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Abstract—
Recent extensions to the Internet architecture allow assignment of dif-

ferent levels of drop precedence to IP packets. This paper examines differ-
entiation predictability and implementation complexity in creation of pro-
portional loss-rate (PLR) differentiation between drop precedence levels.
PLR differentiation means that fixed loss-rate ratios between different traf-
fic aggregates are provided independent of traffic loads. To provide such
differentiation, running estimates of loss-rates can be used as feedback to
keep loss-rate ratios fixed at varying traffic loads. In this paper, we define a
loss-rate estimator based on average drop distances (ADDs). The ADD es-
timator is compared with an estimator that uses a loss history table (LHT)
to calculate loss-rates. We show, through simulations, that the ADD esti-
mator gives more predictable PLR differentiation than the LHT estimator.
In addition, we show that a PLR dropper using the ADD estimator can be
implemented efficiently.

I. INTRODUCTION

Today’s Internet supports a wide spectrum of applications
with different demands on forwarding quality. The Internet
community has recognized that one service only (i.e., best-
effort) may not be enough to meet these demands. The Internet
Engineering Task Force (IETF) is therefore designing architec-
tural extensions to support service differentiation on the Inter-
net. The Differentiated Services (DiffServ) architecture [2][9]
includes router mechanisms for differentiated forwarding.

With DiffServ, levels of drop precedence can be assigned to IP
packets. Differentiation between drop precedence levels is part
of the Assured Forwarding (AF) per-hop behavior (PHB) group
[8]. AF can be used to offer differentiation among rate adaptive
applications that respond to packet loss (e.g., applications using
TCP). The traffic of each user is tagged as being in or out of their
service profiles. Packets tagged as in-profile are assigned lower
drop precedence than those tagged as out-of-profile. In addition,
a packet within a user’s profile may be tagged with one out of
several levels of drop precedence. For now, there are three levels
of drop precedence defined for AF.

For AF, it is required that the levels of drop precedence are
ordered so that for levels ��������� , Pdrop

� �
	�� Pdrop
� �	��

Pdrop
� ��	 and Pdrop

� ��	�� Pdrop
� ��	 1. To further refine the differen-

tiation, it can be defined in quantitative terms. For example, the
loss-rate ratios (i.e., Pdrop

� �
	�� Pdrop
� �	 ) can in case of congestion

be set to a target value � 1.
This paper examines proportional loss-rate (PLR) differen-

tiation [5] in terms of predictability and implementation com-
plexity. We grade the predictability of a PLR differentiation by
studying short-term variations in loss-rate ratios between drop
precedence levels at changing traffic loads and load distribu-
tions. In addition, we study if long-term loss-rate ratios achieve
target loss-rate ratios at changing traffic loads. We consider
a PLR differentiation robust if short-term loss-rate ratios have
negligible variations and capable if long-term loss-rate ratios�

Pdrop ����� is the drop probability for traffic at drop precedence level � .

approximate target loss-rate ratios reasonable well at changing
traffic load conditions.

A PLR differentiator can be divided into two modules. First,
a drop controller decides when a packet needs to be dropped. A
drop controller can, for example, perform early congestion sig-
naling with Random Early Detection (RED) [7], or just drop
packets when no buffer space is available for queuing, etc.
When the drop controller has decided that a packet needs to be
dropped, a PLR dropper selects a drop precedence level from
which a packet will be dropped (to maintain the PLR differen-
tiation), selects a packet at the victim level and removes it from
the queue.

Changing traffic loads and load distributions between drop
precedence levels can cause loss-rate ratios to deviate from the
target loss-rate ratios. To create PLR differentiation under such
conditions, a PLR dropper can use running estimates of loss-
rates as feedback to adjust towards the target loss-rate ratios.
For example, when the drop controller triggers a drop, a packet
at the drop precedence level with the minimum normalized loss-
rate (NLR) can be selected and dropped from the queue. The
NLR is in [5] defined as: ��� ��� � where ��� is the loss-rate and � �
is the differentiation constant in class  . In this paper, we adopt
this method of selecting the victim level when dropping packets.
Using the NLR selector, we study how properties of the loss-rate
estimator influence PLR differentiation predictability.

The proportional loss-rate model is proposed and motivated
in [4] and [5]. In [5], a loss-rate estimator is proposed, which
estimates the loss-rate by counting the number of losses at each
class during a time window of ! packet arrivals. One imple-
mentation of this uses a cyclic queue named a Loss History Ta-
ble (LHT). The problem with this is that an appropriate value of
! has to be chosen. Firstly, it has to be at least one dropped
packet at all drop precedence levels in the last ! packets ar-
rived. Otherwise, the measured loss-rate will be zero for levels
at which no packet is dropped in the last ! arrivals. This leads
to inaccurate loss-rate estimation which in turn leads to loss-rate
relations which differs from the configured ones. Unfortunately,
a large ! makes the PLR dropper less adaptive to changing traf-
fic loads. Hence, there is a trade-off in chosing an appropriate
value of ! . Large ! gives capable but not robust PLR dif-
ferentiation, while small ! gives robust but not capable PLR
differentiation.

In this paper, we define an estimator that uses average drop
distances (ADDs) as estimates of loss-rates. For each drop
precedence level, an ADD covers a history which length is de-
fined in number of drops. This makes the estimator adapt the
history length at each level to changing load distributions. The
history covered by the ADD estimator can be set short with-
out risking estimated loss-rates to be zero for some traffic loads.
With the ADD estimator, the history length simply determines



how fast changed traffic load conditions are detected. Hence,
the ADD estimator does not have the same trade-off in choosing
history length as the LHT estimator.

We evaluate through simulations the PLR differentiation pre-
dictability of the ADD and the LHT estimator for two levels of
drop precedence. These simulations show that the trade-off in
choosing ! disables the LHT estimator from providing both ro-
bust and capable PLR differentiation with one single ! . For the
ADD estimator, weights can be found that gives both robust and
capable PLR differentiation.

When designing forwarding mechanisms for Internet routers,
their performance is important. Computation and/or memory
intensive mechanisms make routers more expensive, which can
make deployment in routers handling high bit-rates unfeasible.
To examine the performance of the ADD estimator together
with the NLR selector, we have implemented these mechanisms
in the kernel of FreeBSD. With this implementation, only 131
clock cycles in average are needed to update three ADDs on an
Intel Pentium II 350Mhz. Selecting from which of drop prece-
dence level to drop needs 59 clock cycles in average for three
levels.

The rest of the paper is structured as follows. In Sect. II, we
define the ADD estimator, discuss its properties and compare
these with properties of the LHT estimator. Next, in Sect. III,
the need for differentiation predictability at both long and short
time-scales is discussed. In Sect. IV, simulations comparing the
LHT estimator and the ADD estimator are presented. In Sect. V,
effective implementations of the ADD estimator and the NLR
selector are described. Moreover, performance measurements
for these mechanisms are presented in this section. Finally, in
Sect. VI, we conclude our work.

II. ESTIMATING LOSS-RATES

In this section, we define a loss-rate estimator that uses av-
erage drop distances (ADDs). The basic properties of this esti-
mator is discussed and compared with the properties of the loss
history table (LHT) estimator [5].

TABLE I

SYMBOLS USED IN THIS PAPER

� Aggregate loss-rate." � Drop precedence level  .# � Arrival rate at
" � .$ � Drop distance counter at

" � .$ � old Old drop distance counter at
" � .

�%� Estimated loss-rate at
" � .$ � Estimated average drop distance at

" �$ � old Old estimated average drop distance at
" �� � Differentiation constant for class  .& ��' 	 Set of backlogged

" � at time
'
.( � EWMA filter constant for

" � .) � EWMA filter weigth for
" � .

A. The Average Drop Distance (ADD) Estimator

An ADD estimator calculates an average drop distance for
each drop precedence level. The drop distance is the number of

successfully transferred packets between two lost packets. We
denote the estimated ADD at

" � as
$ � and the estimated loss-rate

at
" � as � �+*�, � $ � . We denote the estimated loss-rate ratio be-

tween
" � and

".-
as ��� � � - and the target loss-rate ratio between

" �
and

"/-
as � � ��� - . The definition of normalized loss-rate (NLR)

and the method for selecting precedence level when dropping a
packet are both adopted from [5].

ADD estimation can be performed by computing the average
drop distance over a certain number of packet drops. It is how-
ever hard to pick an appropriate number of drops to consider,
especially when arrival rates and drop rates vary frequently. For
quick response to changing conditions a small number of drops
should be considered and for stability a large number of drops.
For this reason, we instead use exponential weighted moving av-
erages (EWMAs) to give higher weigth to recent drop distances.
Although EWMA suits the purpose and can be implemented ef-
ficiently, we do not claim that it is the optimal averaging func-
tion. With EWMAs (1), the ADD estimator covers a config-
urable history length, ( ��0�1 ��( � � , , coupled to the number
of rescent drops for each drop precedence level,

" � . We limit( � to integer powers of two for efficient implementation through
shift operations: ( � *3254
6
7 , where the weight ) � is a positive
integer.

$ ��8 9:* $ ��8 9 4<;>=
� ,�? ( � 	A@ $ � = ( � (1)

Larger ) � results in more stable (i.e., more capable) estima-
tions of

$ � and longer detection times for changed trafficload
conditions (i.e., less robust estimations). However, our experi-
ments indicate that estimations of

$ � is stable enough even with
small values of ) � . In Sect. IV, we show that robust and capa-
ble PLR differentiation can be obtained with very small values
of ) � .

The detection time is determined by both ) � and the number
of drops per time unit. For robustness, changed traffic load con-
ditions should be detected equally fast at all drop precedence
levels. If

$ � is only updated upon packet drops at
" � , differ-

ent arrival rates and loss-rates between drop precedence levels
causes different update fequency and detection times between
these levels. For example, assume that the actual loss-rate is
higher at

">B
than at

" -
. Then,

$ B
is updated more often than$ -

and changed traffic load conditions is thus detected faster at" B
than at

".-
. Moreover, if the load suddenly decreases and

stays at the lower level,
$ -

may not be updated at all. This is
because � - ��� - becomes larger than � B ��� B , which causes drops
to be strictly given to traffic at

" B
. We refer to this problem as

update locking.
To avoid the risk for update locking and to make detection

times similar between drop precedence levels, we also recalcu-
late

$ -
at drop precedence levels, C , which was not targeted for

a drop. We do this by restoring
$ -

to the value it had before at
the time of the previous drop at

"D-
and then recalculate

$ -
with

all new arrivals at
" -

added to the last drop distance at
" -

. Not
only do we get a more up to date estimate of

$ -
, but also we

solve the update locking problem since
$ -

goes towards infinity
with

$ - @ $ -
old (see Fig. 1).

Equal weights, ) � , for all drop precedence levels makes the
detection time at

" � shorter (i.e., E 7GF HI7EKJ F H J times shorter) than at
" -

.
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Fig. 1. The algorithm for the ADD estimator and the NLR selector

To compensate for this, separate weights for each drop prece-
dence level can be applied such that (2) is met as closely as
possible2. Equation (2) is based on the closed form expression
for EWMA (1).

� ,�?M2 4
6 7 	 * � ,�?M2 4
6 J 	�f Jhg i]Jf 7 g i 7 (2)

The algorithm for the ADD estimator and the NLR selector is
shown in Fig. 1. Note that the inverse NLR,

$ � = � � , instead of
the NLR, �%� �V� � , is used to select from which

" � to drop. Hence,
at congestion we drop a packet at the drop precedence level with
the maximal inverse NLR instead of the minimal NLR as done
in [5].

With the algorithm shown in Fig. 1,
$ � does not change if

no packets arrive at
" � and will therefore be invalid after a idle

period at this drop precedence level. This becomes a problem if$ � = � � is larger than the inverse NLR for other levels. The first
packets arriving at

" � immediately after the idle period will then
be dropped until

$ � = � � becomes smaller than the inverse NLR
for some other level. Similarly, the first packets arriving at

" �
immediately after an idle period will not be dropped if

$ � = � �
is smaller than the inverse NLR for some other level. Hence,
loss-rate ratios can temporarily be larger or less than the target
loss-rate ratios. We refer to this problem as invalid ADDs.

Dropping the first packets arriving after an idle period can
be devastating since TCP sources perform an exponential back-
off when loosing SYN packets. Due to the exponential back-
off, it can take considerable time for

$ � to decrease since no
packets arrive at

" � . We solve the invalid ADDs problem by
updating

$ � to a value calculated from known ADDs at other
drop precedence levels. The update is made if no packet has
arrived after maxidle updates of ADDs for other levels (Fig. 2).

The method for detecting and updating idle drop precedence
levels shown in Fig. 2 can cause deviations of loss-rate ratios
from target loss-rate ratios. For example, say that

" � is fre-
quently idle for periods long enough to trigger an update and
that each update decreases

$ � = � � . Moreover, say that the ac-
tive periods are short and that

$ � = � � therefore does not reachj
Equation (2) cannot be met exactly since kml is a positive integer.
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Fig. 2. Method for detecting and updating idle drop precedence levels

the actual inverse NLR before
" � gets idle again (i.e., although

very few packets are dropped at
" � , $ � does not increase enough

to reflect the loss-rate at
" � ). This may cause the loss-rate ratio

between
" � and the next lower level to be less than the target

loss-rate ratio between these levels. We refer to this problem
as frequent updates. To avoid the frequent updates problem,
maxidle should be set large. We recommend setting maxidle to
trigger updates after idle periods of several seconds. This mech-
anism is disabled in the simulations presented in Sect. IV.

Distributions in arrival rates between drop precedence levels
(i.e.,

# - � # � ) at congested links is usually unknown and may
change rapidly for bursty traffic patterns. However, different
arrival rates is a severe problem only if the loss-rate changes
rapidly with changing traffic loads. This is often the case for
pure FIFO queues, but not for Random Early Congestion (RED)
[7] managed queues. RED smoothes the loss-rate using a low
pass filter (e.g., EWMA). We take advantage of the smooth
changes in loss-rates provided by RED and do not compen-
sate for different arrival rates (i.e., we set

# - � # � *w, ). When
loss-rates are controlled with RED, differences in detection time
caused by different arriving rates have limited effect on the PLR
differentiation offered. This is shown in Sect. IV where simula-
tions are presented.

A consequence of using RED to smooth loss-rates is that the
ADD estimator depends on proper operation of RED. Recent
studies of RED have shown that the average queue length and
thus the loss-rate can oscillate under certain conditions (the dis-
continuity in the standard RED drop function3 and/or some com-
binations of link bandwidth, average packet size and load levels
can cause such oscillations [11]). Based on these studies, a new
active queue management (AQM) mechanism is developed that
gives more robust loss-rates than RED [3]. The ADD estimator
should gain from the smoother loss-rates provided by this new
AQM mechanism. However, in this paper we evaluate the ADD
estimator with RED without the gentle modification.

B. The Loss History Table (LHT) Estimator

The loss history table (LHT) estimator is defined in [5]. The
estimated loss-rate ��� is the number of drops at

" � in the last !
arrivals divided by ! . The cyclic queue used to count drops
is named loss history table (LHT). ! has to be large enough
to always cover at least one drop at all drop precedence levels.
Otherwise, acceptable estimation accuracy is not obtained since
�%� occasionally becomes zero. Equation (3) gives a lower boundx

The standard drop function in RED jump from the maximal drop probability
(e.g., 0.1) to 1 instantly. This discontinuity is however removed with the gentle
modification of RED [6].



on ! [5]. y is the number of drop precedence levels supported
and z * Y�[]\D^qp�r|{K} � }�~ 4<;

# � = � � .

!M�+��9 *
� ~ 4�;�s� { HI7�F E 7HI�>F E �� (3)

! should be larger than the lower bound given by (3) in order
to to provide capable PLR differentiation. This is shown through
simulations in [5]. For instance, bursty traffic can give consid-
erable variations in the arrival rate and the loss-rate over short
time-scales, which will degrade the differentiation if ! too
small. Unfortunately, large ! makes the detection of changed
traffic load conditions slow. Hence, there is a trade-off in se-
lecting ! . Larger ! gives more capable, but less robust PLR
differentiation and smaller ! less capable, but more robust PLR
differentiation.

C. Comparison

The ADD estimator provides both robust and capable PLR
differentiation with one configuration. In contrast to the LHT
estimator, it provides accurate loss-rate estimation by always en-
countering several drops at every drop precedence level. Hence,
without risking inaccurate loss-rate estimation with incapable
PLR differentiation as result, the ADD estimator can be con-
figured to encounter few drops to detect changed traffic load
conditions rapidly. The LHT estimator cannot be configured to
provide both accurate loss-rate estimation and rapid detection of
changed traffic load conditions. Fast detection of changed traffic
load conditions is needed to provide robust PLR differentiation.

If a small number of drops is covered by the loss history,
the loss-rate estimation becomes unstable at short time-scales.
Such unstable loss-rate estimation can cause variations in actual
loss-rate ratios at short time-scales and deviations of actual loss-
rate ratios from target loss-rate ratios at long time-scales. The
EWMA makes it hard to give the parameters ) � a clear phys-
ical interpretation, as opposed to the LHT estimator, where !
corresponds to the number of packet arrivals. However, this is
not necessary to configure the ADD estimator appropriately. We
show in Sect. IV that by using ) { *�, and ) ; *�� 4, the ADD
estimator provides robust and capable PLR differentiation be-
tween

" { and
"
; for � { *�, and � ; *�,�1 .
III. MEASURING LOSS-RATES

In this section, we discuss over which time-scales loss-rate
ratios are likely to be measured by network operators and to
be perceived by users. Network operators may monitor loss-
rates by polling routers periodically using SNMP or command
line interfaces. The overhead associated with periodic polling
makes it appropriate to monitor loss-rates over time-scales in
order of minutes rather than seconds. However, users are likely
to perceive loss-rate ratios over time-scales spanning from few
seconds to several minutes.

PLR differentiation allows individual users to choose a ser-
vice that provides an appealing balance between forwarding�

With k��.��� and k � ��� the equality in (2) is approximately satisfied when
arrival rates are equal for ��� and � � .

quality and cost. With PLR differentiation, a user can dynam-
ically switch between levels of drop precedence to find a level
with a loss-rate low enough for the application used. A user can
begin tagging all the packets with a high drop precedence level.
If the loss-rate at this level is considered unacceptably high after
a period, the user can switch to a lower drop precedence level.
Eventually, the user should find a level that provides a loss-rate
adequate for the user’s needs. Hence, the user does not have to
pay for additional and unneeded forwarding quality.

To make the result of switching from one level of drop prece-
dence to another level predictable, the PLR differentiation needs
to be robust and capable. Loss-rate ratios measured over several
minutes need to closely approximate target loss-rate ratios. Oth-
erwise, users cannot predict the result of switching drop prece-
dence level. Moreover, loss-rate ratios measured over a few sec-
onds need to have negligible variations. This is to make the
result of switching drop precedence level immediately notable
to users.

IV. SIMULATIONS

In this section, we present simulations evaluating the pre-
dictability of the PLR differentiation created with the LHT esti-
mator and the ADD estimator respectively. The simulations are
made with the network simulator (ns) [10]. Sect. IV-A describes
the simulation setup. We study PLR differentiation at a time-
scale of two minutes in Sect. IV-B and at a time-scale of five
seconds in Sect. IV-C.

A. Simulation Setup

For the simulations, a topology with ten hosts (s0, . . . , s9),
ten receivers (r0, . . . , r9) and two routers (A and B) is used.
The routers are connected via a 50 Mbps link with 20 ms de-
lay (Fig. IV-A). A PLR dropper supporting two levels of drop
precedence is used to differentiate traffic at this link. The target
loss-rate ratio � ; �V� { is set to 10 times (i.e., the loss-rate at drop
precedence level 1 is targeted to be 10 times higher than the loss-
rate at level 0). The drop controller is RED and the drop strategy
is Drop-Tail5. The configuration of RED is: min threshold 70
packets, max threshold 210 packets and max drop probability 10
percent.

The bit-rates of links connecting hosts and receivers to routers
are reconfigured with uniformly distributed random values be-
tween 22 and 32 Mbps once every two simulated seconds. The
delays of these links are reconfigured equal often with uniformly
distributed random values between 0.1 and 0.9 ms. Similar val-
ues are used in [1] to emulate switched Ethernet. A positive
consequence of making these reconfigurations is that synchro-
nization affects among TCP connections get reduced6.

Each host (s0, . . . , s9) has three TCP Reno connections with
each receiver (r0, . . . , r9) (i.e., 300 connections are established
over link A-B). The receivers use delayed ACKs. MTU is 1460
bytes. The TCP connections are established randomly within
the first 10 simulated seconds. These random variables are
uniformly distributed. Using these connections, the receivers
download data from Pareto distributed ON-OFF sources at the�

Packets are removed from the end of the queue for the drop precedence level.�
The random drops made by RED also reduce the risk of having TCP flows

synchronize.
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hosts. The scale parameter for the Pareto distribution is 1.5, the
average length of ON periods is set to 50 ms and the average
length of OFF periods is set to 950 ms. The rate of ON peri-
ods for each source is set to 490 kbps. This generates a highly
variable traffic load causing loss-rates in between 1.72 and 5.15
percent at link A-B when measured over two minutes (the simu-
lations presented in Sect. IV-B). When measured over five sec-
onds (the simulations presented in Sect. IV-C), loss-rates are in
between 1.15 and 5.78 percent at this link.

For all simulations, a warm-up period of 60 simulated seconds
is used to let the congested queue at router A and the loss-rate
estimator examined stabilize. After these 60 seconds, counters
for the number of packet arrivals and drops at each of the two
levels of drop precedence are initialized to measure loss-rate ra-
tios. In Sect. IV-B and IV-C, loss-rate ratios are plotted with a
log 10 scale at the y-axis. The log scale is chosen to view devia-
tions of loss-rate ratios equally independent on whether they are
larger or less than the target loss-rate ratio.

B. Long-Term PLR Differentiation

For each of the loss-rate estimators, we examine their long-
term PLR differentiation predictability with 19 simulations. The
distribution in number of TCP connections at the two levels
of drop precedence is changed between simulations. At drop
precedence level 0 ( �Q� ), the number of TCP connections is var-
ied between 15 and 285 in steps of 15. At ��� , the number of
TCP connections is varied between 285 and 15 in steps of 15.
The x-axis is graded with the fraction of all packet arrivals at
�D� . Each simulation is 120 seconds long.

Figure 3 shows simulation results when using the LHT esti-
mator. For these simulations, (3) gives ���>�s������ � ¡  pack-
ets when 15 TCP connections are at �¢� 7. With this distribu-
tion, about 5 percent of all packet arrivals are at �>� . As dis-
cusseded in Sect. II-B, � should however be set larger than
�M�+�s� . We present simulations with �¤£��� � �  , �¥£§¦� ¡ � � 
and �¨£�©��� � �  packets. At a bit-rate of 50 Mbps, 10000 pack-
ets of size 1460 bytes are forwarded in 2.336 seconds. Hence,
with �¥£§¦� � ¡ �  packets, the LHT estimator can be expectedªh«¬.®d¯±°³²µ´·¶µ´

packets for
«¸°³¹hºhºhº
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Fig. 3. Actual loss-rate ratios measured over two minutes (the LHT estimator).

to adapt to changing traffic load conditions faster than in five
seconds. With �Â£½©��� ¡ �  packets, this adaptation should be
slower than in five seconds (25000 packets of size 1460 bytes
are forwarded in 5.84 seconds).

In Fig. 3, it can be seen that at low arrival fractions at �¢� , loss-
rate ratios is less than 9 for all � simulated. As expected, higher
� gives higher loss-rate ratios at such low fractions. With too
few packets at � � , the LHT occasionally falsely estimates Ã � to
zero. The dropper will then select �¢� for a packet drop. At high
arrival fractions at �¢� , loss-rate ratios varies and go below 9 for
all � simulated. When no packets arrive at ��� , packets can only
be dropped at � � since the queue at ��� is empty. Consequently,
when a packet should be dropped at � � to increase the loss-rate
ratio, it will have to be dropped at �¢� instead. With close to 100
percent of all packet arrivals at �¢� , packet drops are forced to
� � because of an empty queue at ��� in 4.4 percent of all drops
for �¨£��� ¡ �  packets, 8.3 percent of all drops for �Ä£�¦� ¡ � ¡  ,
and 22 percent of all drops for �Ä£Å©��� � �  .

A forced packet drop at �¢� decreases the loss-rate ratio. It
takes relatively long time to repair this since a drop at � � has a
larger impact than a drop at � � . If a forced drop is not repaired
before � arrivals, the loss-rate ratio will be permanently too
low. As can be observed in Fig. 3, larger fractions of forced
drops at � � decreases the loss-rate ratio.

Figures 4 and 5 show simulation results when using the ADD
estimator. We present simulations with ( Æ �¡Ç ÆT� ) = (1,2), (1,3),
(1,4), (2,3), (2,4) and (2,5). The three first configurations are
shown in Fig. 4 and the last three configurations in Fig. 5.
( Æ � Ç Æ � ) = (1,4) and (2,5) approximates the equality in (2) when
arrival rates are equal at �Q� and at � � .

Loss-rate ratios are degraded for low arrival fractions at �>�
with the ADD estimator (Figs. 4 and 5). This is because the
ADD estimator detects an increasing loss-rate more rapidly for
� � when there are more arrivals at � � than at �Q� . This property
of the ADD estimator is discussed in Sect. II-A. Without RED
smoothing actual loss-rates, the problem of different detection
times cause severe degradations in loss-rate ratios.

For configurations not satisfying (2) (i.e., ( Æ ��Ç ÆT� ) = (1,2),
(1,3), (2,3) and (2,4)), loss-rates are lower than for configura-
tions that do (Figs. 4 and 5). Lower Æ � than given by (2) implies
that changes in loss-rates are detected faster at �È� than at � � ex-
cept for high arrival fractions at �Q� . For example, with ( Æ �¡Ç ÆT� )
= (1,2), É ��Ê É�� needs to be 4.15 to satisfy (2). This means that
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Fig. 4. Loss-rate ratios measured over two minutes (the ADD estimator, config-
uration set 1).
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Fig. 5. Loss-rate ratios measured over two minutes (the ADD estimator, config-
uration set 2).

loss-rates are detected faster at
"
; than at

" { for all arrival frac-
tions at

" { up to 80 percent. This percentage is similar with
( ) { 0 ) ; ) = (2,3) as with ( ) { 0 ) ; ) = (1,2). With ( ) { 0 ) ; ) = (1,3)
and (2,4), it is about 65 percent.

For high arrival fractions at
" { , the fraction of forced drops

from
" { gets high for all configurations of the ADD estimator

(i.e., ( ) { 0 ) ; ) = (1,2) gives up to 6.4 percent forced drops, (1,3):
13 percent, (1,4): 21 percent, (2,3): 12 percent, (2,4): 24 per-
cent and (2,5): 32 percent). This suggests that loss-rate ratios
should be degraded for high arrival fractions at

" { . However,
since the invalid ADDs problem cause increases in loss-rate ra-
tios (Sect. II-A), the degradation expected from the high frac-
tions of forced drops from

" { get balanced out so that loss-rate
ratios approximates the target loss-rate ratio of 10 (Figs. 4 and
5). This explains the increase in loss-rate ratios with larger ) ;
in these simulations.

In Figs. 4 and 5, it can be seen that the ADD estimator pro-
vides capable PLR differentiation for low arrival fractions at

" {
with the configurations that satisfy (2) (i.e., for ( ) { 0 ) ; ) = (1,4)
and (2,5)). The LHT estimator needs large ! to provide capa-
ble PLR differentiation for arrival fractions less than 15 percent
(i.e., ! *�2�Ë�1�1�1 packets).

The (1,4) configuration of the ADD estimator is preferable
before the (2,5) configuration since it gives fewer forced drops.
Moreover, the invalid ADDs problem is less severe with small
weights. Fewer forced drops and a less severe invalid ADDs
problem should make the PLR differentiation more robust.

C. Short-Term PLR Differentiation

For each of the two loss-rate estimators evaluated, we exam-
ine their short-term PLR differentiation predictability. The sim-
ulations run for 360 seconds after the warm-up period. Loss-rate
ratios are measured 5 seconds interval. At 180 and 300 seconds,
the distribution in number of TCP connections between

" { and"
; is changed. In the first 60 seconds after the warm-up, there

are 15 TCP connections at
" { and 285 TCP connections at

"
; .

In the next 120 seconds of the simulations, there are 150 TCP
connections at each drop precedence level. Finally, in the last
120 seconds of the simulations, there are 285 TCP connections
at
" { and 15 TCP connections at

"
; .

For this scenario, we have used the same parameters for the
LHT estimator and the ADD estimator as for the simulations
presented in Sect. IV-B (i.e., ! = 5000, 10000, 25000 and
( ) { , ) ; ) = (1,2), (1,3), (1,4), (2,3), (2,4) and ( 2,5)). Fig. 6
shows simulation results for the LHT estimator with ! = 5000
and 10000 packets and Fig. 7 for the LHT estimator with ! =
10000 and 25000 packets. Thereafter, Fig. 8 through Fig. 11
show simulation results for the different configurations of the
ADD estimator.
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Fig. 6. Loss-rate ratios measured over five seconds ( Ì = 5000 and 10000).

When the arrival fraction at
" { is low or high, loss-rate ratios

are closer to the target loss-rate ratio with larger ! (Figs. 3, 6
and 7). Using small ! , chances are that some levels have not
ben targeted for a drop in the last ! arrivals, causing the esti-
mated loss-rate to be zero for levels with low arrival rate. With
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Fig. 7. Loss-rate ratios measured over five seconds ( Ì = 10000 and 25000).
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Fig. 8. Loss-rate ratios measured over five seconds (( km� , k � ) = (1,4) and (1,3)).
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Fig. 9. Loss-rate ratios measured over five seconds (( km� , k � ) = (2,5) and (2,4)).

! *ÍË�1¡1�1 packets, this happens frequently for both low and
high arrival fractions at

" { , but only for low arrival fractions at" { with ! *½,�1¡1�1�1 packets. With ! *�2�Ë�1�1¡1 packets, esti-
mated loss-rates become seldom zero for levels with low arrival
rate and loss-rate ratios therefore better approximate the target
loss-rate ratio. Figures 6 and 7 also shows that large ! causes
large variation in loss-rate ratios. This is because larger ! gives
slower detection of changed traffic load conditions.

For low arrival fractions at
" { , the variation in loss-rate ratios

is larger for higher weights (before 180 seconds in Figs. 8 and
9). Nevertheless, this variation is similar for the ADD estimator
with ( ) { , ) ; ) = (1,4) and for the LHT estimator with ! *�Ë�1¡1�1
packets (Fig. 6). The variation in loss-rate ratios is smaller with
! *�Ë�1¡1�1 packets than with ! *�,�1¡1�1¡1 or 25000 packets.

For high arrival fractions at
" { (after 300 seconds in Figs. 8

and 9), the variation in loss-rate ratios is higher with the ADD
estimator than with the LHT estimator if a configuration satis-
fying (2) is used. The high variation with the ADD estimator
is caused by the invalid ADDs problem described in Sect. II-A.
Although all arriving packets at

"
; are dropped, the loss-rate is

increased slowly due to very few packet arrivals at this level.
The variation in loss-rate ratios for high arrival fractions at

" {
can be decreased by activating the method for detecting and up-
dating idle levels shown in Fig 2. This method cannot however
eliminate the variation in loss-rate ratios for high arrival frac-
tions at

" { . Moreover, the method for detecting and updating
idle levels can cause long-term loss-rate ratios to deviate from
the target loss-rate ratio. This is because of the frequent updates
problem described in Sect. II-A.
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Fig. 10. Loss-rate ratios measured over five seconds (( km� , k � ) = (1,2) and (1,3)).
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Fig. 11. Loss-rate ratios measured over five seconds (( km� , k � ) = (2,3) and (2,4)).

D. Summary of Simulation Results

In Sect. IV-B, we examine differentiation predictability at a
time-scale of two minutes for the ADD estimator and the LHT
estimator respectively. We show that the LHT estimator needs
large ! to provide capable PLR differentiation for arrival frac-
tions less than 15 percent (i.e., ! *¨2¡Ë�1¡1�1 packets). The
ADD estimator provides capable PLR differentiation for low ar-
rival fractions at

" { with configurations that satisfy (2) (i.e., for
( ) { 0 ) ; ) = (1,4) and (2,5)).

Next, in Sect. IV-C, we examine differentiation predictability
at a time-scale of five seconds for the two loss-rate estimators
evaluated. When configured for equal arrival rates at both drop
precedence levels (i.e, for ( ) { 0 ) ; ) = (1,4) and (2,5)), the varia-
tion in loss-rate ratios is similar or lower with the ADD estima-
tor than with the LHT estimator (i.e., for ! = 25000 packets).
With ! = 10000 packets, this variation is higher with the ADD
estimator than with the LHT estimator. Such a configuration of
the LHT estimator does not however give a capable PLR differ-
entiation for low arrival fractions at

" { . Hence, the LHT estima-
tor cannot provide both capable and robust PLR differentiation
with one configuration. Since the ADD estimator can be both
capable and robust with one configuration, we consider it more
predictable than the LHT estimator.

E. Configuration Recommendations

The robustness of the PLR differentiation can be improved
with the ADD estimator by setting ( ) { , ) ; ) = (1,3) or ( ) { , ) ; )
= (2,4). Such configurations give robust PLR differentiation at



high fractions of all traffic at
" { , but less capable PLR differen-

tiation at most traffic distributions.
Simulations with different link speeds, RTTs and number of

TCP flows indicate that the above given configurations are not
particularly sensitive to these parameters8. The ADD estimator
may however be sensitive to scenarios in which the EWMA av-
eraging function of RED gives an oscillating loss-rate (the dis-
continuity in the standard RED drop function and/or some com-
binations of link bandwidth, average packet size and load levels
can cause such oscillations [11]). Our simulations do not cover
such scenarios since the packet size is fixed to 1460 bytes and
all TCP flows have similar RTTs. We consider the issue of ana-
lyzing oscillations of loss-rates caused by RED, evaluating dif-
ferent averaging functions for RED and the ADD estimator, and
examining new AQM mechanisms that gives smother loss-rates
as for further studies.

Based on our simulations, we recommend to set ) { *3, and) � for other
" � using (2). If improved robustness is required at

very high fractions of all traffic at low drop precedence levels
and less capable PLR differentiation can be accepted, lower val-
ues of ) � or higher values of ) { can be used than those given by
(2).

V. IMPLEMENTATION COMPLEXITY

In this section, we describe an efficient implementation of the
ADD estimator and the NLR selector. We also include an eval-
uation of the computational cost of an implementation on a test
platform. This evaluation show that the overhead introduced by
an implementation of ADD is small compared to other tasks a
router need to perform. The computational cost of these mech-
anisms P�Î �%Ï 	 (linear complexity), where

Ï
is the number of

drop precedence levels. Since
Ï

is expected to be small (e.g.,
Ï

= 3 for DiffServ AF), we do not consider this to be significant.
The ADD estimator is designed to allow implementation

without floating-point arithmetics, divisions, or multiplications.
To further improve the performance of the differentiation

dropper, the drop distance counter,
$ � , is increased with � � in-

stead of , upon packet drops at drop precedence level  . This
gives the inverse NLR,

$ � = � � , without multiplications (4).

$ ��8 9 = � � *
$ �%8 9 4<; = � � =

� ,È? ( � 	A@ $ � = � � = ( � (4)

The differentiation constants, � � , can be treated as fixed point
decimal numbers so that relations with decimal precision can be
configured by scaling � � with a factor of ,�1VÐ , where Ñ is the
desired number of decimal positions.

VI. CONCLUSIONS

In this paper we define a loss-rate estimator based on average
drop distances (ADDs). The ADD estimator is designed to offer
robust and capable proportional loss-rate (PLR) differentiation
at varying traffic loads. We consider a PLR differentiation ro-
bust if short-term loss-rate ratios have negligible variations and
capable if long-term loss-rate ratios approximate target loss-rate
ratios reasonable well at changing traffic load conditions.Ò

Due to limited space, we do not show simulations with different link speeds,
RTTs and number of TCP flows.

We evaluate, through simulations, the PLR differentiation
predictability of the ADD estimator and an estimator imple-
mented with a loss history table (LHT) for two levels of drop
precedence. These simulations show that the LHT estimator
cannot provide both robust and capable PLR differentiation with
one single ! . For large ! , the target loss-rate ratio is well ap-
proximated by the loss-rate ratio at long time-scales. However,
for such ! , the short-term loss-rate ratio can vary appreciably
when traffic load varies.

For small ! , low variation in the short-term loss-rate ratio is
obtained at varying traffic loads, but it does not reach the tar-
get loss-rate ratio at long lime-scales. For the ADD estimator,
weights can be found that gives both robust and capable PLR
differentiation (i.e. the short-term loss-rate ratio has low vari-
ation and the long-term loss-rate ratio approximates the target
loss-rate ratio). The ADD estimator requires however that the
actual loss-rate is smooth (e.g. by using RED). Without proper
smoothing of the actual loss-rate, the ADD estimator may not
give predictable PLR differentiation.

To evaluate the performance of the ADD estimator, we have
implemented a PLR dropper using the ADD estimator in the
kernel of FreeBSD. With three levels of drop precedence sup-
ported, this dropper needs only 131 clock cycles in average to
update ADDs and 59 clock cycles in average to select from
which precedence level to drop on an Intel Pentium II 350Mhz.
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