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1 Introduction

The progress in our understanding of a given theoretical framework often happens when we

tackle the specific “marginal” examples where the framework fails in its standard form. In

Field Theory, a problem of this kind is related to chiral p-forms and their interactions, also

related to the problem of manifesting (electric-magnetic) duality in familiar field theories.

Duality-symmetric formulations and chiral p-forms have been studied to great extent

in the past forty years (see [1–30] for a non-comprehensive list of key references). It is

known that the construction of space-time covariant actions for free chiral p-forms requires

the use of auxiliary fields. There are several formulations which deal with this issue. The

most economic and efficient one is that of PST [15, 16, 20]. It uses a single auxiliary scalar

field which however enters the action (under derivatives) in a non-polynomial way. In this

paper we will provide a simple polynomial action which contains more auxiliary fields and

is classically equivalent to that of PST. It combines manifest Lorentz covariance, finite

number of fields, polynomial form, no ghosts and consistence with general covariance.

Exploring alternative formulations for free field theories may open new possibilities

for their interacting extensions. The simplest example to demonstrate this is the familiar

scalar field with its (d − 2)-form gauge field dual (so-called “notoph” [31]). While for a

scalar field one can immediately formulate interacting theories with arbitrary non-derivative
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interaction potential, the dual formulation via (d−2)-form gauge field does not admit non-

derivative interactions. Therefore, if we were to start with the (d − 2)−form, we would

not be able to construct, e.g., the massless scalar field theory with φ4 interaction. The

long-standing problem of non-abelian interactions for chiral p-forms motivates the search

for a suitable formulation of the free theory, which will allow for non-abelian extensions.

Recently, inspired by String Field Theory, Ashoke Sen devised an action [32, 33] for

chiral p-forms, that has all of the aforementioned virtues except for general covariance.

Even though it contains an extra ghost, the latter decouples from the physical sector,

therefore allowing for unitary dynamics of the physical degrees of freedom. The field

variable, containing the chiral p-form degrees of freedom for the Sen’s model is the (p+ 1)-

form field strength. Possible non-abelian extensions for chiral p-forms would likely prefer

potentials as basic variables instead, similarly to what happens in Yang-Mills theory. It is

indeed only possible to write Born-Infeld type interactions through curvatures, while the

minimal couplings of Yang-Mills type are available only in terms of gauge-variant potentials.

The action we derive here has all of the properties listed above, and is written through

gauge potentials, therefore is a good starting point in the search for an interacting extension

that would describe non-abelian chiral p-form theories.

The formulation we study here applies also to duality-symmetric theories. We will

show it on the example of Maxwell theory in four dimensions in section 5.

2 Polynomial action for free chiral p-forms

We start with a Lagrangian for a chiral p-form ϕµ1...µp in d = 2p+ 2 dimensions:1

L = − 1

2(p+ 1)
Fµ1...µp+1 F

µ1...µp+1 − 1

2(p+ 1)
(Fµ1...µp+1 − (p+ 1) c[µ1 Rµ2...µp+1])

× (Fµ1...µp+1 − (p+ 1) c[µ1 Rµ2...µp+1]) +Gµν∂[µcν] , (2.1)

where

Fµ1...µp+1 = (p+ 1) ∂[µ1ϕµ2...µp+1] , (2.2)

Fµ1...µp+1 = Fµ1...µp+1 +
1

(p+ 1)!
εµ1...µp+1ν1...νp+1 F

ν1...νp+1 , (2.3)

while cµ, Rµ1...µp and Gµν are auxiliary fields with fully antisymmetric set of Lorentz

indices. Even though the Lagrangian given above is not quadratic in fields, it is quadratic

in the physical gauge potential ϕµ1...µp and can be shown to describe exactly a single chiral

degree of freedom, in Minkowski space of 2p+ 2 dimensions for even2 p.

1For chiral forms, we take p to be even. A similar action will be discussed in the following for duality-

symmetric odd-forms which require doubled set of fields. For odd p, the chiral fields do not exist in

Minkowski background. The regime of validity of our formulation is the same as that of the PST formalism

— it is only available in Minkowski signature. We thank Dmitri Sorokin for correspondence on this matter.
2For even p the chiral (self-dual) fields are non-trivial in Minkowski spaces and for odd p — in Euclidean

spaces. We will not discuss other possible signatures except for Minkowski here. We choose mostly plus

signature convention for the metric.
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2.1 Equivalence to PST

We will first show that (2.1) describes a free chiral p-form in d = 2p + 2 dimensions. For

that, we can integrate out the auxiliary field Rµ1...µp+1 and end up with an equivalent non-

polynomial Lagrangian of the PST form [20]. In order to see that, we solve the algebraic

equation of motion for the field Rµ1...µp ,

Fµ1...µp+1 c
µ1 − c2Rµ2...µp+1 + (−1)p+1 p c[µ2 Rµ3...µp+1]µ1 c

µ1 = 0 . (2.4)

Due to an (algebraic!) gauge symmetry of the Lagrangian (2.1), given via

δRµ1...µp = c[µ1λµ2...µp] , (2.5)

the solution is fixed only up to an arbitrary (p− 1)−form field λµ1...µp−1 :

Rµ1...µp =
1

c2
Fνµ1...µp cν + c[µ1λµ2...µp] . (2.6)

A simple way to solve for Rµ1...µp is to choose a gauge Rµ1...µp c
µ1 = 0, then the solution

is (2.6) without the last term, which reflects the gauge freedom. We can now plug back (2.6)

to (2.1) and arrive at the following Lagrangian:

L = − 1

2(p+ 1)
Fµ1...µp+1 F

µ1...µp+1 +
1

2 c2
Fµ1...µpν cν Fµ1...µpρ cρ +Gµν∂[µcν] , (2.7)

It is a trivial exercise to show the equivalence of the Lagrangian (2.7) with that of [20]. It is

straightforward to integrate out the Lagrange multiplier field Gµν in both (2.1) and (2.7),

solving the zero-curvature equation for cµ as cµ = ∂µ a and plugging back into the action.

The minimal polynomial form thus contains only two auxiliary fields on top of the physical

field ϕ — the p-form Rµ1...µp(x) and the scalar a(x):

L = − 1

2(p+ 1)
Fµ1...µp+1 F

µ1...µp+1 − 1

2(p+ 1)
(Fµ1...µp+1 − (p+ 1) ∂[µ1aRµ2...µp+1])

× (Fµ1...µp+1 − (p+ 1) ∂[µ1aRµ2...µp+1]) , (2.8)

Integrating out Gµν in (2.7), we get the familiar PST form. This step involves solving a

differential equation: the two actions are not guaranteed to admit equivalent interactions.

Note, that F2 = F ∧ F = 0. In fact, the simplest polynomial extension for the PST

Lagrangian (2.7) would be the following one:

L = − 1

2(p+ 1)
Fµ1...µp+1 F

µ1...µp+1 − 1

2
Fµ1...µp+1 c

µ1 Rµ2...µp+1

+
1

4
c2Rµ1...µp Rµ1...µp +Gµν∂[µcν] , (2.9)

which differs from (2.1) by a term (Rµ1...µp c
µp)2, essential for the gauge symmetry (2.5).

Addition of that term promotes the second class constraint Rµ1...µp c
µp = 0 to first class:

while in (2.9) it is a consequence of the equations of motion (similar to divergence-free

condition ∂µAµ = 0 of the vector field in Proca theory), in (2.1) it is a gauge choice

(analogous to the Lorentz gauge condition ∂µAµ = 0 in Maxwell theory).
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2.2 Manifestation of two abelian gauge symmetries

The Lagrangian (2.8) can be recast in the following form:

L = − 1

2(p+ 1)
(Fµ1...µp+1 − (p+ 1)∂[µ1aRµ2...µp+1]) (Fµ1...µp+1 − (p+ 1)∂[µ1aRµ2...µp+1])

+
1

(p+ 1)!
εµ1...µp+1ν1...νp+1F

ν1...νp+1∂µ1aRµ2...µp+1 , (2.10)

which, after a field redefinition ϕµ1...µp → ϕµ1...µp + aRµ1...µp can be rewritten in the form:

L = − 1

2(p+ 1)
(Fµ1...µp+1 + aQµ1...µp+1) (Fµ1...µp+1 + aQµ1...µp+1)

− 1

(p+ 1) (p+ 1)!
εµ1...µp+1ν1...νp+1 aF

ν1...νp+1 Qµ1...µp+1 , (2.11)

where Qµ1...µp+1 = (p+1)∂[µ1Rµ2...µp+1]. The form of the action (2.11) manifests two abelian

gauge symmetries of the p-forms ϕµ1...µp and Rµ1...µp . At the same time, similarly to the

original action (2.1), fixing constant a (2.11) gives a single non-chiral p-form action. This

discontinuity is tracked also in the fact that the PST form of the action (2.7) is singular for

the constant a or other configurations with cµ c
µ = ∂µ a ∂

µ a = 0. Finally, one can rewrite

the action in the form, resembling (2.8):

L = − 1

2(p+ 1)
Fµ1...µp+1 F

µ1...µp+1

− 1

2(p+ 1)
(Fµ1...µp+1 + aQµ1...µp+1) (Fµ1...µp+1 + aQµ1...µp+1) , (2.12)

Combining the equations of motion Eϕ , ER for the fields ϕµ1...µp and Rµ1...µp one gets3

ERµ2...µp+1
+ aEϕµ2...µp+1

= ∂µ1aPµ1...µp+1 = 0 , (2.13)

Pµ1...µp+1 ≡ Fµ1...µp+1 + aQ+
µ1...µp+1

, (2.14)

which implies

Pµ1...µp+1 = 0 , (2.15)

automatically satisfying the equation of motion Ea for the a field,

Ea = Qµ1...µp+1 P
µ1...µp+1 = 0 . (2.16)

This indicates the existence of a PST like symmetry shifting the scalar field a which should

have been expected given the equivalence to the PST formulation.

3We use the notation:

Q±
µ1...µp+1

= Qµ1...µp+1 ±
1

(p+ 1)!
εµ1...µp+1ν1...νp+1Q

ν1...νp+1

for (anti)self-dual part of the (p+ 1)−form Qµ1...µp+1 .

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
6

An interesting generalisation of the Lagrangian (2.11) is (suppressing Lorentz indices):

L = −1

2
f(a)

(√
aF +

1√
a
Q

)2

+ f(a)F ∧ Q . (2.17)

For f(a) ∼ 1/a, this Lagrangian is equivalent to (2.11) and describes a single chiral p-form

carried in field ϕ. For f(a) ∼ a, it describes an anti-chiral p-form field carried by R. The

exchange ϕ↔ R , a→ − 1
a , f(a)→ −f(a) is a symmetry of the Lagrangian (2.17).

The Lagrangian (2.11) can be also rewritten as:4

L = −p!
2

(
MIJ F

I ∧ ?F J + KIJ F I ∧ F J
)
, (2.18)

with

MIJ =

[
1 a

a a2

]
, KIJ =

[
0 a

−a 0

]
, F I =

[
F

Q

]
, (2.19)

where F I is a two-vector with p+ 1-form components, M is a two-by-two matrix of rank

one, while the “background matrix” E = M + K is invertible. The same action with the

inverted background matrix E−1 describes the same degrees of freedom, exchanging the

roles of p-forms ϕ and R. The inversion of the background matrix is a particular sl(2, R)

rotation of the two-vector F I and therefore a field redefinition. A potential generalisation

of (2.18) to N chiral p-forms would be extending the matrices MIJ and KIJ to 2N × 2N

matrices, where MIJ has rank N . The Lagrangian (2.11) is self-dual with respect to

dualisation of both ϕ and R fields. The replacement of the field ϕ with its magnetic dual

ϕ̃ via F = dϕ = ?dϕ̃ renders the same Lagrangian with ϕ replaced by ϕ̃. Same is true for

the replacement Q = dR = ?dR̃.

Next we will take a closer look at particular examples in different dimensions.

3 Chiral two-form in six dimensions

The first example we consider is the chiral two-form in six dimensions. For that we intro-

duce two-forms Bµν , Rµν and a vector field cµ, as well as a Lagrange multiplier Gµν . The

Lagrangian (2.1) is given in the following form:

L = −1

6
HµνλH

µνλ − 1

6
(Fµνλ − 3 c[µRνλ]) (Fµνλ − 3 c[µRνλ]) +Gµν∂[µcν] , (3.1)

where we denote:

Fµνλ = Hµνλ +
1

6
εµνλαβγH

αβγ , Hµνλ = 3 ∂[µBνλ] . (3.2)

The property of self-duality:

Fµνλ =
1

6
εµνλαβγFαβγ , (3.3)

4?F is the Hodge dual of F and ∧ denotes the exterior product of forms.

– 5 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
6

implies:

FµνλFµνλ = 0 = F[µνλFαβγ] . (3.4)

Integrating out from the action (3.1) the auxiliary field Rµν by solving its equations of mo-

tion,

Fµνλ cλ − c2Rµν − 2 c[µRν]λ c
λ = 0 → Rµν =

1

c2
Fµνλ cλ + c[µλν] , (3.5)

one gets PST Lagrangian (up to total derivatives),

L = −1

6
HµνλH

µνλ +
1

2 c2
Fµνλ cλFµνρ cρ +Gµν ∂µ cν , (3.6)

which describes a free anti-self-dual two-form. The gauge symmetries of the La-

grangian (3.6) can be extended to (3.1) by assigning appropriate gauge transformations

for the new auxiliary field Rµν . One of the symmetries of this system are given as (A.16):

δαBµν = c[µαν] , δαG
µν = εµνλαβγαλ cαRβγ , δαcµ = 0 ,

δαRµν = −∂[µαν] +
3

2 c2
Π−µνλ

αβγ cλ ∂α cβ αγ . (3.7)

It is straightforward to see, that the Lagrangian (3.1) and gauge transformations (3.7)

simplify for a choice of a background value for the pure gauge field cµ = δ6µ. Nevertheless,

it is useful to keep manifest Lorentz symmetry as realised in (3.1). Another symmetry of

the Lagrangian (3.1) is given as (see appendix A for details):

δϕcµ = ∂µϕ , δϕBµν = ϕRµν , δϕG
µν = −1

2
ϕ εµνλραβRλρRαβ ,

δϕRµν =
3

2 c2
ϕ cλ Π−µνλ

αβγ ∂αRβγ . (3.8)

Another symmetry of the action (3.1) is given by a transformation of Rµν field only:

δφRµν = c[µ φν] , (3.9)

These symmetries are finite-step reducible. For example, choosing:

αµ = cµ φ , φµ = ∂µφ , (3.10)

we get

δαBµν = 0 , δαG
µν = 0 , δα+φRµν ≈ 0 , (3.11)

where the last identity holds on Gµν-shell.

Any consistent non-abelian extension of (3.1) is expected to possess same number of

symmetries as the abelian action, deforming these symmetry transformations by terms

proportional to coupling constants of non-abelian interactions.
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4 Chiral boson in two dimensions

In two space-time dimensions of Minkowski signature, one can define the polynomial action

for the free Chiral boson (2.1) in the following form:

SNew =

∫ (
− 1

2
∂µϕ∂

µϕ− 1

2
(Fµ − cµR)(Fµ − cµR) + λ εµν∂µ cν

)
d2 x , (4.1)

where we introduce notations

Fµ = ∂+µ ϕ , ∂±µ = ∂µ ± εµν∂ν . (4.2)

The field R is auxiliary, and can be integrated out, solving its algebraic equation, which

gives:

R =
1

c2
cµFµ , (4.3)

Plugging this back in the action, we get Pasti-Sorokin-Tonin form of the action:

SPST =

∫ (
− 1

2
∂µϕ∂

µϕ+
1

2 c2
cµFµ cν Fν + λ εµν∂µcν

)
d2 x . (4.4)

The latter action has the following gauge symmetry:

δcµ = ∂µα , δϕ = α
1

c2
cµFµ , δλ = α

(cµFµ
c2

)2
, (4.5)

which can be shown by direct computation, using the identity Fµ = εµνFν .
One can pull back the symmetry (4.5) to the polynomial action (4.1) (as explained,

e.g., in [34] (exercise 3.17)). The difference between the actions (4.1) and (4.4) is given as:

SNew − SPST =

∫ (
− 1

2 c2
(cµFµ − c2R)2

)
d2x , (4.6)

and involves the square of the equations of motion for the field R, as expected. Therefore,

the gauge transformation (4.5) of the new action can be set to zero by assigning a gauge

transformation rule for the field R. One can also use the equations of the auxiliary field to

simplify gauge transformations. For the action (4.1), one can recast the symmetry as:

δcµ = ∂µα , δϕ = αR , δλ = αR2 , δR = α
1

c2
cµ∂−µ R . (4.7)

The action (4.1) is polynomial, and among the gauge transformations (4.7) only that of

the new auxiliary field R is non-polynomial. In order to show that the action (4.1) is gauge

invariant with respect to transformations (4.7) it is helpful to make use of the identity:

Fµ =
1

c2
(εµνc

ν + cµ) cλFλ . (4.8)

One can integrate out the cµ field in (4.1), solving its equation of motion algebraically:

cµ =
1

R
Fµ +

1

R2
εµν∂

ν r̃ , (4.9)
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and plugging back into action (renaming 1
R → r) to get:

S =

∫ (
− 1

2
∂µϕ∂

µϕ− 1

2
r2 ∂µr̃ ∂

µr̃ − rFµ ∂µr̃
)
d2x . (4.10)

It is now straightforward to see that integrating out r gives PST action (4.4), with cµ = ∂µr̃:

S =

∫ (
− 1

2
∂µϕ∂

µϕ+
1

2 ∂µr̃ ∂µr̃
(Fµ ∂µr̃)2

)
d2x (4.11)

One can also arrive to this action by integrating out the Lagrange multiplier λ in (4.4).

The action (4.10) can be written in the (2.11) form:

S =

∫ (
− 1

2
(∂µϕ+ r ∂µr̃)

2 + εµν∂µϕ r ∂ν r̃

)
d2x . (4.12)

Note, that the coefficient between the two terms in the action (4.12) is fixed. Changing

the sign of the second term will change the chirality of the only excitation, while any other

coefficient will result in a theory with both chiral and anti-chiral degrees of freedom.

The Lagrangian of (4.12) has a discreet symmetry:

r → r̃ , r̃ → r , ϕ→ −ϕ− rr̃ . (4.13)

Further generalisations of chiral/duality-symmetric scalar field in two dimensions are

discussed in appendix B.

5 Duality-symmetric electromagnetism in four dimensions

Similarly to the scalar in 2d and two-form in 6d, one can write a duality-symmetric action

of polynomial form for Maxwell field in four dimensional Minkowski space. The latter

case requires doubled field content, similarly to its PST equivalent [16]. The polynomial

Lagrangian for this case will be given as:

L = −1

8
F aµν F

aµν − 1

8
(Faµν − 2 c[µR

a
ν])(F

aµν − 2 c[µRa ν]) +Gµν ∂[µcν] , (5.1)

where a, b = 1, 2, and

F aµν = ∂µA
a
ν − ∂νAaµ , Faµν = F aµν −

1

2
εab εµνλρF

b λρ , (5.2)

εab = −εba , ε12 = 1 = ε12 , ε0123 = 1 = −ε0123 . (5.3)

The following identities hold (Einstein summation rule is assumed for both types of indices):

Faµν Faµν = 0 , εµνλρFaλρ = 2 εabF bµν , (5.4)

Solving the algebraic equations of motion for Raµ, we get the PST action:

LPST = −1

8
F aµν F

aµν +
1

4 cµcµ
Faµν cν Faµρ cρ +Gµν∂[µcν] . (5.5)
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The analogue of (2.12) in this case would be the following Lagrangian

L = −1

8
F aµν F

aµν − 1

8
(Faµν + aQaµν) (Faµν + aQaµν) (5.6)

where Qaµν = ∂µR
a
ν − ∂ν Raµ. This Lagrangian describes a single Maxwell field, using four

vectors and a scalar. It can be also written in the form, similar to (2.18):

L = −1

8
MIJ F

I
µν F

Jµν − 1

16
KIJεµναβ F Iµν F Jαβ , (5.7)

where

MIJ =


1 0 a 0

0 1 0 a

a 0 a2 0

0 a 0 a2

 , KIJ =


0 0 0 a

0 0 −a 0

0 −a 0 0

a 0 0 0

 , F I =


F 1

F 2

Q1

Q2

 . (5.8)

Field redefinitions can lead to different matrices M and K. The detailed study of the rich

symmetries of this Lagrangian will be conducted elsewhere.

6 Conclusions

In this work we have constructed a polynomial action for free chiral p-forms with manifest

Lorentz symmetry, finite number of auxiliary fields and consistent with general covariance,

contrary to the folklore scepticism about the possibility of such a formulation. We showed

that it reproduces the non-polynomial action formulation by Pasti, Sorokin and Tonin

upon gauge fixing and integrating out an auxiliary field. An interesting feature of this

formalism is that it is available only in Lorentzian signature. The covariant actions found

here have rich structure of symmetries, which will be studied in detail elsewhere. Seemingly

conventional form of the action (2.18) encourages to study more systematically kinetic

terms with non-invertible field-dependent bilinear forms. This may open a Pandora box of

a large number of unexplored possibilities.

The actions presented here can be reduced to the non-covariant formulations of [7, 9, 13]

upon gauge-fixing and integrating out auxiliary fields. The latter statement is true already

for the PST formulation, therefore the equivalence to PST formulation makes it evident.

The dualization properties of the actions presented here are somewhat similar to those

of PST actions (see, e.g., [22]), therefore there could be an alternative formulation of the

polynomial actions (2.1) and (2.12) where the last term with Lagrange multiplier is replaced

by λ ∂µ cµ. Then, the divergence of cµ (instead of the curl) is constrained to be zero by the

e.o.m. of the Lagrange multiplier, implying that cµ is a dual curvature of a (d − 2)-form

field, thus reproducing an alternative action (covariantisation of Zwanziger-type action [1]

instead of the Schwarz-Sen one [13]) for the chiral p-form.

The formulation we derive here adds an auxiliary field, another p-form, on top of the

minimal PST formulation. It can be therefore described as “doubling p-forms to describe

half a p-form”. The new formulation is related to PST by a variant of Hubbard-Stratonovich

transformation, up to subtleties related to gauge fixing. As discussed after eq. (2.18), there
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are non-trivial duality symmetries relating the “physical” field ϕ and “auxiliary” field R.

Therefore, we have reasons to expect that this formulation is more than a polynomial

rewriting of the PST action. In any case, the usefulness of this formalism will be tested by

its ability to capture non-trivial interactions. This is a work in progress [35].

The problem of interactions for chiral p-forms (and p-forms in general) has a long

history [36–51] with large body of negative results about their non-abelian interactions (see,

however, [52–60]). We hope, that the new formulation of the free theory presented here may

help in the problem of interactions. It has two (arguable) advantages compared to the Sen’s

formulation [32, 33] — general covariance and formulation in terms of gauge potentials.

Indeed, the gravitational coupling of the chiral p-forms are automatically consistent [46, 61],

if there are no additional degrees of freedom in the theory, like in [32, 33]. Therefore,

the actions (2.1) and (2.12) can be promoted to a generally covariant ones replacing the

Minkowski metric with the dynamical metric of Einstein gravity.

One immediate question that can be asked is whether the formulation of the chiral

bosons described here is advantageous compared to the PST formulation. The first chal-

lenge in this direction would be to formulate the non-linear DBI action for a single M5

brane [38–42, 62, 63] in the variables of (2.1) or (2.12). Another interesting problem would

be the BRST quantisation in the lines of [61]. The actions studied here can be also used

to write a Lorentz and generally covariant polynomial action for d = 10 Type IIB Super-

gravity using finitely many auxiliary fields, extending the results of [64, 65]. Some results

on interacting theories generalising the free actions presented here will be reported in [35].
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A Abelian chiral two-forms in six dimensions

We detail here some formulas related to the symmetries of the action (3.1). Part of the

gauge transformations for this action are given as abelian gauge transformations of the Bµν
and Gµν ,

δξBµν = ∂µξν − ∂νξµ , δξG
µν = ∂ρξ

µνρ , (A.1)

where ξµνρ is an antisymmetric tensor parameter. There is another gauge symmetry of

PST action, that should have a counterpart here. Transformations with respect to this
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symmetry for Bµν , cµ and Gµν fields takes the following form:

δαBµν = c[µαν] , δαG
µν = εµνλαβγαλ cαRβγ , δαcµ = 0 , (A.2)

while for the new field Rµν , as we will see, it will take the following form:

δαRµν = −∂[µαν] , (A.3)

up to some trivial transformations that vanish on-shell.

In order to check this gauge symmetry, we derive the field equations for each field

separately:

δL
δBµν

= ∂λH
µνλ − 3 ∂λ

(
c[µRνλ] − 1

6
εµνλαβγcαRβγ

)
, (A.4)

δL
δGµν

= ∂[µcν] ,
δL
δRµν

= Fµνλ cλ − c2Rµν − 2 c[µRν]λ cλ , (A.5)

δL
δcµ

= FµνλRνλ − cµRνλRνλ − 2 cν RλµRνλ − ∂ρGρµ . (A.6)

Now, we compute variations with respect to symmetries (A.2):

δL
δBµν

δαBµν = −∂[µ cν αλ]
(
Fµνλ − 6 Π−

µνλ
αβγ c

αRβγ
)

+cµ ∂ν αλ

(
Fµνλ − 3 c[µRνλ]

)
, (A.7)

where we define projectors to (anti-)self-dual tensors:

Π±
µνλ

αβγ =
1

12
(δµνλαβγ ± ε

µνλ
αβγ) . (A.8)

These projectors satisfy:

Π±
µνλ

αβγ = Π∓αβγ
µνλ , Π±

µνλ
αβγ Π∓

αβγ
ρστ = 0 , (A.9)

Π±
µνλ

αβγ Π±
αβγ

ρστ = Π±
µνλ

ρστ , (A.10)

Variation (A.3) with the Rµν-field is given as:

δL
δRµν

δαRµν = −cµ ∂ν αλ
(
Fµνλ − 3 c[µRνλ]

)
, (A.11)

and cancels the second term in (A.7) while the variation of the Gµν , that is supposed to

compensate the first term of the r.h.s. of (A.7), is given as:

δαG
µν = αλ

(
Fµνλ − 6 Π−

µνλ
αβγ c

αRβγ
)
, (A.12)
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which differs from the expression in (A.2). In order to show the equivalence of the two

expressions, we make use of the following identity:

0 = cρ c[ρ εµνλαβγ]Fαβγ = 6 c2Fµνλ − 18 cρ c[µFνλ]ρ − 3 εµνλραβ c
ρFαβγ cγ

= 6c2Fµνλ − 18 c2 c[µRνλ] − 3 c2 εµνλαβγ c
αRβγ

−3 εµνλραβ c
ρ
(
Fαβγ − 3 c[αRβγ]

)
cγ − 18 c[µ

(
Fνλ]ρ − 2 cν Rλ]ρ −Rνλ] cρ

)
cρ

= 6 c2
(
Fµνλ − 6 Π+µνλ

αβγ cαRβγ

)
− 9 Π+µνλ

αβγ cα
δL
δRβγ

≈ 6 c2
(
Fµνλ − 6 Π+µνλ

αβγ cαRβγ

)
, (A.13)

where the last identity holds on-shell (up to equations of motion for Rµν). Assuming that

c2 6= 0, we deduce the following identity:

Fµνλ ≈ 6 Π+µνλ
αβγ cαRβγ . (A.14)

This identity allows to rewrite the variation (A.12) as:

δαG
µν ≈ 6αλ

(
Π+ −Π−

)µνλ
αβγ c

αRβγ = εµνλαβγ αλ cαRβγ , (A.15)

which is exactly same as the variation (A.2) guessed from the PST symmetries.

Since the gauge transformation of the field Gµν was changed up to equations of motion

of Rµν , it induces a modification in the gauge transformations of the latter field. We

compute this change for completeness here and get:

δαBµν = c[µαν] , δαG
µν = εµνλαβγαλ cαRβγ , δαcµ = 0 ,

δαRµν = −∂[µαν] +
3

2 c2
Π−µνλ

αβγ cλ ∂α cβ αγ . (A.16)

The last term is zero on Gµν-shell. Alternative form of these gauge transformations are

given as:

δαBµν = c[µαν] , δαcµ = 0 , δαRµν = −∂[µαν] ,

δαG
µν = εµνλαβγαλ cαRβγ + αλ

(
Fµνλ − 6 Π+

µνλ
αβγ c

αRβγ
)
. (A.17)

In this case, the last term is zero on Rµν-shell as shown in (A.13). We will use the

formulation (A.16) unless otherwise specified.

There is yet another gauge symmetry of the PST action, ϕ-symmetry:

δϕcµ = ∂µϕ , δϕBµν = ϕRµν , (A.18)

In order for the action (3.1) to be gauge invariant with respect to this symmetry, one has

to assign gauge transformations:

δϕG
µν = −1

2
ϕ εµνλραβRλρRαβ , δϕRµν =

3

2 c2
ϕ cλ Π−µνλ

αβγ ∂αRβγ . (A.19)

The latter symmetry of the action can be checked by direct computation.
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B (Non-)chiral scalar in two dimensions

Here we discuss some interesting observations related to chiral boson action (4.12) and its

generalisations. The Lagrangian (4.12) can be also written as:

L = −1

2
GAB∂µϕ

A ∂µϕB +
1

2
BAB ε

µν ∂µϕ
A ∂νϕ

B , (B.1)

ϕA = (ϕ, r, r̃) , ϕA = δABϕ
B , A,B,C = 1, 2, 3 , (B.2)

where the “sigma model metric” GAB has rank one and does not depend on ϕ1 ≡ ϕ:

GAB(ϕ) =

 1 −αϕ3
(1+α)

2 ϕ2

−αϕ3 α2 ϕ2
3 −α(1+α)

2 ϕ2 ϕ3
(1+α)

2 ϕ2 −α(1+α)
2 ϕ2 ϕ3

(1+α)2

4 ϕ2
2

 , BAB =

 0 −γϕ3 βϕ2

γϕ3 0 −δϕ1

−βϕ2 δϕ1 0

 ,
(B.3)

and β+γ+ δ = 1. The parameters α, β, γ are arbitrary numbers: different choices of these

numbers are related by field redefinition or boundary terms in the action.

B.1 A generalisation

A generalisation of the action (4.12) is given as in (2.17):

L = −1

2
f(r)

(√
r∂µϕ+ +

1√
r
∂µϕ−

)2

+ εµν f(r) ∂µϕ+ ∂νϕ− , (B.4)

For f(r) = 1/r, this action is equivalent to (4.12) and describes a single chiral scalar carried

in field ϕ+. Instead, for f(r) = r, it describes an anti-chiral scalar carried by ϕ−. The

replacement ϕ+ ↔ ϕ− , r → −1
r , f(r)→ −f(r) is a symmetry of (B.4).

In terms of ϕ = ϕ+ + ϕ− , ϕ̃ = ϕ+ − ϕ− the special choices of f(r) = r±1 (replacing

further r → r−1 in the second case) give:

L± = −1

8
[(r + 1)∂µϕ± (r − 1)∂µϕ̃]2 +

1

4
εµν r ∂µϕ∂νϕ̃ , . (B.5)

where different signs correspond to different chiralities. The two actions transform into

each other under ϕ↔ ϕ̃ , r → −r.

B.2 A duality-symmetric formulation for 2d scalar

The action (4.12) can be rewritten in a classically equivalent form:

S =

∫ (
− 1

2
(∂µϕ−Aµ)2 +

1

2
εµν ϕFµν +Bµ(Aµ − r∂µϕ̃)

)
d2x , (B.6)

where Fµν = ∂µAν − ∂ν Aµ and B is a Lagrange multiplier.

Dropping the last term in (B.6), one can write a simpler (quadratic) action:

S =

∫ (
− 1

2
(∂µϕ−Aµ)2 +

1

2
εµν ϕFµν

)
d2x , (B.7)
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which, after integrating out Aµ is equivalent to free scalar field action. We can double the

field content of this action, in the following way:

S =

∫ (
− 1

4
(∂µϕ+ −Aµ)2 − 1

4
(∂µϕ− +Aµ)2 +

1

4
εµν (ϕ+ + ϕ−)Fµν

)
d2x . (B.8)

This action is now gauge invariant with respect to δAµ = ∂µa(x) , δϕ± = ±a(x). After

integrating out the field Aµ, we arrive to free scalar action, depending only on the field

ϕ = ϕ+ +ϕ−. Instead of solving the equation of motion for Aµ, we could use the equations

of motion of all fields to show, that on-shell Aµ is pure gauge, therefore we can fix a gauge:

0 = Aµ =
1

2
(∂+µ ϕ+ + ∂−µ ϕ−) , (B.9)

where the second equation is the equation of motion for the field Aµ with ∂±µ ≡ ∂µ± εµν∂ν .

It follows from here, that in the (on-shell!) gauge Aµ = 0, we have:

∂+µ ϕ+ = 0 , ∂−µ ϕ− = 0 , (B.10)

hence the names of the fields. The action (B.8) can be rewritten in terms of ϕ = ϕ+ + ϕ−
and ϕ̃ = ϕ+ − ϕ− in the following form:

L = −1

4
(∂µϕ)2 − 1

4
(∂µϕ̃)2 +

1

2
Aµ(∂µϕ̃− εµν∂νϕ)− 1

4
AµA

µ . (B.11)

Here, the gauge symmetry is given by:

δAµ = ∂µa , δϕ̃ = a . (B.12)

On-shell, one can show that Aµ is pure gauge, therefore one can choose a gauge Aµ = 0,

which, together with the e.o.m. for Aµ:

Aµ = ∂µϕ̃− εµν∂νϕ , (B.13)

implies that there is only one d.o.f. propagating, as opposed to the same action without A2

term, which would describe two degrees of freedom (see, e.g., [9]). The on-shell equivalence

does not mean one can plug back Aµ = 0 to the action. Instead, we can fix, e.g., an off-shell

gauge ϕ̃ = 0 which is incompatible with Aµ = 0. The fields ϕ and ϕ̃ do not enter the action

in a completely symmetric form. In particular, there is a gauge symmetry that allows to

gauge fix ϕ̃ to zero, but not ϕ. In fact, if one changes the sign in front of the A2 term,

the roles of the fields ϕ and ϕ̃ change. This is not a field redefinition though and therefore

is not a symmetry of the action. We can achieve the change of the sign in that term by

a redefinition: Aµ → εµνA
ν , but that results in simultaneous exchange of ϕ and ϕ̃ in the

mixed term, therefore leaving the roles of ϕ and ϕ̃ unchanged. Even though the field ϕ̃ is

pure gauge, it is essential that its kinetic term has the right sign. If we take the opposite

sign keeping gauge invariance of the action in tact (which is tantamount to changing also

the sign of the A2 term), the action becomes topological with zero degrees of freedom.
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