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ABSTRACT. Let A = {as —i—nsZ}’;:l be a system of arithmetic sequences which
forms an m-cover of Z (i.e. every integer belongs at least to m members
of A). In this paper we show the following surprising properties of A: (a)
For each J C {1, - ,k} there exist at least m subsets I of {1,---,k} with
I # J such that ) ;1/ns — > ,c;1/ns € Z. (b) If A forms a minimal
m-cover of Z, then for any ¢ = 1,---,k there is an a; € [0,1) such that
for every r = 0,1,--- ,nt — 1 there exists an I C {1,---,k} \ {¢t} for which

[serV/ns] =2 m—Tand {3 cr1/ns} = (ar +r1)/ne.

1. INTRODUCTION
For integer a and positive integer n we call
an)={x €Z: r=a (modn)} =a+nZ

an arithmetic sequence with common difference n or a residue class with modulus
n. For a finite system

(1) A= {as(ns)}];:l
of such sets, we define its covering multiplicity by
(2) m(4) = inf |S(z)]
where S(z) = {1 < s<k: z =as (modng)}. Tt is easy to show that
"
Q0 >l ma)
s=1""°

and the equality holds if and only if (1) covers each integer exactly m times for
some m =1,2,3,---. (Cf. [S2], [S4].)

Let m be a nonnegative integer. If system (1) has covering multiplicity at least
m, then we call (1) an m-cover (of Z). A minimal m-cover (of Z) is an m-cover
whose proper subsystems are not. If |S(z)| = m for all © € Z, then we say that
A forms an ezact m-cover (of Z). Notice that an exact 1-cover is a partition of Z
into (finitely many) periodic sets. The Chinese Remainder Theorem tells that the
intersection of residue classes aq(ny), - ,ax(ng) is empty if and only if two of them
are disjoint. So, as a dual question, when (1) forms a 1-cover is fundamental and
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important. In fact, 1-covers and exact m-covers (especially exact 1-covers) have
been investigated for many years; also some famous conjectures remain open. (See
R. K. Guy [G].)

Now we introduce some notation. As usual, if m and n are integers, then (m,n)
represents the greatest common divisor of m and n. For a real number z, we set
(5) =1 and let (%) = H;:()l Z%Z for n = 1,2,3,---; also [z] and {z} denote the
integral and the fractional parts of x respectively.

In this paper we study the covering multiplicity of a general system of residue
classes. Our main result is as follows.

Theorem 1. Let (1) be a system of arithmetic sequences, and let J be a subset of
{1,--- ,k}. Put J- ={1,--- Kk} \ J.
(i) For any mq,--- ,my € Z we have

{Ig{l,m,k}: I#J & {Z%}:{Z%}H>mm).

n
sel % seJ ®

(4)

(i) Suppose O # J C S(x) for some x € Z with |S(x)| = m(A). For each s € J~
let ms be a positive integer prime to ns. Then there exists an « € [0,1) such that

({52 e (g ]mo 1)

(5) sel
> {N?J) L 0<a< N(J), {a}:a}7

where N(J) denotes the least common multiple of those ng with s € J.

In view of Theorem 1, an m-cover A = {as(ns)}*_, possesses the following
properties:

(a) For each J C {1,--- ,k}, there exist at least m subsets I of {1,--- ,k} with
I# Jsuchthat Y, 1/ns—>  ;1/ns €Z.

(b) If A forms a minimal m-cover of Z, then for any ¢t = 1,--- |k there is an
az € [0,1) such that, for every r = 0,1,--- ,n;—1, thereexistsan I C {1,--- , k}\{t}
for which [>° ., 1/ns] >m —1and {d>° ., 1/ns} = (ar +7)/n4.

Part (i) of Theorem 1 can be strengthened in the case J = (). By Theorem 1, if
(1) forms a 1-cover, then ) _; 1/n, € Z for some nonempty subset I of {1,---,k},
which is the main result of M. Z. Zhang [Z] obtained by means of the Riemann
zeta function. For an exact m-cover (1), the author proved in [S1] that for each
n=0,1,---,m there exist at least (") subsets I of {1,---,k} with }_ _;1/n, = n.
When (1) is an m-cover and mq,--- ,my are positive integers, it was shown in
[S3] that there are at least m positive integers in the form }° _, ms/n, where
I C{1,---,k}; we even conjecture that there exist nonempty subsets I, - - , I, of
{1,-++,k} for which Iy C --- C I,y and ) ., ms/ns € Zforallt =1,--- ,m.

The first part of Theorem 1 yields

Corollary 1. Let (1) be an m-cover of Z and mq,--- ,my any integers. Then
Mg ok

6 — : ITC{1, -k} | < .

© {5} renmif <55

Proof. By part (i) of Theorem 1, for any J C {1,---,k} there are at least m + 1
subsets I of {1,---,k} with {>° ., ms/ns} = {d_,c;ms/ns}. Since {1,---,k} has
exactly 2 subsets, Corollary 1 follows immediately. O
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Remark 1. A conjecture of P. Erdos proved by R. B. Crittenden and C. L. Vanden
Eynden [CV] states that (1) forms a 1-cover of Z if it covers 1,---,2%. In [S2],
[S3] the author showed that (1) forms an m-cover of Z if there exist W consecutive
integers each of which lies in at least m members of (1), where W is the least integer
equal to the left hand side of (6) for some integers myq, - - - ,my prime to nq,-- -, ng
respectively.

As for part (ii) of Theorem 1 we should mention the following result obtained
by the author ([S4]) recently: Let (1) be an exact m-cover of Z , and J a nonempty
subset of {1,--- k} with (ns,n:) | as — a; for all s,t € J (i.e. § # J C S(x) for
some x € Z). Then

freor {5} st Bt

for every a = 0,1,--- ,N(J) — 1, and

Hfg D WH g ([a%%])

for alla =0,1,2,--- if |J] = 1.

Corollary 2. Let (1) be an m-cover of Z with ny < --- < ng—1 < ng. Suppose
that B = {as(ns)}*=1 fails to be an m-cover of Z. If Ef;ll 1/ns = m, then
ng_1 =nk > 1 and

(7) {Zni:Ig{1,-~-,k—1}};{i;r:0,1,.--,nk—1}.

n
sel '8 k

Proof. Assume that Zf;ll 1/ns = m. By part (ii) of Theorem 1 there exists an
a € [0,1) such that

(F R

sel ' *® sel ' *®

D{i: 0<a<nyg, {a}:a}.

ng
Thus
1 1
seJ 8 seJ 8
=1 1 1 =1
;{;n—s—;n—s; Ig{l,---,k—l},m—1<§n—s<m:;n—s}
:{1—{Zi}: IC{l,-- k—1}, {ZL] >m—1}\{1}
sel 'S sel 'S
3{1—1: 0<a<n, {a}za}\{l}:{i: 0<b< ng, {b}:{—a}}.
Nk gk

Observe that (7) follows if « = 0. Since B doesn’t form an m-cover of Z, we cannot
have n; = -+ =ng_1 = 1 (otherwise k — 1 = Zi;ll 1/ns =m). Song > ng—1 > 1;
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hence by the above for some nonempty JCA{l,---,k—1} we have
1 1-— 1 1
Inln— Z — = @ < — <K .
Nk—1 seJ Ng TLS Nk Nk—1
Therefore ny = ng_1 and o = 0. We are done. O

Remark 2. Let (1) be an m cover of Z with ny < -+ < ng_1 < ng. By part (iv)
of Theorem I of [S3], Z 1/n5 m. In view of Corollary 2, if {as(ns)} =1 fails
to be an m-cover of Z, then 25:1 1/ns must be greater than m. This extends and
improves a confirmed conjecture of Erdos which states that Z];:l 1/ns > 1 for any
I-cover (1) with 1 <nj < -+ < ng_1 < ng (see [E] and [G]).

Corollary 3. Let (1) be an m-cover of Z, and J a nonempty subset of {1,--- ,k}
with |[{s € J~ : x € as(ns)}| = m —|J| for some x € Z. Let e, € {1,—1} for those

se€J™. Then
es | . _
(8) H{Zn—} IcJ H>N(J).
sel
Proof. This follows immediately from the second part of Theorem 1. O

Remark 3. With the help of a local-global result proved in [S2], in 1994 the author
found Corollary 3 in the case |J| = 1 (see Section 3 of [S3]).

Corollary 4. Let (1) be a minimal m-cover of Z, and mq,--- ,my any positive in-
tegers prime to ny, - - ,ny respectively. Then for everyt =1,---  k all the numbers
0,1/ng,-- -, (nt — 1)/ny lie in the set

o)
-yl e mpe T 2 sm-1},

S
n n
sel % seg ® sel ' seg s

Proof. By part (ii) of Theorem 1 there is an oy € [0, 1) such that

{{ZZL—} T, R\ {1, {ZZZ_} >m_1}

S

sel sel
contains S; = {a/n; : 0 < a < ny, {a} = au}. Asr/ny = (o +1)/nt — i /ny for
eachr =0,1,--- ,n; — 1, the desired result follows. O

Remark 4. In [S3] the author was able to prove Corollary 4 with } _ ms/ns >
m — 1 in (9) replaced by > ., ms/ns > m — 2.
3. PROOF OF THEOREM 1
Let’s recall a key result given by the author in [S2].

Proposition 1. Let A = {as + B:Z}~_; where ay,--- ,ax are real numbers and

081, -+, Bk are positive reals. Let m be a positive integer. Then A forms an m-cover
of Z (ie. {1<s<k: (xv—as)/Bs €Z} =m for all x € Z) if and only if

(10) >, (= (Ese] 1/581)62“2561%/& ~0
IC{1,--,k} "
{Zsel 1/55}:9

holds for all € [0,1) and n =0,1,--- ,m — 1.
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Lemma 1. Let k,m,n be positive integers with k > m —n > 0. Then (1) forms
an m-cover of Z if and only if for each I C {1,--- k} with |I| = m — n system
A = {as(ns)}ser- forms an n-cover of Z.

Proof. If (1) is an m-cover of Z and I is a subset of {1,--- ,k} with |I| = m —n,
then for any integer = we have

{sel : z=as (modng)} =m—|I| =n;

therefore A; is an n-cover of Z.

Now suppose that A; forms an n-cover of Z for all I C {1,--- ,k} with |[I| =
m — n. Let’s show that A = Ay forms an m-cover of Z. Assume on the contrary
that for some integer z set J = {1 < s < k: z = a5 (modn,)} has cardinality

I < m. Choose a subset I of {1,---,k} with cardinality m — n such that either
I C Jor I D J. Observe that z belongs to less than n members of A;. This
contradiction ends our proof. O

Remark 5. Apparently for (1) to be an m-cover of Z it is necessary that k > m.

Proof of part (i) of Theorem 1. It suffices to handle the case m =m(A) > 0.
At first we assume that ny, - - - , ng are all greater than one. Since m < Z];:l 1/ns
< k/2, either J or J~ has cardinality not less than m.

Case 1. [J7| =2 m. Among I C {1,--- ,k} with {d° ., ms/ns} = {d ,c;ms/ns},
we select a Jo with the least cardinality. Apparently |J; | > [J7| > m. Let
Io = {51, ,8m_1} be a subset of {1,--- k} with |Ip] =m — 1 and Iy N Jy = 0.
By Lemma 1 and Remark 5, system {as ("S)}selg forms a 1-cover of Z and hence
so does Ay = {as + (ns/ms)Z}seIJ. As Jo C I, by Proposition 1 or Theo-
rem 2 of [S2] there is a J; C Iy for which J; # Jo and {} ,; ms/ns} =
{Zsng ms/ns}. According to the choice of Jy we must have J; € Jy. Choose
t1 € 1 \ Jo and put I = {tl,SQ,"' ,Sm_l}. Observe that I; N Jo = (. Since
A = {as—i—(ns/ms)Z}SE[; forms a 1-cover of Z, there exists a Jo C I; with Jy # Jp
such that {37 c; ms/ns} = {> e, ms/ns}. Choose ty € Jo '\ Jo and put Ir =
{t1,t2,83, -+ ,Sm—1}. Then continue this procedure to find Js,t3,I3; -+ ; Jm—1,
tm—1,Im—1;Jm,tm in the same way. Apparently Jy,Js, -, J,, are all different
from Jo. If 1 <i < j < m, then t; € J; \ J; because t; € I;_; and J; N [;—1 = 0.
So the m + 1 subsets Jo, J1, Jo, -+, Jm of {1,--- , k} are distinct; therefore

ng{l,--.,k}; I#J& Z%—Z%EZH

sel % seg 't

>H{Ji: 0<i<m& J; #J}H >m.

Case 2. |J| = m, ie. [(J7)7| = m. It follows from the above that

ng{l,---,k}: I#J- &Y™y %ez}‘wﬂ.
n Ng

sel s SEJ
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Thus
P R T my
{ C{l--- k}: I 4T &S - > e
sel’ seJ
Mg Mg
=] : JC - — —
{ C{Lo k) AT & Y E:nsez}‘
sel— seJ
Mg Mg
=drcfl kT2 e N Mezlism,
{ _{7 ,} 7£J &selns Eanse }‘ "

So far we have proven (4) in both cases.

Next let’s consider the situation in which K = {1 < s < k: ns = 1} is nonempty.
If |[K| < m, then {as(ns)}sex- forms an m — |K|-cover of Z with all the moduli
greater than one; hence by the above

HIgK‘: L %ez}‘ >m—|K|+1.
Ng Ng

sel seJ\K
Therefore

IC{l,- k}: Z%—Z%EZH
seJ 8

sel 8

Iur': ICK, I'cK & Y 2 % %ez}‘

I
— =

sel’ s seJ\K s
>{I1uI': ICK, |I|<1, I' CK~ Ms _ ms
=y | | ’ = & Z Ton Z e € Z
s€l’ s€J\K
m m

>|K "C K™ -5 s
s [{ren: $ie- 3t

sel’ seJ\K
2|K| 4+ max{m — |K|+ 1,1} > m + 1.

This completes the proof. O

Lemma 2. Let (1) be a system of arithmetic sequences, and J a nonempty subset
of {1,--- ,k} with |J| < m(A) and (,c; as(ns) # 0. For each s € J~ let ms be a
positive integer. Let 0 < a < N(J) and

> 1%] 270 Y o = (as—ay)
(11) Cla) = (—1)”'( S€l ns | ) o2 2 ser g (s —as
I; m(A) —[J|
{(Seer 22 t=xtn

where ay is the unique integer in [\, ; as(ns) with 0 < ay < N(J). Then C(a) =

C({a}).

Proof. Apparently it suffices to show C(a) = C(a — 1) providing a > 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON COVERING MULTIPLICITY 1299

Let m = m(A). Observe that the sequences as + (ns/ms)Z (s € J~) together
with ay + N(J)Z form an m — |J| + 1-cover of Z. In view of Proposition 1,

Z (_1)‘1‘ <[ZSEI 7777Z_*"’S]>e2’”'zs~zf S
m—|J|

cJ-
{Seer 22 t=wtn

[Z EI + N(J ] 2 (Z MJ’__G'.L)
n (_1)|1|+1( ser WD) 2mi(S., 2ame s
2 =]

cJ-
{ZsEI %J’_N%J) =

vanishes. So
eZm'an/N(J)O(CL)
_ Z (1) <[Zsel %]) 2T,y e
m—|J

I1CJ™

{Zser f_j}: N

= Z (_1)|I| <[[ZSEI n_:] + ﬁ]>e2ﬂ'i(25€l _ST?&-FT(‘JL))
m—|J]|

IcJ-
ms | —1
{Zoer 2=} =%

_ 2ias/N() il ([ser Zl_ﬁ) oY, ot
‘ 2 U <m—|J| ‘

ICJ™
{Zocr 72 )=#0
:eZTriaJ/N(J)eZTrz(a ay/N(J )C(a _ 1) — eZTrian/N(J)C(a _ 1)

Therefore C(a) = C(a — 1). We are done. |

Remark 6. If we replace m(A)—|J|in (11) by a smaller nonnegative integer n, then
the new C'(a) will equal zero by Proposition 1, because system {as+ (ns/ms)Z} ¢ s~
forms an m(A) — |J|-cover of Z.

Proof of part (ii) of Theorem 1. Since [{s € J~ : x € as(ns)}| = m(A) — |J| for
some integer x and (ms,ns) = 1 for all s € J—, system {as + (ns/ms)Z} e - fails
to form an m(A) — [J| 4 1-cover of Z as well as {a(ns)}ses—- As x € (o as(ns),
there is a unique integer a; with 0 < ay < N(J) such that a; = as (modny) for
all s € J. By Proposition 1 and Remark 6 there exists a 6 € [0,1) such that

C 0 2miagt _ 1\ [ZSGI 7;,11_5] 27”'2561 asn7:s .
(N (0)e ICXJ: = <m(A) - |J|)e 70
{Soer Ze}=0

Put « = {N(J)0}. If 0 < a < N(J) and {a} = «, then a — N(J)# € Z and hence
C(a) = C(N(J)0) # 0 by Lemma 2; therefore {3 ., 7=} = w7y for some I C.J~
with [} 7 #=] > m(A) — |J|. This concludes the proof. O
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