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ON COVERING MULTIPLICITY

ZHI-WEI SUN

(Communicated by David E. Rohrlich)

Abstract. Let A = {as +nsZ}k
s=1 be a system of arithmetic sequences which

forms an m-cover of Z (i.e. every integer belongs at least to m members
of A). In this paper we show the following surprising properties of A: (a)
For each J ⊆ {1, · · · , k} there exist at least m subsets I of {1, · · · , k} with

I 6= J such that
∑

s∈I 1/ns − ∑
s∈J 1/ns ∈ Z. (b) If A forms a minimal

m-cover of Z, then for any t = 1, · · · , k there is an αt ∈ [0, 1) such that
for every r = 0, 1, · · · , nt − 1 there exists an I ⊆ {1, · · · , k} \ {t} for which
[
∑

s∈I 1/ns] > m − 1 and {∑s∈I 1/ns} = (αt + r)/nt.

1. Introduction

For integer a and positive integer n we call

a(n) = {x ∈ Z : x ≡ a (mod n)} = a + nZ
an arithmetic sequence with common difference n or a residue class with modulus
n. For a finite system

A = {as(ns)}k
s=1(1)

of such sets, we define its covering multiplicity by

m(A) = inf
x∈Z

|S(x)|(2)

where S(x) = {1 6 s 6 k : x ≡ as (mod ns)}. It is easy to show that
k∑

s=1

1
ns

> m(A),(3)

and the equality holds if and only if (1) covers each integer exactly m times for
some m = 1, 2, 3, · · · . (Cf. [S2], [S4].)

Let m be a nonnegative integer. If system (1) has covering multiplicity at least
m, then we call (1) an m-cover (of Z). A minimal m-cover (of Z) is an m-cover
whose proper subsystems are not. If |S(x)| = m for all x ∈ Z, then we say that
A forms an exact m-cover (of Z). Notice that an exact 1-cover is a partition of Z
into (finitely many) periodic sets. The Chinese Remainder Theorem tells that the
intersection of residue classes a1(n1), · · · , ak(nk) is empty if and only if two of them
are disjoint. So, as a dual question, when (1) forms a 1-cover is fundamental and
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important. In fact, 1-covers and exact m-covers (especially exact 1-covers) have
been investigated for many years; also some famous conjectures remain open. (See
R. K. Guy [G].)

Now we introduce some notation. As usual, if m and n are integers, then (m, n)
represents the greatest common divisor of m and n. For a real number x, we set(
x
0

)
= 1 and let

(
x
n

)
=

∏n−1
j=0

x−j
n−j for n = 1, 2, 3, · · · ; also [x] and {x} denote the

integral and the fractional parts of x respectively.
In this paper we study the covering multiplicity of a general system of residue

classes. Our main result is as follows.

Theorem 1. Let (1) be a system of arithmetic sequences, and let J be a subset of
{1, · · · , k}. Put J− = {1, · · · , k} \ J .

(i) For any m1, · · · , mk ∈ Z we have∣∣∣∣{I ⊆ {1, · · · , k} : I 6= J &
{∑

s∈I

ms

ns

}
=

{∑
s∈J

ms

ns

}}∣∣∣∣ > m(A).(4)

(ii) Suppose ∅ 6= J ⊆ S(x) for some x ∈ Z with |S(x)| = m(A). For each s ∈ J−

let ms be a positive integer prime to ns. Then there exists an α ∈ [0, 1) such that{{∑
s∈I

ms

ns

}
: I ⊆ J−,

[ ∑
s∈I

ms

ns

]
> m(A)− |J |

}
⊇

{
a

N(J)
: 0 6 a < N(J), {a} = α

}
,

(5)

where N(J) denotes the least common multiple of those ns with s ∈ J .

In view of Theorem 1, an m-cover A = {as(ns)}k
s=1 possesses the following

properties:
(a) For each J ⊆ {1, · · · , k}, there exist at least m subsets I of {1, · · · , k} with

I 6= J such that
∑

s∈I 1/ns −
∑

s∈J 1/ns ∈ Z.
(b) If A forms a minimal m-cover of Z, then for any t = 1, · · · , k there is an

αt ∈ [0, 1) such that, for every r = 0, 1, · · · , nt−1, there exists an I ⊆ {1, · · · , k}\{t}
for which [

∑
s∈I 1/ns] > m− 1 and {∑s∈I 1/ns} = (αt + r)/nt.

Part (i) of Theorem 1 can be strengthened in the case J = ∅. By Theorem 1, if
(1) forms a 1-cover, then

∑
s∈I 1/ns ∈ Z for some nonempty subset I of {1, · · · , k},

which is the main result of M. Z. Zhang [Z] obtained by means of the Riemann
zeta function. For an exact m-cover (1), the author proved in [S1] that for each
n = 0, 1, · · · , m there exist at least

(
m
n

)
subsets I of {1, · · · , k} with

∑
s∈I 1/ns = n.

When (1) is an m-cover and m1, · · · , mk are positive integers, it was shown in
[S3] that there are at least m positive integers in the form

∑
s∈I ms/ns where

I ⊆ {1, · · · , k}; we even conjecture that there exist nonempty subsets I1, · · · , Im of
{1, · · · , k} for which I1 ⊂ · · · ⊂ Im and

∑
s∈It

ms/ns ∈ Z for all t = 1, · · · , m.
The first part of Theorem 1 yields

Corollary 1. Let (1) be an m-cover of Z and m1, · · · , mk any integers. Then∣∣∣∣{{∑
s∈I

ms

ns

}
: I ⊆ {1, · · · , k}

}∣∣∣∣ 6 2k

m + 1
.(6)

Proof. By part (i) of Theorem 1, for any J ⊆ {1, · · · , k} there are at least m + 1
subsets I of {1, · · · , k} with {∑s∈I ms/ns} = {∑s∈J ms/ns}. Since {1, · · · , k} has
exactly 2k subsets, Corollary 1 follows immediately.
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Remark 1. A conjecture of P. Erdös proved by R. B. Crittenden and C. L. Vanden
Eynden [CV] states that (1) forms a 1-cover of Z if it covers 1, · · · , 2k. In [S2],
[S3] the author showed that (1) forms an m-cover of Z if there exist W consecutive
integers each of which lies in at least m members of (1), where W is the least integer
equal to the left hand side of (6) for some integers m1, · · · , mk prime to n1, · · · , nk

respectively.
As for part (ii) of Theorem 1 we should mention the following result obtained

by the author ([S4]) recently: Let (1) be an exact m-cover of Z , and J a nonempty
subset of {1, · · · , k} with (ns, nt) | as − at for all s, t ∈ J (i.e. ∅ 6= J ⊆ S(x) for
some x ∈ Z). Then∣∣∣∣{I ⊆ J− :

{∑
s∈I

1
ns

}
=

a

N(J)

}∣∣∣∣ >
∏

s∈J ns

N(J)

for every a = 0, 1, · · · , N(J)− 1, and∣∣∣∣{I ⊆ J− :
∑
s∈I

1
ns

=
a

N(J)

}∣∣∣∣ >
(

m− 1
[a/N(J)]

)
for all a = 0, 1, 2, · · · if |J | = 1.

Corollary 2. Let (1) be an m-cover of Z with n1 6 · · · 6 nk−1 6 nk. Suppose
that B = {as(ns)}k−1

s=1 fails to be an m-cover of Z. If
∑k−1

s=1 1/ns = m, then
nk−1 = nk > 1 and{∑

s∈I

1
ns

: I ⊆ {1, · · · , k − 1}
}
⊇

{
r

nk
: r = 0, 1, · · · , nk − 1

}
.(7)

Proof. Assume that
∑k−1

s=1 1/ns = m. By part (ii) of Theorem 1 there exists an
α ∈ [0, 1) such that{{∑

s∈I

1
ns

}
: I ⊆ {1, · · · , k − 1},

[∑
s∈I

1
ns

]
> m− 1

}
⊇

{
a

nk
: 0 6 a < nk, {a} = α

}
.

Thus

{∑
s∈J

1
ns

: J ⊆ {1, · · · , k − 1},
∑
s∈J

1
ns

6∈ Z
}

⊇
{ k−1∑

s=1

1
ns

−
∑
s∈I

1
ns

: I ⊆ {1, · · · , k − 1}, m− 1 <
∑
s∈I

1
ns

< m =
k−1∑
s=1

1
ns

}
=

{
1−

{∑
s∈I

1
ns

}
: I ⊆ {1, · · · , k − 1},

[ ∑
s∈I

1
ns

]
> m− 1

}
\ {1}

⊇
{

1− a

nk
: 0 6 a < nk, {a} = α

}
\ {1} =

{
b

nk
: 0 < b < nk, {b} = {−α}

}
.

Observe that (7) follows if α = 0. Since B doesn’t form an m-cover of Z, we cannot
have n1 = · · · = nk−1 = 1 (otherwise k − 1 =

∑k−1
s=1 1/ns = m). So nk > nk−1 > 1;
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hence by the above for some nonempty J ⊆ {1, · · · , k − 1} we have
1

nk−1
6 min

s∈J

1
ns

6
∑
s∈J

1
ns

=
1− α

nk
6 1

nk
6 1

nk−1
.

Therefore nk = nk−1 and α = 0. We are done.

Remark 2. Let (1) be an m-cover of Z with n1 6 · · · 6 nk−1 < nk. By part (iv)
of Theorem I of [S3],

∑k−1
s=1 1/ns > m. In view of Corollary 2, if {as(ns)}k−1

s=1 fails
to be an m-cover of Z, then

∑k−1
s=1 1/ns must be greater than m. This extends and

improves a confirmed conjecture of Erdös which states that
∑k

s=1 1/ns > 1 for any
1-cover (1) with 1 < n1 < · · · < nk−1 < nk (see [E] and [G]).

Corollary 3. Let (1) be an m-cover of Z, and J a nonempty subset of {1, · · · , k}
with |{s ∈ J− : x ∈ as(ns)}| = m− |J | for some x ∈ Z. Let εs ∈ {1,−1} for those
s ∈ J−. Then ∣∣∣∣{{∑

s∈I

εs

ns

}
: I ⊆ J−

}∣∣∣∣ > N(J).(8)

Proof. This follows immediately from the second part of Theorem 1.

Remark 3. With the help of a local-global result proved in [S2], in 1994 the author
found Corollary 3 in the case |J | = 1 (see Section 3 of [S3]).

Corollary 4. Let (1) be a minimal m-cover of Z, and m1, · · · , mk any positive in-
tegers prime to n1, · · · , nk respectively. Then for every t = 1, · · · , k all the numbers
0, 1/nt, · · · , (nt − 1)/nt lie in the set

{{∑
s∈I

ms

ns
−

∑
s∈J

ms

ns

}
: I, J ⊆ {1, · · · , k} \ {t} &

∑
s∈I

ms

ns
,
∑
s∈J

ms

ns
> m− 1

}
.

(9)

Proof. By part (ii) of Theorem 1 there is an αt ∈ [0, 1) such that{{∑
s∈I

ms

ns

}
: I ⊆ {1, · · · , k} \ {t},

[∑
s∈I

ms

ns

]
> m− 1

}
contains St = {a/nt : 0 6 a < nt, {a} = αt}. As r/nt = (αt + r)/nt − αt/nt for
each r = 0, 1, · · · , nt − 1, the desired result follows.

Remark 4. In [S3] the author was able to prove Corollary 4 with
∑

s∈J ms/ns >
m− 1 in (9) replaced by

∑
s∈J ms/ns > m− 2.

3. Proof of Theorem 1

Let’s recall a key result given by the author in [S2].

Proposition 1. Let A = {αs + βsZ}k
s=1 where α1, · · · , αk are real numbers and

β1, · · · , βk are positive reals. Let m be a positive integer. Then A forms an m-cover
of Z (i.e. |{1 6 s 6 k : (x − αs)/βs ∈ Z}| > m for all x ∈ Z) if and only if∑

I⊆{1,··· ,k}
{∑

s∈I 1/βs}=θ

(−1)|I|
(

[
∑

s∈I 1/βs]
n

)
e2πi

∑
s∈I αs/βs = 0(10)

holds for all θ ∈ [0, 1) and n = 0, 1, · · · , m− 1.
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Lemma 1. Let k, m, n be positive integers with k > m − n > 0. Then (1) forms
an m-cover of Z if and only if for each I ⊆ {1, · · · , k} with |I| = m − n system
AI = {as(ns)}s∈I− forms an n-cover of Z.

Proof. If (1) is an m-cover of Z and I is a subset of {1, · · · , k} with |I| = m − n,
then for any integer x we have

|{s ∈ I− : x ≡ as (mod ns)}| > m− |I| = n;

therefore AI is an n-cover of Z.
Now suppose that AI forms an n-cover of Z for all I ⊆ {1, · · · , k} with |I| =

m − n. Let’s show that A = A∅ forms an m-cover of Z. Assume on the contrary
that for some integer x set J = {1 6 s 6 k : x ≡ as (mod ns)} has cardinality
l < m. Choose a subset I of {1, · · · , k} with cardinality m − n such that either
I ⊆ J or I ⊇ J . Observe that x belongs to less than n members of AI . This
contradiction ends our proof.

Remark 5. Apparently for (1) to be an m-cover of Z it is necessary that k > m.

Proof of part (i) of Theorem 1. It suffices to handle the case m = m(A) > 0.
At first we assume that n1, · · · , nk are all greater than one. Since m 6

∑k
s=1 1/ns

6 k/2, either J or J− has cardinality not less than m.

Case 1. |J−| > m. Among I ⊆ {1, · · · , k} with {∑s∈I ms/ns} = {∑s∈J ms/ns},
we select a J0 with the least cardinality. Apparently |J−

0 | > |J−| > m. Let
I0 = {s1, · · · , sm−1} be a subset of {1, · · · , k} with |I0| = m − 1 and I0 ∩ J0 = ∅.
By Lemma 1 and Remark 5, system {as(ns)}s∈I−0

forms a 1-cover of Z and hence
so does A0 = {as + (ns/ms)Z}s∈I−0

. As J0 ⊆ I−0 , by Proposition 1 or Theo-
rem 2 of [S2] there is a J1 ⊆ I−0 for which J1 6= J0 and {∑s∈J1

ms/ns} =
{∑s∈J0

ms/ns}. According to the choice of J0 we must have J1 6⊆ J0. Choose
t1 ∈ J1 \ J0 and put I1 = {t1, s2, · · · , sm−1}. Observe that I1 ∩ J0 = ∅. Since
A1 = {as+(ns/ms)Z}s∈I−1

forms a 1-cover of Z, there exists a J2 ⊆ I−1 with J2 6= J0

such that {∑s∈J2
ms/ns} = {∑s∈J0

ms/ns}. Choose t2 ∈ J2 \ J0 and put I2 =
{t1, t2, s3, · · · , sm−1}. Then continue this procedure to find J3, t3, I3; · · · ; Jm−1,
tm−1, Im−1; Jm, tm in the same way. Apparently J1, J2, · · · , Jm are all different
from J0. If 1 6 i < j 6 m, then ti ∈ Ji \ Jj because ti ∈ Ij−1 and Jj ∩ Ij−1 = ∅.
So the m + 1 subsets J0, J1, J2, · · · , Jm of {1, · · · , k} are distinct; therefore∣∣∣∣{I ⊆ {1, · · · , k} : I 6= J &

∑
s∈I

ms

ns
−

∑
s∈J

ms

ns
∈ Z

}∣∣∣∣
> |{Ji : 0 6 i 6 m & Ji 6= J}| > m.

Case 2. |J | > m, i.e. |(J−)−| > m. It follows from the above that∣∣∣∣{I ⊆ {1, · · · , k} : I 6= J− &
∑
s∈I

ms

ns
−

∑
s∈J−

ms

ns
∈ Z

}∣∣∣∣ > m.
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Thus ∣∣∣∣{I ′ ⊆ {1, · · · , k} : I ′ 6= J &
∑
s∈I′

ms

ns
−

∑
s∈J

ms

ns
∈ Z

}∣∣∣∣
=

∣∣∣∣{I− : I ⊆ {1, · · · , k}, I− 6= J &
∑

s∈I−

ms

ns
−

∑
s∈J

ms

ns
∈ Z

}∣∣∣∣
=

∣∣∣∣{I ⊆ {1, · · · , k} : I 6= J− &
∑
s∈I

ms

ns
−

∑
s∈J−

ms

ns
∈ Z

}∣∣∣∣ > m.

So far we have proven (4) in both cases.
Next let’s consider the situation in which K = {1 6 s 6 k : ns = 1} is nonempty.

If |K| < m, then {as(ns)}s∈K− forms an m − |K|-cover of Z with all the moduli
greater than one; hence by the above∣∣∣∣{I ⊆ K− :

∑
s∈I

ms

ns
−

∑
s∈J\K

ms

ns
∈ Z

}∣∣∣∣ > m− |K|+ 1.

Therefore∣∣∣∣{I ⊆ {1, · · · , k} :
∑
s∈I

ms

ns
−

∑
s∈J

ms

ns
∈ Z

}∣∣∣∣
=

∣∣∣∣{I ∪ I ′ : I ⊆ K, I ′ ⊆ K− &
∑
s∈I′

ms

ns
−

∑
s∈J\K

ms

ns
∈ Z

}∣∣∣∣
>

∣∣∣∣{I ∪ I ′ : I ⊆ K, |I| 6 1, I ′ ⊆ K− &
∑
s∈I′

ms

ns
−

∑
s∈J\K

ms

ns
∈ Z

}∣∣∣∣
>|K|+

∣∣∣∣{I ′ ⊆ K− :
∑
s∈I′

ms

ns
−

∑
s∈J\K

ms

ns
∈ Z

}∣∣∣∣
>|K|+ max{m− |K|+ 1, 1} > m + 1.

This completes the proof.

Lemma 2. Let (1) be a system of arithmetic sequences, and J a nonempty subset
of {1, · · · , k} with |J | 6 m(A) and

⋂
s∈J as(ns) 6= ∅. For each s ∈ J− let ms be a

positive integer. Let 0 6 a < N(J) and

C(a) =
∑

I⊆J−

{∑
s∈I

ms
ns
}= a

N(J)

(−1)|I|
(

[
∑

s∈I
ms

ns
]

m(A)− |J |
)

e2πi
∑

s∈I
ms
ns

(as−aJ )(11)

where aJ is the unique integer in
⋂

s∈J as(ns) with 0 6 aJ < N(J). Then C(a) =
C({a}).

Proof. Apparently it suffices to show C(a) = C(a− 1) providing a > 1.
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Let m = m(A). Observe that the sequences as + (ns/ms)Z (s ∈ J−) together
with aJ + N(J)Z form an m− |J |+ 1-cover of Z. In view of Proposition 1,∑

I⊆J−

{∑
s∈I

ms
ns
}= a

N(J)

(−1)|I|
(

[
∑

s∈I
ms

ns
]

m− |J |
)

e2πi
∑

s∈I
asms

ns

+
∑

I⊆J−

{∑
s∈I

ms
ns

+ 1
N(J)}= a

N(J)

(−1)|I|+1

(
[
∑

s∈I
ms

ns
+ 1

N(J) ]

m− |J |

)
e2πi(

∑
s∈I

asms
ns

+
aJ

N(J) )

vanishes. So

e2πiaaJ/N(J)C(a)

=
∑

I⊆J−

{∑
s∈I

ms
ns
}= a

N(J)

(−1)|I|
(

[
∑

s∈I
ms

ns
]

m− |J |
)

e2πi
∑

s∈I
asms

ns

=
∑

I⊆J−

{∑
s∈I

ms
ns
}= a−1

N(J)

(−1)|I|
(

[[
∑

s∈I
ms

ns
] + a

N(J) ]

m− |J |

)
e2πi(

∑
s∈I

asms
ns

+
aJ

N(J) )

=e2πiaJ/N(J)
∑

I⊆J−

{∑
s∈I

ms
ns
}= a−1

N(J)

(−1)|I|
(

[
∑

s∈I
ms

ns
]

m− |J |
)

e2πi
∑

s∈I
asms

ns

=e2πiaJ/N(J)e2πi(a−1)aJ/N(J)C(a− 1) = e2πiaaJ/N(J)C(a− 1).

Therefore C(a) = C(a− 1). We are done.

Remark 6. If we replace m(A)−|J | in (11) by a smaller nonnegative integer n, then
the new C(a) will equal zero by Proposition 1, because system {as+(ns/ms)Z}s∈J−

forms an m(A)− |J |-cover of Z.

Proof of part (ii) of Theorem 1. Since |{s ∈ J− : x ∈ as(ns)}| = m(A) − |J | for
some integer x and (ms, ns) = 1 for all s ∈ J−, system {as + (ns/ms)Z}s∈J− fails
to form an m(A)− |J |+ 1-cover of Z as well as {as(ns)}s∈J− . As x ∈ ⋂

s∈J as(ns),
there is a unique integer aJ with 0 6 aJ < N(J) such that aJ ≡ as (mod ns) for
all s ∈ J . By Proposition 1 and Remark 6 there exists a θ ∈ [0, 1) such that

C(N(J)θ)e2πiaJ θ =
∑

I⊆J−

{∑
s∈I

ms
ns
}=θ

(−1)|I|
(

[
∑

s∈I
ms

ns
]

m(A)− |J |
)

e2πi
∑

s∈I
asms

ns 6= 0.

Put α = {N(J)θ}. If 0 6 a < N(J) and {a} = α, then a −N(J)θ ∈ Z and hence
C(a) = C(N(J)θ) 6= 0 by Lemma 2; therefore {∑s∈I

ms

ns
} = a

N(J) for some I ⊆ J−

with [
∑

s∈I
ms

ns
] > m(A)− |J |. This concludes the proof.

Acknowledgement

The author is indebted to the referee for his comments.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1300 ZHI-WEI SUN

References

[CV] R. B. Crittenden and C. L. Vanden Eynden, Any n arithmetic progressions covering the first
2n integers cover all integers, Proc. Amer. Math. Soc. 24 (1970), 475–481. MR 41:3365

[E] P.Erdös, Problems and results in number theory, in: H. Halberstam and C. Holley, eds.,
Recent Progress in Analytic Number Theory, vol. 1, Academic Press, New York, 1981,
pp. 1–13. MR 84j:10001

[G] R. K. Guy, Unsolved Problems in Number Theorey (2nd, ed.), Springer-Verlag, New York,
1994, pp. 251–256. MR 96e:11002

[S1] Z. W. Sun, On exactly m times covers, Israel J. Math. 77 (1992), 345–348. MR 93k:11007
[S2] Z. W. Sun, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109–129.

MR 96k:11013
[S3] Z. W. Sun, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348

(1996), 4279–4320. MR 97c:11011

[S4] Z. W. Sun, Exact m-covers and the linear form
∑k

s=1 xs/ns, Acta Arith. 81 (1997), 175–
198. CMP 97:14

[Z] M. Z. Zhang, A note on covering systems of residue classes, J. Sichuan Univ. (Nat. Sci.
Ed.) 26 (1989), Special Issue, 185–188. MR 92c:11003

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic

of China

E-mail address: zwsun@netra.nju.edu.cn

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


