On coverings of algebraic varieties

By Makoto IshidA

(Received Dec. 9, 1960)

Let U and V be algebraic varieties, and $f: U \rightarrow V$ a Galois covering of degree n, defined over a field k; let A and A_{0} be Albanese varieties attached to U and V respectively. Then, in the preceding paper [3], we have proved, among several other results, the following two statements:

1) Suppose that V is embedded in some projective space. Let C be a generic hyperplane section curve on V over k and $W=f^{-1}(C)$ the inverse image of C on U; let J and J_{0} be Jacobian varieties attached to (the normalization of) W and C respectively. Then the curve W generates A and we have the inequality

$$
\begin{equation*}
\operatorname{dim} J-\operatorname{dim} A \geqq \operatorname{dim} J_{0}-\operatorname{dim} A_{0} . \tag{*}
\end{equation*}
$$

2) Suppose that U and V are complete and non-singular. Then, under the assumption that the degree n is prime to the characteristic of the universal domain, the equality $\operatorname{dim} \mathfrak{D}_{0}(U)=\operatorname{dim} \mathfrak{D}_{0}(A)$ implies the equality dim $\mathfrak{D}_{0}(V)=\operatorname{dim} \mathfrak{D}_{0}\left(A_{0}\right) .{ }^{1)}$

In the present paper, we shall generalize these results to an arbitrary (i. e. not necessarily Galois) covering $f: U \rightarrow V$. Moreover, the result 2) will be replaced by a better one, i.e. the inequality

$$
\begin{equation*}
\operatorname{dim} \mathfrak{D}_{0}(U)-\operatorname{dim} \mathfrak{D}_{0}(A) \geqq \operatorname{dim} \mathfrak{D}_{0}(V)-\operatorname{dim} \mathfrak{D}_{0}\left(A_{0}\right) . \tag{**}
\end{equation*}
$$

Here we note that the numbers on the both sides of (*) and (**) are nonnegative (cf. Lang [4] and Igusa [1]) and that the assumption on the degree n in (**) is essential as easily seen in Igusa [2]. It seems to be worth noting that the inequalities ($*$) and ($* *$) may be rewritten in the following forms:
$\operatorname{dim} J-\operatorname{dim} J_{0} \geqq \operatorname{dim} A-\operatorname{dim} A_{0}$.
(**) ${ }^{\prime}$
$\operatorname{dim} \mathfrak{D}_{0}(U)-\operatorname{dim} \mathfrak{D}_{0}(V) \geqq \operatorname{dim} \mathfrak{D}_{0}(A)-\operatorname{dim} \mathfrak{D}_{0}\left(A_{0}\right)$.
The numbers on the both sides of $(*)^{\prime}$ and ($\left.* *\right)^{\prime}$ are also non-negative. As in [3], using the formula of Hurwitz on the genera of curves, we can deduce from (*)' an estimation of the irregularity of the covering variety U of V. In addition to these two inequalities, we shall prove, for this arbitrary covering $f: U \rightarrow V$, some analogous results to the main theorems in [3].

1) For a complete, non-singular variety W, we donote by $\mathfrak{D}_{0}(W)$ the space of the linear differential forms of the first kind on W.

1. Preliminaries.

Let $f: U \rightarrow V$ be a covering of degree n, defined over an algebraically closed field k. Then the function field $k(U)$ of U over k may be considered as a separable extension over $k(V)$ of degree n. Let K^{*} be the smallest Galois extension over $k(V)$ containing $k(U)$, which is clearly a regular extension over k. We denote by G and H the Galois groups of $K^{*} / k(V)$ and $K^{*} / k(U)$ respectively. Now let U^{*} be the normalization of V in K^{*}. Then we have the Galois coverings

$$
f^{*}: U^{*} \rightarrow V \quad \text { and } \quad f^{\prime}: U^{*} \rightarrow U
$$

defined over k, and we have

$$
\begin{equation*}
f^{*}=f \circ f^{\prime} \tag{1}
\end{equation*}
$$

We denote also by the same letters G and H the Galois groups of these coverings respectively, which consist of everywhere biregular, birational transformations T_{σ}^{*} of U^{*} into itself defined over k (cf. [3]). We set

$$
\begin{gathered}
n^{\prime}=\left[U^{*}: U\right]=(H: 1), \\
n^{*}=n^{\prime} n=\left[U^{*}: V\right]=(G: 1)
\end{gathered}
$$

and decompose G into the cosets of H as follows:

$$
G=\sum_{i=1}^{n} H T_{\rho_{i}}^{*}
$$

Now we list here some results in [3], which we shall need in the following arguments, without proof. Let A^{*} be an Albanese variety attached to U^{*} and α^{*} a canonical mapping of U^{*} into A^{*}, both defined over k, such that there exists a simple point p^{*} on U^{*} with $\alpha^{*}\left(p^{*}\right)=0$. Then each element T_{σ}^{*} of G determines an automorphism η_{σ}^{*} of A^{*} and a constant point a_{σ}^{*} of A^{*}, both rational over k, such that

$$
\begin{equation*}
\alpha^{*} \circ T_{\sigma}^{*}\left(u^{*}\right)=\eta_{\sigma}^{*} \circ \alpha^{*}\left(u^{*}\right)+a_{\sigma}^{*}, \tag{2}
\end{equation*}
$$

where u^{*} is a generic point of U^{*} over k. The mapping $T_{\sigma}^{*} \rightarrow \eta_{\sigma}^{*}$ is a group homomorphism.

The main theorem in [3] asserts that there exist Albanese varieties A and A_{0} attached to U and V respectively, defined over k, which are quotient abelian varieties of A^{*} and have the following properties: Let μ^{\prime} and μ^{*} be the canonical separable homomorphisms of A^{*} onto A and A_{0} respectively. Then canonical mappings α and α_{0} of U and V into A and A_{0} may be taken to satisfy the relations
(3)

$$
\begin{aligned}
& \alpha \circ f^{\prime}=\mu^{\prime} \circ \alpha^{*} \\
& \alpha_{0} \circ f^{*}=\mu^{*} \circ \alpha^{*}
\end{aligned} \quad \text { on } U^{*}
$$

respectively. We set $C_{\sigma}^{*}=\left(\eta_{\sigma}^{*}-\delta_{A^{*}}\right)\left(A^{*}\right)^{2)}$ and let C^{*} be the abelian subvariety of A^{*}, generated by all C_{σ}^{*} for all T_{σ}^{*} in G. Then the kernel C_{σ}^{*} of μ^{*} is the algebraic subgroup of A^{*} defined over k, which is the union of C^{*} and all its translations by a_{σ}^{*} for all T_{σ}^{*} in G. The kernel C_{H}^{*} of μ^{\prime} is defined for H, in a simillar way as C_{G}^{*} for G. Since C_{G}^{*} contains C_{H}^{*} and μ^{\prime} is canonical, there exists a homomorphism μ of A onto A_{0}, defined over k, such that we have

$$
\begin{equation*}
\mu^{*}=\mu \circ \mu^{\prime} \quad \text { on } A^{*} . \tag{4}
\end{equation*}
$$

Since μ^{*} is separable and μ^{\prime} is surjective, the homomorphism μ is also separable. Moreover, by (1), (3) and (4), we have

$$
\alpha_{0} \circ f \circ f^{\prime}=\mu \circ \mu^{\prime} \circ \alpha^{*}=\mu \circ \alpha \circ f^{\prime}
$$

and so, as f^{\prime} is surjective, we have

$$
\begin{equation*}
\alpha_{0} \circ f=\mu \circ \alpha \quad \text { on } U . \tag{5}
\end{equation*}
$$

Then it is easily verified that the abelian variety $A_{0}=A^{*} / C_{G}^{*}$ is also the quotient abelian variety of A with respect to the algebraic subgroup $\mu^{\prime}\left(C_{G}^{*}\right)$ and the homomorphism μ defined in (4) is the canonical separable homomorphism of A onto A_{0} (cf. Rosenlicht [5]). Moreover, we have seen that a canonical mapping α_{0} of V into A_{0} may be taken to satisfy (5).

The following formulas will be used in the next section.

$$
\begin{align*}
& \mu^{*} \circ \eta_{\sigma_{2}}^{*}=\mu^{*} \text { on } A^{*}, \quad \mu^{*}\left(a_{\sigma}^{*}\right)=0 \text { for all } T_{\sigma}^{*} \text { in } G . \\
& \mu^{\prime} \circ \eta_{\tau}^{*}=\mu^{\prime} \text { on } A^{*}, \mu^{\prime}\left(a_{\tau}^{*}\right)=0 \text { for all } T_{\tau}^{*} \text { in } H . \tag{6}\\
& \eta_{\sigma_{2}}^{*}\left(a_{\sigma_{2}}^{*}\right)=a_{\sigma_{2} \sigma_{2}}^{*}-a_{\sigma_{2}}^{*} \text { for all } T_{\sigma_{1},}^{*}, T_{\sigma_{2}}^{*} \text { in } G .
\end{align*}
$$

2. The endomorphism ρ.

First we prove the existence of an endomorphism of A, which plays an important role in the proof of the inequality (**).

Lemma. There exists an endomorphism ρ of A, defined over k, such that we have
(8)

$$
\rho \circ \mu^{\prime}=\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*} \quad \text { on } A^{*} .
$$

Proof. Since μ^{\prime} is the canonical homomorphism, we have only to prove that the kernel of the homomorphism $\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}$ of A^{*} into A contains the kernel C_{H}^{*} of μ^{\prime}. First we fix an element T_{τ}^{*} in H. Then, for $i=1, \cdots, n$, each element $T_{\rho_{i}}^{*} \circ T_{\tau}^{*}$ belongs to one and only one coset $H T_{\rho_{j}}^{*}$. Clearly the mapping $i \rightarrow j=s(i)$ defines a permutation of the set $\{1, \cdots, n\}$. Hence we can write

[^0]\[

$$
\begin{gathered}
\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*} \circ\left(\eta_{\tau}^{*}-\delta_{A *}\right)=\mu^{\prime} \circ \sum_{i}\left(\eta_{\rho_{i} \tau}^{*}-\eta_{\rho_{i}}^{*}\right) \\
=\mu^{\prime} \circ \sum_{i}\left(\eta_{\tau_{i}}^{*} \eta_{\rho_{s(i)}}^{*}-\eta_{\rho_{i}}^{*}\right)
\end{gathered}
$$
\]

with some $T_{\tau_{i}}^{*}$ in H and so, by (6),

$$
=\mu^{\prime} \circ \sum_{i}\left(\eta_{\rho_{s(i)}}^{*}-\eta_{\rho_{i}}^{*}\right)=0
$$

i. e. we have

$$
\left(\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right)\left(\eta_{\tau}^{*}-\delta_{A *}\right)\left(A^{*}\right)=0
$$

On the other hand, by (7), we have

$$
\left(\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right)\left(a_{\tau}^{*}\right)=\mu^{\prime}\left(\sum_{i}\left(a_{\rho_{i} \tau}^{*}-a_{\rho_{i}}^{*}\right)\right)=\mu^{\prime}\left(\sum_{i}\left(a_{\tau_{i} \rho_{s}(i)}^{*}-a_{\rho_{i}}^{*}\right)\right.
$$

with some $T_{\tau_{i}}^{*}$ in H. Then, also by (7) and (6), we have

$$
\mu^{\prime}\left(a_{\tau_{i} \rho_{s(i)}}^{*}\right)=\mu^{\prime}\left(a_{\tau_{i}}^{*}+\eta_{\tau_{i}}^{*}\left(a_{\rho_{s}(i)}^{*}\right)\right)=\mu^{\prime}\left(a_{\rho_{s}(i)}^{*}\right)
$$

and so

$$
\left(\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right)\left(a_{\tau}^{*}\right)=\mu^{\prime}\left(\sum_{i}\left(a_{\rho_{s(i)}}^{*}-a_{\rho_{i}}^{*}\right)\right)=0
$$

Therefore we have $\left(\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right)\left(C_{H}^{*}\right)=0$.
The endomorphism ρ satisfies the relation

$$
\begin{equation*}
\mu \circ \rho=n \mu \quad \text { on } A \tag{9}
\end{equation*}
$$

In fact, by (8), (4) and (6), we have

$$
\mu \circ \rho \circ \mu^{\prime}=\mu \circ \mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}=\mu^{*} \circ \sum_{i} \eta_{\rho_{i}}^{*}=n \mu^{*}=n \mu \circ \mu^{\prime} .
$$

Then, as μ^{\prime} is surjective, we have (9).
Now we prove that the abelian subvariety $\rho(A)$ of A is isogenous to A_{0}, an Albanese variety attached to V. We have, by (6), $n^{\prime} \mu^{\prime}=\mu^{\prime} \circ \sum_{H} \eta_{\tau}^{* 3)}$ and so, by (8),

$$
n^{\prime} \rho \circ \mu^{\prime}=n^{\prime} \mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}=\mu^{\prime} \circ \sum_{H} \eta_{t}^{*} \circ \sum_{i} \eta_{\rho_{i}}^{*}=\mu^{\prime} \circ \sum_{G} \eta_{\sigma}^{*} .
$$

Since the intersection $C_{G}^{*} \cap\left(\sum_{G} \eta_{\sigma}^{*}\right)\left(A^{*}\right)$ is a finite subgroup of A^{*} (cf. [3]) and the kernel C_{H}^{*} of μ^{\prime} is contained in C_{G}^{*}, μ^{\prime} induces a homomorphism of $\left(\sum_{G} \eta_{\sigma}^{*}\right)\left(A^{*}\right)$ onto $n^{\prime} \rho\left(\mu^{\prime}\left(A^{*}\right)\right)$ with a finite kernel. As we have $\mu^{\prime}\left(A^{*}\right)=A, \rho(A)$ is isogenous to $\left(\sum_{G} n_{\sigma}^{*}\right)\left(A^{*}\right)$, which is isogenous to A_{0} (cf. Th. 2 of [3]).

[^1]Next we assume that the degree n is prime to the characteristic of the universal domain. Let a be any point of the intersection $\rho(A) \cap\left(\rho-n \delta_{A}\right)(A)$. Then we have $a=\rho\left(a^{\prime}\right)=\left(\rho-n \delta_{A}\right)\left(a^{\prime \prime}\right)$ with some $a^{\prime}, a^{\prime \prime}$ in A. Operating μ on this relation, we have, by $(9), \mu\left(n a^{\prime}\right)=n \mu\left(a^{\prime}\right)=0$, i. e. $n a^{\prime}$ belongs to the kernel of μ. So $n a=\rho\left(n a^{\prime}\right)$ belongs to $\left(\rho \circ \mu^{\prime}\right)\left(C_{G}^{*}\right)$, which is also written as $\left(\mu^{\prime} \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right)$ $\left(C_{G}^{*}\right)$ by (8). However, by the similar argument as in the proof of Lemma, we can show that $\left(\mu^{\prime} \circ \sum_{i} \eta_{\rho_{i}}^{*}\right)\left(C_{G}^{*}\right)=0$, because we have not used there the fact that T_{τ}^{*} is in H. Hence we have $n a=0$, i.e. $\rho(A) \cap\left(\rho-n \delta_{A}\right)(A)$ is a finite subgroup of A. Since, clearly, $\rho(A)$ and $\left(\rho-n \delta_{A}\right)(A)$ generate A, A is isogenous to the direct product $\rho(A) \times\left(\rho-n \delta_{A}\right)(A)$. Let x be a generic point of A over k. Then the mapping $\varphi(x)=\rho(x) \times\left(\rho-n \delta_{A}\right)(x)$ defines an isogeny of A onto $\rho(A) \times\left(\rho-n \delta_{A}\right)(A)$ and, conversely, the mapping $\varphi^{\prime}\left(\rho(x) \times\left(\rho-n \delta_{A}\right)(x)\right)=\rho(x)-$ $\left(\rho-n \delta_{A}\right)(x)=n x$ defines also an isogeny of $\rho(A) \times\left(\rho-n \delta_{A}\right)(A)$ onto A. Since we have $\varphi^{\prime} \circ \varphi=n \delta_{A}$ and n is assumed to be prime to the characteristic of the universal domain, φ and φ^{\prime} are separable. Let $\tilde{\mu}$ be the canonical separable homomorphism of $\rho(A) \times\left(\rho-n \delta_{A}\right)(A)$ onto $\rho(A)$ with the kernel $0 \times\left(\rho-n \delta_{A}\right)(A)$ (cf. Rosenlicht [5]). Then, as we have $\left(\rho \circ \mu^{\prime}\right)\left(C_{G}^{*}\right)=0$ as stated above, $\varphi\left(\mu^{\prime}\right.$ $\left.\left(C_{G}^{*}\right)\right)$ is contained in $0 \times\left(\rho-n \delta_{A}\right)(A)$ and so we have $(\tilde{\mu} \circ \varphi)\left(\mu^{\prime}\left(C_{G}^{*}\right)\right)=0$. Since μ is canonical, there exists an isogeny ψ of A_{0} onto $\rho(A)$ such that $\tilde{\mu} \circ \varphi=$ $\psi \circ \mu$. Since $\tilde{\mu}$ and φ are separable and μ is surjective, ψ is also separable. Conversely we have, by $(9),\left(\mu \circ \varphi^{\prime}\right)\left(0 \times\left(\rho-n \delta_{A}\right)(A)\right)=\mu\left(\left(\rho-n \delta_{A}\right)(A)\right)=0$. Hence, by the similar arguments, we can prove the existence of a separable isogeny of $\rho(A)$ onto A_{0}.

Then, together with the result in $\mathbf{1}$, we have the following
Theorem 1. Let the notations be as explained above. Then the quotient abelian variety $A_{0}=A / \mu^{\prime}\left(C_{G}^{*}\right)$ is an Albanese variety attached to V and a canonical mapping α_{0} of V into A_{0} may be taken to satisfy the relation: $\alpha_{0} \circ f=\mu \circ \alpha$, where μ is the canonical homomorphism of A onto A_{0}. On the other hand, $\rho(A)$ is isogenous to A_{0}, where ρ is the endomorphism of A defined in (8). Moreover, if the degree n is prime to the characteristic of the universal domain, then there exist separable isogenies between $\rho(A)$ and A_{0}.

3. The inequality (*).

In this section, we suppose that V is embedded in some projective space. Let C be a generic hyperplane section curve on V over k; let $W=f^{-1}(C)$ and $W^{*}=f^{*-1}(C)$ be the inverse images of C on U and U^{*} respectively, which are irreducible curves. The curves C, W and W^{*} are defined over a regular extension K of k; let \bar{K} be the algebraic closure of K. Let W^{\prime} and $W^{* \prime}$ be
complete, non-singular curves, which are birationally equivalent to W and W^{*} over \bar{K} respectively. Then, in a natural way, we can define the Galois coverings

$$
g^{*}: W^{* \prime} \rightarrow C \text { and } g^{\prime}: W^{* \prime} \rightarrow W^{\prime},
$$

defined over \bar{K} and with the Galois groups isomorphic to G and H respectively (cf. [3]).

Let J^{*} be a Jacobian variety attached to $W^{* \prime}$. Then, by Lang [4] as seen in [3], $W^{* \prime}$ generates A^{*} and so there exists a homomorphism λ^{*} of J^{*} onto A^{*}. For each element T_{σ}^{*} in G, there correspond the automorphisms ξ_{σ}^{*} and η_{σ}^{*} of J^{*} and A^{*}, respectively, by the relations of type (2). These automorphisms satisfy the following relations:

$$
\begin{gather*}
\lambda^{*} \circ \xi_{\sigma}^{*}=\eta_{\sigma}^{*} \circ \lambda^{*} \quad \text { on } J^{*} . \tag{10}\\
\left(\sum_{H} \xi_{\tau}^{*}\right)\left(J^{*}\right) \sim J, \quad\left(\sum_{G} \xi_{\sigma}^{*}\right)\left(J^{*}\right) \sim J_{0} \\
\left.\left(\sum_{H} \eta_{t}^{*}\right)\left(A^{*}\right) \sim A, \quad\left(\sum_{G} \eta_{\sigma}^{*}\right)\left(A^{*}\right) \sim A_{0}\right)^{4)} \tag{11}
\end{gather*}
$$

where J and J_{0} are Jacobian varieties attached to W^{\prime} and C respectively (cf. [3]]. Then, by (10), λ^{*} induces, in a natural way, the homomorphisms λ of $\left(\sum_{H} \xi_{\tau}^{*}\right)\left(J^{*}\right)$ onto $\left(\sum_{H} \eta_{\tau}^{*}\right)\left(A^{*}\right)$ and λ_{0} of $\left(\sum_{G} \xi_{\sigma}^{*}\right)\left(J^{*}\right)$ onto $\left(\sum_{G} \eta_{\sigma}^{*}\right)\left(A^{*}\right)$. Since we have

$$
\sum_{G} \xi_{\sigma}^{*}=\left(\sum_{H} \xi_{t}^{*}\right)\left(\sum_{i=1}^{n} \xi_{p_{i}}^{*}\right),
$$

$\left(\sum_{G} \xi_{\sigma}^{*}\right)\left(J^{*}\right)$ is contained in $\left(\sum_{H} \xi_{\tau}^{*}\right)\left(J^{*}\right)$ and so the kernel of λ_{0} is contained in that of λ. On the other hand, as λ and λ_{0} are surjective, the dimensions of the kernels of λ and λ_{0} are equal to $\operatorname{dim} J-\operatorname{dim} A$ and $\operatorname{dim} J_{0}-\operatorname{dim} A_{0}$, by (11), respectively. Hence we have the following

Theorem 2. Let the notations be as explained above. Then we have the inequality

$$
\operatorname{dim} J-\operatorname{dim} J_{0} \geqq \operatorname{dim} A-\operatorname{dim} A_{0}
$$

Let Z be a k-closed algebraic subset of V, containing all the points on V which ramify in the covering $f: U \rightarrow V$. Then, since W^{\prime} is unramified over every point of $C-C \cap Z$ (cf. [3]), we have easily the following corollary by Theorem 2 and the formula of Hurwitz.

Corollary. If the dimension of Z is less than $\operatorname{dim} V-1$, then we have the inequality

$$
\operatorname{dim} A \leqq \operatorname{dim} A_{0}+(n-1)\left(\operatorname{dim} J_{0}-1\right)
$$

Here we note that the dimension of J_{0} does not depend on the choice of

[^2]the generic curve C but depends only on V.
Remark. By Theorem 2, there are the following two possibilities as for the relations between the numbers $\operatorname{dim} J-\operatorname{dim} A$ and $\operatorname{dim} J_{0}-\operatorname{dim} A_{0}$:
(a)
$$
\operatorname{dim} J-\operatorname{dim} A=\operatorname{dim} J_{0}-\operatorname{dim} A_{0}
$$
(b)
$$
\operatorname{dim} J-\operatorname{dim} A>\operatorname{dim} J_{0}-\operatorname{dim} A_{0}
$$

We can give examples of the above two cases respectively.
The example of (a): Consider the case where U and V are algebraic curves. Or, consider an unramified covering of a normal algebraic surface of degree 3 in the projective space of dimension 3 (cf. $\S 4$ of [3]).

The example of (b): Let X be a normal variety with the irregularity larger than 1. Let s and t be rational integers larger than 1 and let $U=$ $X(s)(t)$ and $V=X(s t)$ be the t-fold symmetric product of the s-fold symmetric product of X and the st-fold symmetric product of X respectively. Then, taking their normalizations, we have a covering $f: U \rightarrow V$ of degree larger than 1. Using the above notations, we have clearly $\operatorname{dim} A=\operatorname{dim} A_{0}$. On the other hand, the genus of C is not less than the irregularity of V and so it is larger than 1. Then, by the formula of Hurwitz, any covering curve of C has the genus larger than that of C, i. e. we have $\operatorname{dim} J>\operatorname{dim} J_{0}$.

4. The inequality (**).

In this section, we suppose that U and V are complete and non-singular. (But the non-singularity of U^{*} is not necessary.) Let θ be an element of $\mathfrak{D}_{0}(A)$ such that there exists an element ω_{0} of $\mathfrak{D}_{0}(V)$ and $\delta \alpha(\theta)=\delta f\left(\omega_{0}\right)$. Then we have

$$
\begin{equation*}
\delta \rho(\theta)=n \theta \tag{12}
\end{equation*}
$$

In fact, by (3), (1), (2) and the definition of f^{*}, we have

$$
\begin{aligned}
\delta \alpha^{*} \circ \delta \mu^{\prime}(\theta) & =\delta f^{\prime} \circ \delta \alpha(\theta)=\delta f^{\prime} \circ \delta f\left(\omega_{0}\right)=\delta f^{*}\left(\omega_{0}\right)=\delta T_{\rho_{i}}^{*} \circ \delta f^{*}\left(\omega_{0}\right) \\
& =\delta T_{\rho_{i}}^{*} \circ \delta \alpha^{*} \circ \delta \mu^{\prime}(\theta)=\delta \alpha^{*} \circ \delta \eta_{\rho_{i}}^{*} \circ \delta \mu^{\prime}(\theta)
\end{aligned}
$$

Here we used the fact that, as $\delta \mu^{\prime}(\theta)$ is of the first kind on A^{*}, it is invariant by the translation of $a_{\rho_{c}}^{*}$. Since $\delta \alpha^{*}$ is injective by Igusa [1], we have

$$
\delta \mu^{\prime}(\theta)=\delta \eta_{\rho_{i}}^{*} \circ \delta \mu^{\prime}(\theta)
$$

and so, by (8),

$$
n \delta \mu^{\prime}(\theta)=\delta\left(\sum_{i=1}^{n} \eta_{\rho_{i}}^{*}\right) \circ \delta \mu^{\prime}(\theta)=\delta \mu^{\prime} \circ \delta \rho(\theta)
$$

Since μ^{\prime} is separable and surjective, $\delta \mu^{\prime}$ is injective (cf. Igusa [1]) and so we have (12).

Now we assume that the degree n is prime to the characteristic of the
universal domain. Then we have

$$
\begin{equation*}
\delta \mu\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)=\delta \rho\left(\mathfrak{D}_{0}(A)\right) . \tag{13}
\end{equation*}
$$

In fact, by (9) and the assumption on n, we have

$$
\delta \mu\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)=\delta \rho \circ \delta \mu\left(\mathfrak{D}_{0}\left(A_{0}\right)\right) \subset \delta \rho\left(\mathfrak{D}_{0}(A)\right) .
$$

Moreover, as μ is separable and surjective, $\delta \mu$ is injective and so we have

$$
\operatorname{dim} \delta \mu\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)=\operatorname{dim} \mathfrak{D}_{0}\left(A_{0}\right)=\operatorname{dim} A_{0},
$$

which is equal to $\operatorname{dim} \rho(A)$ by Theorem 1. Now we consider the endomorphism ρ of A as a homomorphism ρ^{\prime} of A onto another abelian varieiy $\rho(A)$. Denoting by c the injection of $\rho(A)$ into A, we have $1 \circ \rho^{\prime}=\rho$ and so $\delta \rho=$ $\delta \rho^{\prime} \circ \delta \delta$. Then we have

$$
\delta \rho\left(\mathfrak{D}_{0}(A)\right)=\delta \rho^{\prime} \circ \delta \iota\left(\mathfrak{D}_{0}(A)\right) \subset \delta \rho^{\prime}\left(\mathfrak{D}_{0}(\rho(A))\right)
$$

and so

$$
\operatorname{dim} \delta \rho\left(\mathfrak{D}_{0}(A)\right) \leqq \operatorname{dim} \delta \rho^{\prime}\left(\mathfrak{D}_{0}(\rho(A))\right) \leqq \operatorname{dim} \mathfrak{D}_{0}(\rho(A))=\operatorname{dim} \rho(A)=\operatorname{dim} A_{0} .
$$

Therefore, the linear space $\delta \rho\left(\mathscr{D}_{0}(A)\right)$ of dimension $\leqq \operatorname{dim} A_{0}$ contains the subspace $\delta \mu\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)$ of dimension $=\operatorname{dim} A_{0}$ and so we must have (13).

Theorem 3. We assume that the degree n is prime to the characteristic of the universal domain. If, for an element ω_{0} in $\mathfrak{D}_{0}(V), \delta f\left(\omega_{0}\right)$ belongs to $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)$, then there exists an element θ_{0} of $\mathfrak{D}_{0}\left(A_{0}\right)$ such that we have

$$
\omega_{0}=\delta \alpha_{0}\left(\theta_{0}\right) .
$$

Proof. Let θ be an element of $\mathfrak{D}_{0}(A)$ such that $\delta f\left(\omega_{0}\right)=\delta \alpha(\theta)$. From the assumption on the degree $n, \frac{1}{n} \cdot \theta$ belongs to $\mathfrak{D}_{0}(A)$, and so, by (12), we have

$$
\delta \rho\left(\frac{1}{n} \cdot \theta\right)=\frac{1}{n} \cdot \delta \rho(\theta)=\frac{1}{n} \cdot n \theta=\theta,
$$

i. e. θ is contained in $\delta \rho\left(\mathfrak{D}_{0}(A)\right)$. Then, by (13), there exists an element θ_{0} of $\mathfrak{D}_{0}\left(A_{0}\right)$ such that we have $\delta \mu\left(\theta_{0}\right)=\theta$. Hence, by (5), we have

$$
\delta f\left(\omega_{0}\right)=\delta \alpha(\theta)=\delta \alpha \circ \delta \mu\left(\theta_{0}\right)=\delta f \circ \delta \alpha_{0}\left(\theta_{0}\right)
$$

Since f is separable and surjective, δf is injective and so the statement of our theorem is proved.

Theorem 3 implies that, if an element ω_{0} of $\mathscr{D}_{0}(V)$ does not belong to the subspace $\delta \alpha_{0}\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)$, then also $\delta f\left(\omega_{0}\right)$ does not belong to the subspace $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)$ of $\mathscr{D}_{0}(U)$. Since $\delta f, \delta \alpha$ and $\delta \alpha_{0}$ are injective, we have the following

Corollary. Under the same assumption on n as in Theorem 3, there holds the inequality

$$
\operatorname{dim} \mathfrak{D}_{0}(U)-\operatorname{dim} \mathfrak{D}_{0}(A) \geqq \operatorname{dim} \mathfrak{D}_{0}(V)-\operatorname{dim} \mathfrak{T}_{0}\left(A_{0}\right) .
$$

Especially, if $\operatorname{dim} \mathfrak{D}_{0}(U)=\operatorname{dim} \mathfrak{D}_{0}(A)$, then we have the equality $\operatorname{dim} \mathfrak{D}_{0}(V)=\operatorname{dim}$ $\mathfrak{D}_{0}\left(A_{0}\right)$.

Department of Mathematics
Tsuda College, Tokyo.

References

[1] J. Igusa, A fundamental inequality in the theory of Picard varieties, Proc. Nat. Acad. Sci. U. S. A., 41 (1955), 317-320.
[2] J. Igusa, On some problems in abstract algebraic geometry, Proc. Nat. Acad. Sci. U.S. A., 41 (1955), 964-967.
[3] M. Ishida, On Galois coverings of algebraic varieties and Albanese varieties attached to them, J. Fac. Sci., Univ. Tokyo, Sec. I, 8 (1960), 577-604.
[4] S. Lang, Abelian varicties, New York, 1959.
[5] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78 (1956), 401-443.

[^0]: 2) For an abelian variety B, we denote by δ_{B} the identity automorphism of B.
[^1]: 3) The signs \sum_{H} and \sum_{G} mean the sums ranged over all the elements of H and G respectively.
[^2]: 4) The $\operatorname{sign} \sim$ means the isogenous relation between abelian varieties.
