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ON CRACKS AND DISLOCATIONS IN SHAFTS UNDER TORSION*
By ALEXANDER WEINSTEIN (University of Maryland)

1. Introduction. Several decades ago W. Arndt [1] showed that the theory of shafts
of revolution under torsion can be reduced to the investigation of axially symmetric
motions of a fictitious incompressible fluid in a space of five dimensions. Let (x, y) be
the meridian plane of the shaft, x being the axis of symmetry. All relevant quantities
are determined by the potential $(#, y) and the stream function ^(x, y) which satisfy
the generalized Stokes-Beltrami equations

y3^ = ¥,, 2/3$„ = . (1.1)

The displacement of a particle is perpendicular to the meridian plane and is given by
the formula v = yi'(x, y). The stresses in the meridian plane are tBx = y$x and re„ = ,
where 6 denotes the polar angle in the plane perpendicular to the z-axis.** Any stream-
line ^ = const, is free from stress and can be taken as the profile of a free surface
bounding the shaft.

By analogy with ordinary hydrodynamics, Arndt developed the method of sources
and sinks in a space of five dimensions using however source distribution only on the
axis of symmetry. Recently the method of sources and sinks has been extended by the
present author to distributions outside of the axis of symmetry [2], [3]. This work was
extended by A. Van Tuyl [4] and by M. A. Sadowsky and E. Sternberg [5], The present
paper gives new application of this theory to problems of cracks and dislocations in a
shaft under torsion. A new and simple correspondence principle will be used connecting
the method of sources and sinks with electrostatic problems in Generalized Axially
Symmetric Potential Theory [6], [7] which will be denoted by the abbreviation GASPT.

2. The correspondence principle. GASPT deals with equations of the form

yv<px(x, y) = ipJx, y), yv<p,(x, y) = -fx(x, y) (2.1)

for all non-negative values of the parameter p. For p = 1, 2, 3, • • • <p represents an axially
symmetric potential in the meridian plane of a space of p + 2 dimensions. The case
p = 0 corresponds to harmonic functions in the plane. In all cases \p is the corresponding
stream function. For clarity's sake we shall sometimes write <p{p} and \p{p\ in place
of <p and ip. We have from (2.1) the following equations

<2-2>

We see that <p and ip satisfy the same equation only in the case p — 0, which corresponds
to the well known fact that in plane hydrodynamics a stream function can be used as
a velocity potential and vice versa. For p ^ 0, we use a fundamental identity [6, p. 351,
(48)], which can be written as follows

*{p} = Cyv+1<p{p + 2}, (2.3)

where C is an arbitrary constant. This identity permits us to obtain from a stream
function ip{p] a certain potential <p{p + 2} and vice versa.

*Received June 7, 1951. This work has been done under the sponsorship of the Office of Naval
Research.

**We have put Lamp's constant n equal to unity.
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3. The method of sources and sinks. In the case of shafts, as well as in any other
cases, solutions of certain problems are obtained by putting, for a constant U,

*{p} = Ux - v{p\, *{?} = U(p + l)-y+1 -i\v}. (3.1)
In the usual cases <p and \p are due to sources distributed in a finite domain. For the
theory of shafts, p is to be taken equal to 3. Our main problem is to determine the lines
SFfp} = constant, the line VJ'{p} = 0 being the line enclosing the singularities. We
assume in the following that this line is closed. By (2.3), we may put \p{p) =
U(p + 1 )~1yv+1<p{p + 2}. Using the notation <p{p + 2} = <p*(x, y), we have (3.1)

= U(p + l)-y+1(l - <p*(x, y)). (3.2)

This shows that to the closed streamline ^{p\ = 0 correspond the level line <p* —
<p{p + 2} = 1. As \{/{p} tends to U(p + 1 )~1yv+1 at infinity, we see from (3.2) that
<p{p + 2} must tend to zero for x2 + y2 —> ». In this way the problem for } is now
reduced by our correspondence principle to the electrostatic problem for <p{p + 2}.

4. The crack problem. A flat interior circular crack perpendicular to the axis of
symmetry of the shaft is defined as a circular disc separating the material. It is assumed
that no stress is acting across the surface of the disc. The definition of the crack adopted
here is the same as that used in another problem by M. A. Sadowsky and E. Sternberg
[8]. Let us note that A. E. Green [9] uses the word crack in a different sense, namely in
order to denote the displacement on the surface of a body due to localized pressure.

Let x = 0, y = 0 be the center of our disc of radius b. By Arndt's theory, the boundary
condition is given by ^{3} = 0 on both sides of the segment x = 0, O^y^b in the
upper half of the meridian plane, ^ being an even function of x. The problem is, by
(3.2), reduced to the determination of the electrostatic potential ^>{5} of a disc of radius b
in a space of seven dimensions. This problem will be now solved by using ellipsoidal
coordinates. Let

£ , _1L ! (4 1)X + X + b2 ~ 1 (4"lj

be a family of confocal ellipses which generate through a rotation about the rc-axis a
family of oblate spheroids X = constant in a space of seven dimensions. The value X = 0
corresponds to the disc. Let us put

= 8f"3x A
du (4.2)

ix (« + b2)3(u)1/2

Then p* satisfies (2.2) for p — 5, vanishes at infinity and takes the constant value one
on the disc. The integral in (4.2) can be expressed in terms of elementary functions,
the result being the formula

. 2 ,(X)1/2 2b (3X + 562)(X)1/2 f
» -;arccot ~h s <x + b>7~- (4-3)

By Sec. 3 we have
^{3} = 4~1Uy4<p* (4.4)

In order to obtain <p j 3} we introduce in the x, ?/-plane elliptic coordinates by the formulae

x = b sinh | cos ij, y = b cosh £ sin y. . (4.5)
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By comparison with (4.1), see that

b2 sinh2 £ = X, b2 cosh2 £ = X + b2 (4.6)

As (4.5) defines a conformal transformation, i.e. a local rotation and uniform dilation
of the coordinate system, we have, in place of (2.1)

yvft = , yP<P, = — it, (4.6)

where by (4.5), y = b cosh £ sin -q.
By (4.3) and (4.4) we have

^{3} = Vb*(fir)-l{Z cosh4 £ arccot (sinh £) — 3 sinh3 £ — 5 sinh £} sin4 ?j. (4.7)

To find <p, we use (4.6) for p = 3, which yields . By an integration we obtain finally

<p{3} = Ubir cosh2 g "I" ̂  S^1 £ arcc°t (sinh £) — 2| cos 77. (4.8)

Obviously <p vanishes for x + y2 00.
The formulae (4.8) and (4.7) together with (3.1), taken for p — 3 give the solution

of the crack problem in elliptic coordinates. The same solution can be also expressed
in terms of x and y. In fact, the quantity

a(x, y) = [x2 +\y - b |2]1/2 + [x2 +\y + b |2]I/2 (4.9)

is a function /(X) of X alone. Putting y = 0 in (4.1) we find X = x2. Therefore on the
ellipse X = constant we have s = s(x, 0) = 2(x2 + b2)W2 = 2(X + b2)l/2. This equation
yields

X = is2(x, y) - b2. (4.10)

This value of X can be substituted in (4.6), (4.7), and (4.8) and gives us explicit formulas
for <p(x, y) and y) in terms of x and y.

The same functions <p and ^ can also be expressed in terms of integrals involving
products of Bessel functions. However, such integrals are less suitable for the discussion.
In fact, these new expressions should be rather considered as new formulae yielding
certain integrals in terms of elementary functions. The corresponding results (also for
an arbitrary value of the parameter p) will be published elsewhere.

5. Discussion of the results in the crack problem. For the discussion, we have to
use the formulae for displacements and stress given in the Introduction, and the formulas
for <I>, ^ <p and \p given in paragraphs 3 and 4. It will suffice to note the following results.
The transverse displacement v(x, y) is given for x = 0 by the formulae

j±£ Uy(b2 - y2)U2, for O^y^b,
. ~3<7T»(0, y) = < d7r (5.1)

( 0, for y > b.
The signs + and — correspond here and in the following to the positive and to the
negative side of the ?/-axis respectively. The stress is zero on the disc, i.e. for x = 0,
0^2/^6 but becomes infinite like (y — b)~1/2 for y > b. The stress tends to infinity
in the same manner for x = 0, y /* b. For large values of x2 + ?/, <p* tends to zero like
(x2 + y2)~b/2. Therefore the formula ^ = 4_1{7?/4(1 — <p*) shows that already for
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moderate values of y, a streamline = constant is essentially parallel to the axis of
symmetry, so that we have a nearly cylindrical beam with a circular crack.

It is clear that the method presented here can be immediately applied to cavities
of the form of oblate spheroids.

6. Dislocations. According to the classical theory of Volterra a surface of dislocation
is a surface of discontinuity for the displacements. The stresses remain continuous
across this surface and the displacements on both sides of a dislocation differ only by a
rigid body motion. In the case of a shaft under torsion we take as the surface of the
dislocation the same circular disc as in the crack problem. The only admissable disloca-
tion is, in this case, a rigid rotation of the negative side of the disc relative to its positive
side. Such a dislocation is readily obtained by taking in (3.1) for <p = {3} the potential
of a uniform magnetic shell in a five dimensional space. By a specialization of a general
formula [7, p. 76, (6.1)] we have

<p = Mtfy-1 [ e~"J1(yt)J2(bt) dt, x ^ 0 (6.1)
J 0

and

4 = -Mb2y2 [ e~x'J2(yt)J2(bt) dt, x ^ 0. (6.2)
Jo

For x 0, we have <p( — x, y) = — <p(x, y), \p(x, y) = 4'(~x> y)- In (6-1) and (6.2) M is
a positive constant and the Jq denote Bessel functions. In view of the results given in
[7] we have the following values for the displacement v in the plane of the disc:

!±My, for y<b
(6.3)

0, for y > b

Moreover we have

lim v(x, y) = Mb{r — /3)ir-1

for a; —> 0 ,y—*b and (b — y)x_1 —> cot /3, where x 3: 0 and 0 ^ (3 5= tt. By a well known
property of uniform magnetic shells which remain valid in any number of dimensions,
the stresses tSx and r0j, remain continuous across the disc. However, they become infinite
in the neighborhood of its rim like (y — b)[x2 + (6 — y)2]1 and x[x2 + (6 — y)2}1
respectively. The connection of the formulae (6.1) and (6.2) with elliptic integrals
analogous to those given in [4] and [5] will be given elsewhere. Further applications of
"generalized electrostatics" are given in [10],

The author wishes to thank Dr. H. F. Weinberger for valuable discussion on the
material of this paper.
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INDUCED MASS WITH FREE BOUNDARIES*
by GARRETT BIRKHOFF (Harvard University)

The concept of induced mass, and some of its properties, are extended to the case
of an incompressible liquid having a free surface. The usual1 treatment of the case of a
non-viscous fluid extending to infinity must be considerably changed to do this.

1. Minimum principle. Let R be a region filled with an incompressible liquid, bounded
in part by a wetted wall W, and in part by a free surface S at constant pressure p0 . The
region R moves with the liquid, and may extend to infinity in some directions.

Suppose the fluid accelerated from rest, by an acceleration of W whose inward normal
component toward the liquid is an arbitrary function /(x) of position. Letting u =
u(x; t) denote liquid velocity and a = du/dt denote acceleration, clearly

Div a = 2d(duk/dt)/dxk = d{I,duk/dxk) / dt = 0, (1)

by incompressibility. Similarly, the Navier-Stokes equations with gravity neglected are2

Dui/Dt = —dp/pdXi + vV2u,- . (2)

Since u = 0 initially, the initial acceleration therefore satisfies at = DuJDl = — dp/pdx(,
or, setting A = (p0 — v)/p,

a = V A, where p = p0 — pA, initially. (3)

Combining (3) with (1), we get
V2A = 0 in R. (4)

The free surface condition is simply

.4=0 on S. (5)

Finally, by continuity, we have

^normal = dA/dn = /(x) On W. (6)

*Received July 16, 1951.
xGiven in [1], Chap. V; in [3]; and in Chap. VI of Lamb's Hydrodynamics.
2Here and below D/Dt is the substantial derivative d/dt + uk d/dxk , while d/d n denotes the inward

normal derivative on the surface of the liquid.


