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Abstract. Covering methods constitute a broad class of algorithms for solving multivariate Global
Optimization problems. In this note we show that, when the objectivef is d.c. and a d.c. decompos-
ition for f is known, the computational burden usually suffered by multivariate covering methods is
significantly reduced. With this we extend to the (non-differentiable) d.c. case the covering method of
Breiman and Cutler, showing that it is a particular case of the standard outer approximation approach.
Our computational experience shows that this generalization yields not only more flexibility but also
faster convergence than the covering method of Breiman-Cutler.
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1. Introduction

Given a polytopeX ⊂ Rm and a real-valued functionf defined onX, we consider
the optimization problem

max
x∈X

f (x) (1)

Covering algorithms, [4, 7, 10, 12, 17, 19], constitute an important class of
methods for solving problems of type (1) for very large classes of functionsf . In
essence, covering methods build a feasible sequence{xn} and a sequence ofupper
envelopes{E(n)}, i.e., functions satisfying

E(n) > f for all n
E(n) > E(n+1) for all n
E(n)(xj ) = f (xj ) for all j = 1, . . . , n

If the detection of anε-optimal solution is used as stopping rule, the prototype
covering algorithm is given in Algorithm 1, [16].

ALGORITHM 1. Initialization
Takex1 ∈ X
Setf = f (x1), x∗ = x1 and constructE(1)
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Iteration n = 1,2,. . .
Setf = maxx∈X E(n)(x) and selectxn+1 ∈ arg maxx∈X E(n)(x).
If f − f ≤ ε then Stop.
ConstructE(n+1) fromE(n).
If f (xn+1) > f then setf = f (xn+1) andx∗ = xn+1

Go to iterationn+ 1.

Whereas the theoretical convergence of this algorithm can be established for
general instances from e.g. [16] (Theorem II.2) or [19], (the algorithm finishes
with x∗ as anε-optimal solution andf as a lower bound differing less thanε from
the optimal value), care must be taken in order to make these procedure work in
practice. Indeed, two critical aspects must be considered, namely, how the upper
envelopesE(n) are defined, and then how the subproblems(Qn),

max
x∈X

E(n)(x), (Qn)

are solved.
The upper envelopesE(n) are usually constructed as pointwise minimum of

more simple functionski ,

E(n) = min
1≤i≤n

ki (2)

For instance, iff is Lipschitz with known Lipschitz constantL, Piyavskii al-
gorithm, [19, 14, 16] useskPIYi given by

kPIYi (x) = f (xi)+ L‖x − xi‖
Another example of covering method based on (2) is provided in [3, 4, 7, 10]:

assumingf : X ⊂ Rm 7−→ R is continuously differentiable and satisfies the
condition

f (x) ≤ f (y)+∇f (y)′(x − y)+K ‖x − y‖2 ∀ x, y ∈ X (3)

whereK ≥ 0 is a known constant, one defineskBrCi as

kBrCi (x) = f (xi)+∇f (xi)′(x − xi)+K ‖x − xi‖2 (4)

This is generalized in a later paper, [4], to

kBCi (x) = f (xi)+∇f (xi)′(x − xi)+ q(x − xi)
whereq(x) = x′Hx is a quadratic form with positive definite matrixH andkBCi
satisfies, for every choice ofxi ∈ X, the condition

kBCi (x) ≥ f (x) ∀ x ∈ X
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that is,

f (xi)+∇f (xi)′(x − xi)+ q(x − xi) ≥ f (x) ∀ xi, x ∈ X (5)

Note that (3) andkBrCi are particular cases of condition (5) andkBCi , respectively,
taking asH the diagonal matrix with valueK on the diagonal.

Solving the subproblems(Qn) seems to be the bottleneck point of the proced-
ures. In fact, each(Qn) is itself a Global-Optimization (in general non-differentiable)
problem, whose resolution seems to be far from trivial. Indeed, it is mentioned in
[16] (page 596) that the Piyavskii algorithm seems to be not very promising in
dimensions higher than 2 due to the increasing difficulty in solving(Qn). The
structure of the problems(Qn) is more simple for those coverings based on (4);
however, bounds on the first and second derivatives off are required, which, as
mentioned in [4], is often an equally difficult global optimization problem as the
original.

In the next section we show that, when a d.c. decomposition off is known,
a new class of upper envelopes can be described. These envelopes will yield sub-
problems(Qn) with a structure similar to those based on (4), and, at the same time,
are more versatile since they can avoid the calculus of the bounds of derivatives
and can also be used for non-differentiable problems.

2. Covering algorithm for d.c. functions

Let f be a real-valued d.c. function onX, i.e.,f can be represented as the differ-
ence of two functions convex onX, and assume that a d.c. decomposition off is
known,

f (x) = f1(x)+ f2(x) for eachx ∈ X,
wheref1 is convex onX andf2 is concave on a convex open set� ⊃ X.

We recall the reader that, although for an arbitrary d.c. functionf , it is not
easy to obtain such a d.c. decomposition, a series of rules enables one to obtain
d.c. decompositions of functionsf which are obtained (via summation, pointwise
maximum, linear combinations,. . . ) from more simple d.c. functions, [16, 21].

2.1. THE UPPER ENVELOPE AND PARTICULAR CASES

In this case, by majorizing the concave part of the decomposition, we obtain the
following convex bounding function:

kdci (x) = f1(x)+ (f2(xi)+ ξ2(xi)
′(x − xi)) (6)

whereξ2(xi) is an arbitrary subgradient off2 atxi .
In particular, the method of Breiman–Cutler [7] and the generalization due to

Baritompa–Cutler [4] are particular cases of our approach (6). Indeed, one has
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PROPOSITION 2.1.Letf : X ⊂ Rm→ R satisfy (5) for a quadratic formq with
symmetric positive semidefinite matrixH . Then,f is a d.c. function and

f (x) = x′Hx + (f (x)− x′Hx) (7)

is a d.c. decomposition forf . Moreover, if (7) is used as d.c. decomposition off ,
then Algorithm 1 with envelopeskdci yields the algorithm of Baritompa–Cutler.

Proof. Sincef1(x) = x′Hx is a convex function, it suffices to show that the
differentiable functionf2(x) = f (x)− x′Hx is concave.

By (5), it follows that

f (x) 6 f (y)+∇f (y)′(x − y)+ (x − y)′H(x − y)
= f (y)+∇f (y)′(x − y)+ x′Hx − y′Hy − 2y′H(x − y)

Rearranging terms,

f (x)− x′Hx 6 f (y)− y′Hy + (∇f (y)− 2Hy)′(x − y)
f2(x) 6 f2(y)+∇f2(y)

′(x − y) ,

from which we conclude thatf2 is concave.
Moreover,

kdci (x) = f1(x)+ f2(xi)+∇f2(xi)
′(x − xi)

= x′Hx + (f (xi)− x′iHxi)+ (∇f (xi)− 2Hxi)′(x − xi)
= f (xi)+∇f (xi)′(x − xi)+ x′Hx − x′iHxi − 2x′iH (x − xi)= f (xi)+∇f (xi)′(x − xi)+ (x − xi)′H(x − xi)
= kBCi (x),

showing thatkdc yields the envelope of Baritompa–Cutler when (7) is used as d.c.
decomposition off . 2

Hence, even for functionsf satisfying (5), different envelopes can be obtained
as soon as a d.c. decomposition, other than (7), is provided. This may avoid the
costly process of bounding derivatives, [4] and may affect the convergence, as
depicted in Example 2.2 and Section 3 (see [6] for further details).

EXAMPLE 2.2. In the paper [7], Breiman and Cutler usef : I = [−0.2,1] 7−→
R defined as

f (x) = cos(5πx)− x2

This function is twice continuously differentiable, thus it admits a decomposition
of the form

f (x) = Kx2 − (Kx2 − f (x)) (8)

In particular, Breiman and Cutler propose such decomposition takingK = 12.5π2−
1 (the smallest value for whichKx2 − f (x) is convex).
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However, an alternative d.c. decomposition is provided in [5]: givenx̂ ∈ I ,

f (x) = f1(x)+ f2(x) (9)

where

f1(x) = f (x̂)+ f ′(x̂)(x − x̂)+
∫ x

x̂

(x − t)[f ′′(t)]+dt

f2(x) = −
∫ x

x̂

(x − t)[f ′′(t)]−dt
beingA+ = max(A,0) andA− = min(−A,0).

This yields the d.c. decomposition

f (x) = (f (x)+ h(x))− h(x),
where

h(x) =



h1(x) x ∈ [z1, a1]
h2(x) x ∈ [a1, b1]
h3(x) x ∈ [b1, a2]
h4(x) x ∈ [a2, b2]
h5(x) x ∈ [b2, a3]
h6(x) x ∈ [a3, b3]
h7(x) x ∈ [b3, z2]

h1(x) = 1+ 5π(x − a1) sin(5πa1)− cos(5πa1)+ a1(2x − a1)

h2(x) = 1− cos(5πx)+ x2

h3(x) = 1+ 5π(x − b1) sin(5πb1)− cos(5πb1)+ b1(2x − b1)

h4(x) = h2(x)+ h3(x)− 1− 5π(x − a2) sin(5πa2)+ cos(5πa2)− a2(2x − a2)

h5(x) = 1+ h4(x)− h2(x)+ 5π(x − b2) sin(5πb2)− cos(5πb2)+ b2(2x − b2)

h6(x) = h2(x)+ h5(x)− 1− 5π(x − a3) sin(5πa3)+ cos(5πa3)− a3(2x − a3)

h7(x) = 1+ h6(x)− h2(x)+ 5π(x − b3) sin(5πb3)− cos(5πb3)+ b3(2x − b3)

z1 = −0.2 ai = −1
5π arccos(−0.08

π2 )+ 2
5(i − 1) i = 1,2,3

z2 = 1 bi = 1
5π arccos(−0.08

π2 )+ 2
5(i − 1) i = 1,2,3

This alternative envelope yields sharper bounds than (8), as depicted in Figure
1, which shows the envelopes derived from (8) and (9) after four iterations of the
algorithms usingx1 = 0.5 as starting point.

For the sake of completeness, we have compared in Figure 2 the d.c. envelope
from (9) and the Piyavskii envelope (using the quite sharp Lipschitz constantL =
17.51) again after four iterations usingx1 = 0.5 as starting point.
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Figure 1. Comparison of envelopes I: Example function (double-wide line), Breiman–Cutler
envelope (dotted line), d.c. envelope (single-wide line)

Figure 2. Comparison of envelopes II: Example function (double-wide line), Piyavskii
envelope (dotted line), d.c. envelope (single-wide line)

2.2. SOLVING (Qn)

2.2.1. Convex maximization

For the upper envelope (6), (Qn) can be formulated as a convex maximization
problem with linear constrains, e.g. [8]. Indeed,(Qn) is equivalent to

max
(x,t)∈B(n)

{f1(x)+ t} ,

where

B(n) = {(x, t) : x ∈ X , t ≤ f2(xi)+ ξ2(xi)
′(x − xi) ∀ i , 1≤ i ≤ n}
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Hence, solving each(Qn) amounts to maximizing a convex function over the
polyhedronB(n). Moreover, since we obtainB(n+1) from B(n) by adding a linear
constraint, the resolution of(Qn) can be used to solve(Qn+1) if procedures for
on-line enumeration of vertices, [9], are used.

Moreover, the insertion of each new constraint can be done in polynomial time
(the dimensionm considered to be fixed), since, at then-th iteration,O(nm−1) time
suffices to update the geometry of the feasible region, see [1, 11].

In other words, the covering Algorithm 1 for the d.c. case (and, in particular,
the Breiman–Cutler method) is simply an outer approximation algorithm.

2.2.2. Power diagrams

A different though equivalent strategy for optimizing(Qn) is proposed in [7] for
the particular case (4): defining for eachi, n,DBrC

i:n as

DBrC
i:n =

{
x ∈ Rm : kBrCi (x) ≤ kBrCj (x) ∀ j , 1≤ j ≤ n} ,

one immediately obtains that eachDBrC
i:n is polyhedral. Moreover, since(Qn) can

be rewritten as

max
1≤i≤n

{
max

x∈X∩DBrCi:n
kBrCi (x)

}
, (10)

solving (Qn) amounts to inspecting the vertices of each polytopeX ∩ DBrC
i:n , for

which a geometrical method is detailed in [7].
This strategy is applicable not only to covering methods derived fromkBrC , but

also for the more general case in which the envelopes are derived fromkdc. Indeed,

kdci (x) ≤ kdcj (x) ⇔ f2(xi)+ ξ2(xi)
′(x − xi) ≤ f2(xj )+ ξ2(xj )

′(x − xj )
⇔ ‖x − Ci‖2+ βi ≤

∥∥x − Cj∥∥2+ βj
where

Ck = −1

2
ξ2(xk) βk = f2(xk)− ξ2(xk)

′xk − 1

4
‖ξ2(xk)‖2 k = i, j

thus, definingDdc
i:n as

Ddc
i:n =

{
x ∈ Rm : kdci (x) ≤ kdcj (x) ∀j , 1≤ j ≤ n} ,

it turns out that
{{Ddc

i:n}1≤i≤n
}

is a power diagram, with centersC1, . . . , Cn and
(additive) weightsβ1, . . . , βn, [1, 2, 11, 18].

The key property of power diagrams is the fact that they induce apolyhedral
subdivision ofRm (as the particular case{DBrC

i:n }), and can be constructed by on-
line procedures, [2]. In fact, the geometrical procedure described in [7] for solving
(Qn) is basically the same than the on-line procedure of [2] for the (at first glance
unrelated) problem of describing the geometrical structure of a power diagram.
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Table 1. Number of iterations for unidimensional test
problems

No. Piyavskii Breiman–Cutler DC covering

1 149 25 12

2 155 21 14

3 195 103 54

4 413 24 14

5 151 32 15

6 129 37 11

7 153 24 15

8 185 85 53

9 119 24 14

10 203 24 14

11 373 44 28

12 327 42 29

13 993 264 15

14 145 29 13

15 629 80 16

16 497 88 15

17 549 67 26

18 303 19 14

19 131 20 14

20 493 30 11

A geometric-based strategy is also possible for envelopes based onkPIY for
Lipschitz optimization. Indeed, one can defineDPIY

i:n , and obtain an expression
similar to (10). This is the basis of the Jaumard–Herrmann–Ribault algorithm de-
scribed in [14]. The so defined setsDPIY

i:n may still be identified with geometrical
objects, namely,additive Voronoi diagrams, [1, 11, 18], but (for dimension greater
or equal to 2) are no longer polyhedral, thus more complicated data structures are
needed in order to store and update the geometry of such diagram.

3. Computational experience

In this section we present some numerical results, which show that the d.c. de-
composition chosen in (6) may have a great influence on the convergence of the
algorithm. See also [6] for further results.

We have studied the performance of Algorithm 1 using a set of well-known
test problems from the literature, collected in [7, 13]. Table 1 shows the number
of iterations spent by the three covering methods addressed throughout the paper
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Table 2. Computational results for multidimensional test problems

Example Breiman–Cutler DC covering

Iterations CPU CPU Iterations CPU CPU

standard time seconds standard time seconds

COS2 77 2.6404 0.0059 27 1.7696 0.0040

COS4 1392 1416.7967 3.1776 201 250.8309 0.5748

H3 2575 443.2186 1.0094 442 117.6784 0.2648

for twenty one-dimensional test problems (see Table 1 of [13]). The computational
results concerning to the Piyavskii and Breiman–Cutler methods are taken from
[20], where the exact value of the associated parametersL andK have been used,
as well as an accuracy of valueε = 0.0001(b − a), with [a, b] being the interval
where the test function is defined.

The computational implementation of Algorithm 1 has been carried out in every
case using the d.c. decomposition given in Section 6 of [15] for the non-C2 function
18 and the d.c. decomposition (9) for the remaining instances. The starting point
for the algorithm has been always taken equal to the middle point of the interval.
We just provide the number of iterations since the CPU times for our algorithm are
negligible.

Finally, we have considered three multidimensional test problems from [7, 10]
(COS2, COS4 and H3 in Table 3 of [7]), where the d.c. representations used are
based on decomposition (9) for each term in COS2 and COS4, and the decom-
position suggested by Proposition 3.5 of [22] for H3. The stopping rule and the
tolerance valuesε1 andε2 has been taken as in [7]. In Table 2 we show the number
of iterations and the CPU time (measured in units of standard time and seconds)
taken by our algorithm in order to solve these problems.

We just need to say that the implementation of Algorithm 1 used in these ex-
amples is directly based on the program listings of the Breiman–Cutler algorithm
provided in [10]. Both of them have been programmed in Fortran 90 in a personal
computer with a 200 Mhz. Pentium processor and 16 Megabytes of RAM memory.
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