþ1g represent the ith observation time of P1, and

T 2,i :¼ infft 2 J iþ1g that of P2. Let n be an index representing the size of —1 and —2.
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The length of an interval I is denoted by jI j. We assume that the sampling intervals

— :¼ (—1, —2) satisfy the following:

Condition C.

(i) (I i) and (J i) are independent of P1 and P2.

(ii) As n ! 1, E[maxijI ij _ max jjJ jj] ¼ o(1).

Remark 3.1. Apparently, (ii) is equivalent to the condition maxijI ij _ max jjJ jj ! 0 in

probability as n ! 1. Since

max
i
jI ij _ max

j
jJ jj

� �2

<
X
i

jI ij2 þ
X
j

jJ jj2 < T max
i
jI ij þ T max

j
jJ jj,

(ii) is also equivalent to the condition

(iii)
P

ijI ij2 þ
P

jjJ jj2 ! 0 in probability as n ! 1.

Moreover, for (ii) to hold it is sufficient that

(iv) P[maxijI ij _ max jjJ jj . n�q] ¼ o(1) for some q . 0.

Example 3.1 Poisson random sampling scheme. Let N 1 and N2 be two independent Poisson

processes with intensity º1 ¼ np1 and º2 ¼ np2 for p1 . 0, p2 . 0 and n 2 N, which are

also independent of P1 and P2. If ~TT 1,i and ~TT 2,i are the respective arrival times of the ith

Poisson jumps with ~TT 1,0 :¼ 0 and ~TT 2,0 :¼ 0, we construct —1 :¼ (I i)i¼1,2,... and —2 :¼
(J i)i¼1,2,..., by setting I i :¼ ] ~TT 1,i�1, ~TT 1,i] \ ]0, T ] and J i :¼ ] ~TT 2,i�1, ~TT 2,i] \ ]0, T ]: This

Poisson random sampling scheme satisfies the Condition C (see Corollary 3.1).

Example 3.2. Synchronous sampling scheme. Any sampling scheme (deterministic or

random) with I i ¼ J i, for every i, is covered so far as Condition C is met.

We will now estimate the (deterministic) covariation of P1 and P2,

hP1, P2iT ¼
ðT

0

� 1
t�

2
tr tdt ¼: Ł:

We define the following estimator for Ł constructed only from the observations of P1 and P2.

Definition 3.1. Cumulative covariance estimator.

Un :¼
X
i, j

˜P1(I i)˜P2(J j)1f I i\J j 6¼˘g: (3:1)

That is, the product of any pair of increments ˜P1(I i) and ˜P2(J j) will make a contribution

to the summation only when the respective observation intervals I i and J j are overlapping.

Notice that the proposed estimator utilizes the information regarding not only the price

changes per se but also the transaction times at which those changes took place, in the

form of the indicator function in (3.1), in contrast to the realized covariance estimator (1.1).
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Remark 3.2. As we have seen in the previous section, the ‘downward’ bias (in magnitude) of

the realized covariance estimator derives from the fact that each increment in (1.1),

(P1
t i
� P1

t i�1
)(P2

t i
� P2

t i�1
), contributes to the sum when and only when both P1 and P2 ‘jump’

together during the interval ]ti�1, ti] of length h, thus all the other occasions – when at most

one of the two prices jumps – are ignored. Such occasions of zero increment will become

dominant if h becomes finer. On the other hand, coarser h may not be able to capture rapid

movements of processes – multiple jumps that may have occurred during h – so that the

realized covariance estimator may fail to reflect such microscopic movements (which are

crucial for variance–covariance estimation). In other words, large h leads to inefficient use of

data. The proposed estimator (3.1) circumvents this dilemma by avoiding the introduction of

the parameter h, which in its origination has nothing to do with the original record of

processes. It allows for all the jumps (even for multiplicity) of P1 and P2 without reference

to their synchronicity. Notice that each increment ˜P1(I i) contributes to the sum possibly

multiple times so long as the corresponding interval I i intersects J j (which may prevent the

downward bias).

Theorem 3.1. Suppose Condition C holds.

(a) If sup0< t<T j�k
t j 2 L4, k ¼ 1, 2, then Un ! Ł in L2 as n ! 1.

(b) If sup0< t<T j�k
t j , 1 almost surely, k ¼ 1, 2, then Un is consistent for Ł, that is,

Un ! Ł in probability as n ! 1.

Remark 3.3. As is seen in the proof below, if � l
t 	 0, 0 < t < T , then Un is unbiased for

each n > 1.

Proof of Theorem 3.1. (i) First we assume � l
t 	 0, 0 < t < T for the time being. We will

show that Un ! Ł in L2 as n ! 1.

We need to introduce some auxiliary symbols. Set Kij :¼ 1f I i\J j 6¼˘g. For each measurable

set I on [0, 1[, we define (signed) measures by

v Ið Þ :¼ v0 Ið Þ :¼
ð
I

� 1
t�

2
tr tdt,

vk Ið Þ :¼
ð
I

� k
t

� �2
dt, k ¼ 1, 2:

We will repeatedly use identities such as, for k ¼ 0, 1, 2,
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X
i

vk I i
� �

1f I i 6¼˘g ¼
X
i

vk I i
� �

¼ vk ]0, T ]ð Þ,

X
i, j

vk I i \ J j
� �

Kij ¼ vk ]0, T ]ð Þ,

X
j

vk I i \ J j
� �

Kij ¼ vk I i
� �

,

which hold due to the fact that the I is and J js are the partitions of ]0, T ]. Moreover, for each

measurable set I on [0, 1[, define

˜Pk(I) :¼
ðT

0

1 I (t)�
k
t dW

k
t , k ¼ 1, 2:

Observe that Unis unbiased, because, for each n,

E[Un] ¼ E
X
i, j

Ef˜P1(I i)˜P2(J j)j—gKij

" #
¼ E

X
i, j

v I i \ J j
� �

Kij

" #
¼ Ł:

We claim that E[U 2
n] ¼ Ł2 þ o(1). If so, then var[Un] ¼ o(1) so that Un ! Ł in L2 as

n ! 1.

To this end, first note that

E[U 2
n] ¼ E

X
i, j,i9, j9

Ef˜P1(I i)˜P2(J j)˜P1(I i9)˜P2(J j9)j—gKijKi9 j9

" #
:

We decompose the inside summation into

X
i, j,i9, j9

¼
X

i, j,i9, j9:
i9¼i, j9¼ j

þ
X

i, j,i9, j9:
i9¼i, j9 6¼ j

þ
X

i, j,i9, j9:
i9 6¼i, j9¼ j

þ
X

i, j,i9, j9:
i96¼i, j96¼ j

¼: D1 þ D2 þ D3 þ D4,

the respective expectation of which will be computed in the following four cases.

Case 1: i ¼ i9, j ¼ j9. Let L1 :¼ I i \ J j, L2 :¼ I inL1 and L3 :¼ J jnL1: Note that

D1 ¼
X
i, j

Ef˜P1(I i)2˜P2(J j)2j—gKij:

Using the independence of the increments and identities such as vk(L2) ¼ vk(I i) �
vk(I i \ J j) and vk L3ð Þ ¼ vk J jð Þ � vk I i \ J jð Þ, we have
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Ef˜P1(I i)2˜P2(J j)2j—g ¼ Ef(˜P1(L2) þ ˜P1(L1))2(˜P2(L3) þ ˜P2(L1))2j—g

¼ Ef˜P1(L2)2˜P2(L1)2j—g þ Ef˜P1(L1)2˜P2(L1)2j—g

þ Ef˜P1(L1)2˜P2(L3)2j—g þ Ef˜P1(L2)2˜P2(L3)2j—g

¼ v1(L2)v2(L1) þ 2v(L1)2 þ v1(L1)v2(L1)

þ v1(L1)v2(L3) þ v1(L2)v2(L3)

¼ v1(I i)v2(J j) þ 2v(I i \ J j)2:

In the third identity, we have used the fact that, for any (deterministic) interval I , ˜P1(I) and

˜P2(I) are jointly normal with respective mean and variance, 0 and vk(I), k ¼ 1, 2, and with

covariance v(I), so that E ˜P1(I)2˜P2(I)2½ � ¼ 2v Ið Þ2þv1 Ið Þv2 Ið Þ. Therefore,

D1 ¼
X
i, j

v1 I i
� �

v2 J j
� �

Kij þ 2
X
i, j

v I i \ J j
� �2

Kij: (3:2)

Consider the first term on the right-hand side of (3.2). Noting that the �k are bounded,

we have

X
i, j

v1 I i
� �

v2 J j
� �

Kij ¼
Xk
i, j

ð
I i

� 1
t

� �2
dt

� � ð
J j

� 2
t

� �2
dt

� �
Kij

< sup
0< t<T

� 1
t

� �2
sup

0< t<T

� 2
t

� �2
X
i, j

jI ikJ jjKij:

We claim that

E
X
i, j

jI ikJ jjKij ¼ o(1):

To this end, decomposeX
i, j

jI ikJ jjKij ¼
X
i, j

jI ikJ jjKij1fj I ij>jJ jjg þ
X
i, j

jI ikJ jjKij1fj I ij,jJ jjg:

Noting that
P

jjJ jjKij1fj I ij>jJ jjg < 3jI ij (for fixed i), we haveX
i, j

jI ikJ jjKij1fj I ij>jJ jjg ¼
X
i

jI ij
X
j

jJ jjKij1fj I ij>jJ jjg < 3
X
i

jI ij2,

hence,

E
X
i, j

jI ikJ jjKij1fj I ij>jJ jjg < 3E
X
i

jI ij2:

By symmetry, we have
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E
X
i, j

jI ikJ jjKij < 3E
X
i

jI ij2 þ 3E
X
j

jJ jj2:

Now, the last expression is o(1) under the Condition C(ii) (see Remark 3.1).

Similarly, we can ascertain that, for any random partition (~II i) of ]0, T ] satisfying

Condition C(ii),

E
X
i

v ~II i
� �2¼ o(1): (3:3)

The second term on the right of (3.2) is shown to be of oP(1) by choosing (I i \ J j) as such a

partition. It follows that E[D1] ¼ o(1).

Case 2: i ¼ i9, j 6¼ j9. Note that

D2 ¼
X

i, j, j9: j 6¼ j9

Ef˜P1(I i)2˜P2(J j)˜P2(J j9)j—gKijKij9:

Let L1 :¼ I i \ J j, L2 :¼ I i \ J j9, and L3 :¼ I in(L1 [ L2). Then, using the independence of

increments,

Ef˜P1(I i)2˜P2(J j)˜P2(J j9)j—g ¼ Ef˜P1(I i)2˜P2(L1)˜P2(L2)j—g

¼ Ef(˜P1(L1) þ ˜P1(L3) þ ˜P1(L2))2˜P2(L1)˜P2(L2)j—g

¼ 2Ef˜P1(L1)˜P2(L1)j—gEf˜P1(L2)˜P2(L2)j—g

¼ 2v(L1)v(L2) ¼ 2v(I i \ J j)v(I i \ J j9):

Hence,

D2 ¼ 2
X

i, j, j9: j9 6¼ j

v I i \ J j
� �

v I i \ J j9
� �

KijKij9

¼ 2
X
i

X
j

v I i \ J j
� �

Kij

X
j9

v I i \ J j9
� �

Kij9 � v I i \ J j
� � !( )

¼ 2
X
i

v I i
� �2�2

X
i

X
j

v I i \ J j
� �2

Kij,

so that E[D2] ¼ o(1) by use of (3.3), and by the fact that (I i \ J j) partitions ]0, T ].

Case 3: i 6¼ i9, j ¼ j9. The same argument as in case 2 applies by symmetry to obtain

E[D3] ¼ o(1).

Case 4: i 6¼ i9, j 6¼ j9. By analogy with case 2 we first let L1 :¼ I i \ J j, L2 :¼ I i9 \ J j9:
Observe, for i, j, i9, j9 such that i9 6¼ i, j9 6¼ j and KijKi9 j9 ¼ 1, we must always have

Ki9 jKij9 ¼ 0. Hence, due to the identity

(1 � Ki9 j)(1 � Kij9) þ Ki9 j þ Kij9 	 1,

we can decompose further the event fKijKi9 j9 ¼ 1g into three subcases, fI i9 \ J j ¼ ˘,
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I i \ J j9 ¼ ˘g, fI i9 \ J j 6¼ ˘, I i \ J j9 ¼ ˘g, and fI i9 \ J j ¼ ˘, I i \ J j9 6¼ ˘g, each of

which respectively corresponds to f(1 � Ki9 j)(1 � Kij9) ¼ 1g, fKi9 j ¼ 1g, and fKij9 ¼ 1g.

Case 4a: fI i9 \ J j ¼ ˘, I i \ J j9 ¼ ˘g. We have

X
i, j,i9, j9:i6¼i9, j6¼ j9

Ef˜P1(I i)˜P2(J j)˜P1(I i9)˜P2(J j9)j—gKijKi9 j9(1 � Ki9 j)(1 � Kij9)

¼
X

i, j,i9, j9:i6¼i9, j 6¼ j9

Ef˜P1(L1)˜P2(L1)˜P1(L2)˜P2(L2)j—gKijKi9 j9(1 � Ki9 j)(1 � Kij9)

¼
X

i, j,i9, j9:i6¼i9, j 6¼ j9

v(L1)v(L2)KijKi9 j9(1 � Ki9 j)(1 � Kij9):

Case 4b: fI i9 \ J j 6¼ ˘, I i \ J j9 ¼ ˘g. Letting L3 :¼ I i9 \ J j and L4 :¼ J jn(L1 [ L3),

L5 :¼ I i9n(L2 [ L3),

Ef˜P1(L1)(˜P2(L1) þ ˜P2(L4) þ ˜P2(L3))(˜P1(L3) þ ˜P1(L5) þ ˜P1(L2))˜P2(L2)j—g

¼ Ef˜P1(L1)˜P2(L1)˜P1(L2)˜P2(L2)j—g ¼ v(L1)v(L2):

Therefore,

X
i, j,i9, j9:i 6¼i9, j 6¼ j9

Ef˜P1(I i)˜P2(J j)˜P1(I i9)˜P2(J j9)j—gKijKi9 j9Ki9 j

¼
X

i, j,i9, j9:i 6¼i9, j6¼ j9

v L1ð Þv L2ð ÞKijKi9 j9Ki9 j:

Case 4c: fI i9 \ J j ¼ ˘, I i \ J j9 6¼ ˘g. By symmetry, we can obtain the equivalent result

to case 4b, but with Kij9 in place of Ki9 j.

Putting the three subcases together, we have

D4 ¼
X

i, j,i9, j9:i 6¼i9, j 6¼ j9

v I i \ J j
� �

v I i9 \ J j9
� �

KijKi9 j9

¼
X
i, j

v I i \ J j
� �

Kij

X
i9, j9:i9 6¼i, j9 6¼ j

v I i9 \ J j9
� �

Ki9 j9

 !
:

Since, for fixed i and j,
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X
i9, j9:i9 6¼i, j9 6¼ j

v I i9 \ J j9
� �

Ki9 j9

¼
X
i9, j9

v I i9 \ J j9
� �

Ki9 j9 � v I i \ J j
� �

�
X
j9: j9 6¼ j

v I i \ J j9
� �

Kij9 �
X
i9:i9 6¼i

v I i9 \ J j
� �

Ki9 j

¼
X
i9, j9

v I i9 \ J j9
� �

Ki9 j9 þ v I i \ J j
� �

� v I i
� �

� v J j
� �

,

we have

D4 ¼
X
i, j

v I i \ J j
� �

Kij

X
i9, j9

v I i9 \ J j9
� �

Ki9 j9 þ
X
i, j

v I i \ J j
� �2

Kij

�
X
i, j

v I i \ J j
� �

Kijv I i
� �

�
X
i, j

v I i \ J j
� �

Kijv J j
� �

¼ v ]0, T ]ð Þ2þ
X
i, j

v I i \ J j
� �2

Kij �
X
i

v I i
� �2�

X
j

v J j
� �2

:

Thus E[D4] ¼ Ł2 þ o(1) by (3.3).

Therefore, E[U 2
n] ¼ E[D1 þ D2 þ D3 þ D4] ¼ Ł2 þ o(1), as desired.

(ii) Now we consider the case with non-zero drift such that sup0< t<T j�k
t j 2 L4, k ¼ 1, 2

Let Ak
� :¼

Ð �
0
�k
t dt, Mk

� :¼
Ð �

0
� k

t dW
k
t , k ¼ 1, 2, and

B0 :¼
X
i, j

˜M1(I i)˜M2(J j)Kij, B1 :¼
X
i, j

˜A1(I i)˜M2(J j)Kij;

B2 :¼
X
i, j

˜M1(I i)˜A2(J j)Kij, B3 :¼
X
i, j

˜A1(I i)˜A2(J j)Kij:

Note that

jB1j ¼
����X

i

ð
I i
�1
tdt

X
j

ð
J j

� 2
tdW

2
t Kij

 !���� <X
i

ð
I i
j�1

t jdt
����X

j

ð
J j

� 2
tdW

2
t Kij

����
< T sup

0< t<T

j�1
t j � maxisup

����
ð t
s

� 2
tdW

2
t

����jt � sj < jI ij þ 2max jjJ jj, s, t 2 [0, T ]

	 


< T sup
0< t<T

j�1
t j � sup

����
ð t
s

� 2
tdW

2
t

����jt � sj < maxijI ij þ 2max jjJ jj, s, t 2 [0, T ]

	 

, (3:4)

from which we can ascertain that B1 is in L2 because � 2 is bounded and (the supremum of)

�1 is in L4. Moreover, under Condition C(ii), E B2
1

� �
¼ o(1) as n ! 1 by the dominated

convergence theorem. E B2
2

� �
¼ o(1) and E B2

3

� �
¼ o(1) can be shown similarly.

Because
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E[(Un � Ł)2] < 2E[(B0 � Ł)2] þ 8E[B2
1 þ B2

2 þ B2
3],

together with result (i), assertion (a) has been shown.

Assertion (b) is obvious from (3.4), noting that what we need is merely Bk ! 0 in

probability as n ! 1, k ¼ 1, 2, 3. h

We have the following corollary as an immediate application of Theorem 3.1.

Corollary 3.1. If — is created as per the Poisson sampling stated in Example 3.1, then the

same conclusion as the Theorem 3.1 holds.

For the proof, one only needs to show that the Poisson sampling satisfies the Condition C.

See the Appendix.

Remark 3.4. The realized covariance estimator (1.1) is not generally consistent as n ! 1,

once the regular interval size h (. 0) is fixed. For instance, consider the case of Brownian

motions with arbitrary sampling scheme satisfying Condition C, such as, the Poisson

sampling of Example 3.1. For simplicity, let h ¼ T , hence only two pairs, (W 1
0, W 2

0) 	 (0, 0)

and (W 1
T , W 2

T ), are utilized to construct the estimator Vh ¼ VT ¼ W 1
TW

2
T : Then, regardless

of n, E[Vh] ¼ rT , but var[Vh] ¼ (r2 þ 1)T 2, which never vanishes as n ! 1.

3.2. Correlation estimators

Suppose further that r t 	 r and � l
t 	 � l for some constants, r 2 (�1, 1) and � l . 0,

l ¼ 1, 2. We are now interested in estimating the correlation r. Obviously, we are able to

form statistics that estimate r consistently by ‘standardizing’ Un as follows.

Definition 3.2. Correlation estimators.

R(1)
n :¼ 1

T

X
i, j

˜P1(I i)˜P2(J j)

� 1� 2
1f I i\J j 6¼˘g (� l known);

R(2)
n :¼

X
i, j

˜P1(I i)˜P2(J j)1f I i\J j 6¼˘g

X
i

˜P1(I i)2

( )1=2 X
j

˜P2(J j)2

( )1=2
(� 1 known=unknown):

Corollary 3.2. Under Condition C, R(1)
n and R(2)

n are consistent for r as n ! 1.

An obvious drawback of the estimators R(1)
n and R(2)

n is that they are not bounded by 1 in

magnitude; hence, it may make sense to apply to them a bounded transformation. In

particular, let j(x) :¼ (x ^ 1) _ (�1) be such a transformation. Then we may define

modified correlation estimators by
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~RR(k)
n :¼ j(R(k)

n ), k ¼ 1, 2:

Although such modification may induce extraneous biases, due to the continuous mapping

theorem ~RR(k)
n is still expected to estimate r well for large n. Besides, preliminary numerical

experiments (with small or medium-size n) have indicated some potential improvements in

terms of mean square error, especially when r is large in magnitude. Further investigation is

needed in this direction, including development of alternative estimators.

3.3. Application to finance: multi-dimensional Black–Scholes model

Consider a market with d securities, (P1, . . . , Pd), with Pk
t the price of the kth stock at

t 2 [0, T ], k ¼ 1, . . . , d. We suppose each Pk follows a one-dimensional geometric

Brownian motion,

dPk
t ¼ �k

t P
k
t dt þ � k

t P
k
t dW k

t , Pk
0 ¼ pk , k ¼ 1, . . . , d,

where Wks are Brownian motions with dhW k , W li t ¼ rk, l
t dt, rk, l

t 2 ] � 1, 1[, �k(t), and

� k
t . 0 are all (unknown) deterministic and bounded functions, k (or l) ¼ 1, . . . , d: Let I k,i

denote the ith observation interval for the kth security, satisfying Condition C and being

independent of W 1, . . . , W d.

Put X :¼ (X 1, . . . , X d)T, where X k
t :¼ ln Pk

t . Then, the d 3 d matrix Un :¼
U k, l

n

� �
1<k, l<d

, the (k, l)th element of which is defined by

U k, l
n :¼

X
i, j

˜X k(I k,i)˜X l(I l, j)1f I k,i\ I l, j 6¼˘g,

is a consistent estimator for the (cumulative) covariance matrix of returns hX, XiT :¼
(hX k , X liT )1<k, l<d with hX k , X liT ¼

Ð T
0
� k

t �
l
tr

k, l
t dt. h

4. Concluding remarks

In this paper, a new procedure for estimating the covariation of two diffusion processes is

proposed when they are observed only at discrete times in a non-synchronous manner. The

proposed estimator is free of any synchronization of the original data, hence free from any

problems caused by it, especially, biases of Epps type. The estimator is shown to have

consistency as the observation frequency tends to infinity.

The theory may be extended in several directions. One may wonder, for instance, about

rates of convergence for the estimator, for rates could be a useful way to understand the

effect of non-synchronous data for the accuracy of estimation. In fact, in the simplest case

– Brownian motions with the Poisson sampling scheme discussed in Example 3.1 – the rate

has turned out to be
ffiffiffi
n

p
. Moreover, we have established asymptotic normality under general

conditions covering this as a special case. The result will be presented in a separate paper

(Hayashi and Yoshida 2004).

Among interesting questions as to the convergence result is whether some uniformity in
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the parameter holds for the convergence in probability. It would be worthwhile to

investigate this.

Diffusion processes considered in the paper have deterministic and bounded diffusion

coefficients with no feedback from the processes, which would certainly limit broad

applications. Extension of the methodology to general diffusion processes is under way.

The independence assumption of observation times from underlying diffusion processes

may be restrictive in financial modelling. For instance, it is more natural to assume that

trading takes place dependent on movements of security prices within intraday. The

relaxation of the assumption to allow observations to be made at arbitrary stopping times is

currently under investigation.

Similar arguments can hold even by replacing Brownian motions with Lévy processes, for

the key properties used to prove the main theorem are independence of increments and

finiteness of moments. This assertion needs to be verified.

Appendix: Proof of Corollary 3.1

To prove Corollary 3.1, one only needs to check whether the Poisson sampling scheme in

Example (3.1) satisfies Condition C(ii). Without loss of generality we assume T ¼ 1. Also,

to simplify the notation ~TT 1,i will be written as T 1,i.

We will show that P maxijI ij . n�3=4
� �

¼ o(1), which is sufficient for Conditon C(ii) to

hold as in Remark 3.1. Put i� :¼ minfi : T 1,i > 1g. Notice that jI ij ¼ 0 for all i such that

T 1,i�1 . 1, hence jI ij ¼ 0 for all i . i�. Moreover, jI i� j ¼ 1 � T 1,i��1 < T 1,i� � T 1,i��1:
These facts imply

max
i
jI ij . n�3=4

	 

¼ max

i<i
� jI

ij . n�3=4

	 

� max

i<i
� (T 1,i � T 1,i�1) . n�3=4

	 

,

furthermore, since i� < [3np1] on fT 1,[3np1] . 1g ¼: H ,

max
i
jI ij . n�3=4

	 

\ H � max

i<i
� (T 1,i � T 1,i�1) . n�3=4

	 

\ H

� max
i<[3np1]

(T 1,i � T 1,i�1) . n�3=4

	 

:

So,

P max
i
jI ij . n�3=4

 �
¼ P max

i
jI ij . n�3=4, H

 �
þ P max

i
jI ij . n�3=4, Hc

 �

< P max
i<[3np1]

(T 1,i � T 1,i�1) . n�3=4

 �
þ P[Hc]: (A:1)

By assumption, (T 1,i � T 1,i�1) are i.i.d. exponentially distributed with mean 1=np1, therefore,

the first term on the right-hand side of (A.1) is evaluated as
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P max
i<[3np1]

(T 1,i � T 1,i�1) . n�3=4

 �
¼ 1 � P max

i<[3np1]
(T 1,i � T 1,i�1) < n�3=4

 �

¼ 1 � (1 � expf�(np1) � n�3=4g)[3np1]

¼ [3np1]expf�n1=4 p1g þ o(1):

On the other hand, due to the Stirling formula

k! � k kþ1
2e�k

ffiffiffiffiffiffi
2�

p
. k ke�k

ffiffiffiffiffiffi
2�

p

for all large k, as well as the fact that (np1=[3np1])e , 1 for all large n, the second term on

the right of (A.1) is bounded by

P[Hc] ¼ P[T 1,[3np1] < 1] <
X1

k¼[3np1]

e�np1 (np1)k

k!
( C1

X1
k¼[3np1]

e�np1 (np1)k

k ke�k

< C1e�np1
X1

k¼[3np1]

np1

[3np1]
e

� �k

< C2e�np1

for all large n, for some constants C1 and C2. Therefore, Condition C(ii) is satisfied, hence

the corollary is proved.
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