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ABSTRACT. We consider functionals which are not bounded from above or from 
below even modulo compact perturbations, and which exhibit certain symmetries 
with respect to the action of a compact Lie group. 

We develop a method which permits us to prove the existence of multiple critical 
points for such functionals. The proofs are carried out directly in an infinite 
dimensional Hilbert space, and they are based on minimax arguments. 

The applications given here are to Hamiltonian systems of ordinary differential 
equations where the existence of multiple time-periodic solutions is established for 
several classes of Hamiltonians. Symmetry properties of these Hamiltonians such as 
time translation invariancy or evenness are exploited. 

Introduction. Many variational problems which arise from physics or mathemati-
cal physics are indefinite in the sense that the functionals involved are not bounded 
from below or from above. However some of these functionals, defined in an 
appropriate function space, are" semidefinite" in the sense that they are bounded 
from below (or from above) if perturbed with a weakly continuous functional. 

This paper deals with functionals which are not semidefinite. Usually problems 
involving indefinite functionals are more difficult to handle and only very recently a 
method has been developed which permits us to treat such problems directly in an 
infinite dimt-.1sional function space [7]. In [7] some theorems have been proved 
which establish the existence of at least one nontrivial critical point for such 
functionals. 

In many physical situations there are problems which have symmetries with 
respect to the action of some Lie group. In this case we expect the existence of many 
critical points; this has been established for semidefinite functionals (cf. e.g. [8 and 
3] for even functionals, [9] for a Zp-action with p prime numbers [15, 16, 10 and 6] 
for an Sl-action). 

In this paper we develop a method which allows us to estimate the number of 
critical points of indefinite functionals in the presence of symmetries. More precisely 
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we consider a class of functionals defined on a real Hilbert space H having the 
following form: 

(0-1) f(u) = 1(Lu, u)+ cp(u) 

where L is a bounded selfadjoint operator and cP E e1(H,R) is a functional whose 
Frechet derivative cp = cpl E eO(H, H) is a compact operator. 

We assume also that both Land cp are equivariant with respect to the action of a 
linear representation of a Lie group. Before going on in our discussion we shall 
expose one of the theorems to be proved later on. It is not in the most general form, 
but it clarifies the nature of our results. 

THEOREM 0.1. Let Co < c OCi < 0 be two constants and let f E e1(H, R) be a functional 
which satisfies the following assumptions: 

(! 1) f has the form (0-1). 
(f2) Any sequence {un} C H such that f(u n ) ~ c E [co, cOCi ] and II !'(un)11 ~ 0 as 

n ~ +00 has a convergent subsequence. 
(£3) cp(u) = CP(-u). 
(£4) There are two closed subs paces of H, H+ and H-, and a constant p > 0 such 

that 
(a)f(u) > Co for u E H+ , 
(b)f(u) < COCi < o for u E H-nsp (Sp = {u E Hiliull = p}). 

Then the number of pairs of nontrivial critical points of f is greater or equal to 
dim(H+ nH-) - cod(H-+ H+). Moreover the corresponding critical values belong 
to [co' cOCi ]· 

(f2) is a slightly weakened version of the well-known condition of Palais and 
Smale. (f3) expresses the equivariancy of the functional f under the action of the 
antipodal map. (The action of more general Lie groups is considered in the paper.) 
(f4) is a geometrical condition which permits us to give a lower bound to the number 
of solutions. 

The most interesting case occurs when both H+ and H- are infinite dimensional; 
otherwise the functional f would be semidefinite according to our definition and we 
would obtain a variation of known results. For example, if H+ is finite dimensional, 
Theorem 0.1 is just a variant of Theorem 2.19 of Ambrosetti and Rabinowitz [3]. If 
H- is finite dimensional, Theorem 0.1 is a variant of Theorem 12 of [8] (d. also [6] in 
the case in whichfis invariant under an Sl-action). 

Also note that Theorem 0.1 is similar to Theorem 0.1 of [7]. In [7] the form of the 
functional and the "geometry" are very similar, but no equivariancy property such 
as (f3) is assumed. Therefore a weaker result is obtained, i.e. the existence of only 
one nontrivial solution. The proofs of our theorems are based on minimax argu-
ments and they are carried out directly in an infinite dimensional Hilbert space. 

This paper is organized as follows: In §I, we describe the abstract framework in 
which the theory will be constructed. This is done in order to clarify the main steps 
of the construction of the theory. For this purpose we introduce the concept of a 
"pseudoindex theory" which gives an axiomatic description of the properties required 
for the multiplicity results. 
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CRITICAL POINT THEORY FOR INDEFINITE FUNCTIONALS 535 

When an "index theory" (in the sense of [10, 6, 13, 15] and Definition 1.1) is 
available, it is always possible to construct some pseudoindex theories. A pseudo-
index theory is simply a tool which permits us to get rid of the indefiniteness. In this 
framework many of the known results for semidefinite functionals can be simplified 
and generalized (cf. e.g. [4]). 

In §2 we introduce two concrete "pseudoindex theories" which can both be 
applied to the study of indefinite functionals. In a sense which will become clear 
later on, they are duals of each other, and they give different characterizations of the 
critical values. 

In order that the minimax principle be applicable, we need a suitable "deforma-
tion theorem" consistent with our pseudoindex theories. The proof of this theorem 
(Theorem 3.4) is the topic of §3. It is the central and most delicate part of this paper. 
Actually, the particular choice of our pseudoindex theories can be understood only 
in relation to the deformation theorem. 

In §4 we can finally establish some abstract multiplicity results on the existence of 
critical points of (0-1) and in particular we shall prove Theorem 0.1. 

In the last two sections we deal with applications. 
In §5 we look for periodic solutions of fixed period of asymptotically linear 

Hamiltonian systems. We suppose that the Hamiltonian function satisfies the 
following assumptions: 

3H --az- (z) = Az + 0(1 z I) as I z 1--> +00 

and 
3H 
--az-(z)=Bz+o(lzl) aslzl-->O. 

z E R 2n and A, B: R2n --> R 2n are linear symmetric operators. 
We define a symplectic invariant -&(rB/2'1T, rA/2'1T) (r is the period we are 

interested in) which assumes only even values. 
Under various assumptions on the Hamiltonian function, we show that the 

corresponding Hamiltonian system has at least ~-&( rB /2'1T, rA /2'1T) nonconstant 
r-periodic solutions. 

In the case in which -&(rB/2'1T, rA/2'1T);;;' 0, our results are an improvement of 
those of Amann and Zehnder [1] since they required the Hamiltonian function to be 
strictly convex. If -&(rB/2'1T, rA/2'1T) < 0, we need a further symmetry property for 
the Hamiltonian function such as evenness. Then we get different results from theirs. 

In the last sections we make some remarks on periodic solutions for super-
quadratic Hamiltonian functions and indicate how to apply the theory of §4 to such 
situations. 

I thank P. H. Rabinowitz and E. Zehnder for helpful conversations. 

1. The abstract framework. Let X be a Riemannian manifold modelled on a 
Hilbert space H. For A ex, ek(A) denotes the space of k times Frechet differentia-
ble maps from A to R. For A and B C X, e\A, B) denotes the sets of k times 
Frechet differentiable maps from A to B. Id denotes the identity map. Moreover we 
set N8(A) = {x E XI dist(x, A):;;;;; 8}. 
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DEFINITION 1.1. An index theory J on X is a triplet {L, 0lL, i} which fulfills the 
following properties: 

(1-1) L is a family of closed subsets of X such that A U B, A n B, A \B E L 
whenever A, BEL. 

(1-2) 0lL is a set of continuous mappings containing the identity and closed under 
composition. 

(1-3) "V A E L, and "V h E 0lL, h(A) E L. 
(1-4) i: L ~ N U {+ oo} is a mapping which satisfies the following properties. 
(i-l)i(A) = o if and only if A = 0. 
(i-2) (Monotonicity) If A C B then i(A) .;;;; i(B) "VA, BEL. 
(i-3) (Subadditivity) i(A U B) .;;;; i(A) + i(B) "VA, BEL. 
(i-4) (Continuity) If A E L is a compact set, then 38> 0 such that i(N8(A» = 

i(A). 
(i-5) (Supervariancy) i(A)';;;; i(h(A) "VA E L"Vh E 0lL. 
If ~ is the family of all closed subsets of X, c:5\c is the family of the continuous 

mappings of X homotopic to a constant map, and cat x is the Ljiusternik-Schnirel-
mann category, then it is immediate to check that {~, c:5\c, cat x} defines an index 
theory on X. 

In §2, we shall give other examples of index theories. 
When we deal with indefinite functionals (i.e. functionals unbounded from below) 

the existence of an index theory may not be sufficient to guarantee the existence of 
critical points if we simply use the Ljiusternik-Schnirelmann theory in a direct way. 
Then the concept of pseudoindex theory turns out to be useful. 

DEFINITION 1.2. Let X and J = {L, 0lL, i} be as in Definition 1.1. A pseudoindex 
theory J* is a couple {0lL *, i*} which satisfies the following assumptions 

(1-6) 0lL * C 0lL is a group of homeomorphisms of X onto X. 
(1-7) i*: L ~ N U {+oo} is a map with the following properties 
(i*-l) i*(A)';;;; i(A) "VA E L. 
(i*-2) If A C B, then i*(A) .;;;; i*(B) "VA, BEL. 
(i*-3) i*(A \B);;;' i*(A) - i(B) "VA, BEL. 
(i*-4) i*(h(A» = i*(A)"Vh E 0lL*"VA E L. 

We shall show how the concept of pseudoindex can be applied in the search for 
critical points of a functional! E (?}(H). 

For each c E R we set 

tee = {x E XI!(x).;;;; c}, 
Ke = {x E XI!(x) = candf'(x) = O}. 

(1-8) 

DEFINITION 1.3. If! E 8 1(X) and co' Coo E R (with Co < coo), we say that the 
triplet {j, co' coo} satisfies the property (P) with respect to the couple {L, 0lL *} if 

(1-9) (b) {
(a) tee' Ke ELand Ke is compact for every c E [co, coo], 

"Vc E [co, coo],"VN = NAKJ, 310 > 0 and 1/ E 0lL* 
such that 
1/( tee+e \ N) C tee-e· 
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In concrete cases, the property (P) is strictly related to the assumption (c) of Palais 
and Smale (cf. (f2 ), Theorem 3.4 and Corollary 3.5). The following theorem holds: 

THEOREM 1.4. Let X be a Riemannian manifold with an index theory J = p:, ~, i} 
and a pseudoindex theory J* = {~*, i*}. Suppose that f E (S1(X) is afunctional such 
that 

(1-10) 

(a) there exist constants co' Coo E R such that 
{t, co' coo} satisfies the property (P) 
with respect to {~, ~ *}. 

(b) i*(A) = 0 VA E ~ such that A C ceeo ' 

(c) there exists 1 E ~ such that 1 C ceeo and 

i*(1) ~ k ~ 1. 

Then the real numbers 

(1-11) Ck = inf sup f(x), 
i*(A);;"k xEA 

k = 1, ... ,k, 

are critical values of f and co~ c1 E;; c2 ... E;; ckE;; coo' Moreover if c = Ck = ... = 
cHr with k ~ 1 and k + r E;; k then i(KJ ~ r + 1. 

The proof of Theorem 1.4 follows standard arguments and it will not be given 
here. 

REMARK 1.5. If in the assumption (c) we know that i*(1) = +00, then clearly 
(1-11) defines critical values for each k E N+ . 

In order to apply Theorem 1.4 to concrete situations, it is necessary to construct 
an appropriate pseudoindex theory, which of course, depends on the functional f, 
whose critical points we seek. 

In the following section we shall use a method to construct pseudoindex theories 
which is described by the following proposition. 

PROPOSITION 1.6. Let J = {~, ~,i} be an index theory on the Riemannian 
manifold X. 

Let ~ * C ~ be a group of homeomorphisms on X. 
Given Q E~, we set i*(A) = minhEG)Jt*i(h(A) n Q)for each A E~. 
Then I* = {~*, i*} is a pseudoindex theory. 

PROOF. We have to show that the properties (1-7) are verified. (i-I) 0-2) (i-4) are 
trivial. Let us prove (i-3). For each h E ~*, and A, B E ~,we have 

h(A\B) n Q= (h(A)\h(B)) n Q= (h(A) n Q)\h(B) 

then applying (i-3) and (i-5), we get 

i(h(A\B) n Q) =i(h(A) n Q)\h(B)) 

~ i(h(A) n Q) - i(h(B)) = i(h(A) n Q)) - i(B) 
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therefore 

i* ( A \ B ) = min i ( h ( A \ B) n Q) 
hEGJlL* 

;;;. min [i(h(A} n Q} - i(B}] = i*(A} - i(B}. D 
hEGJlL* 

In applications, when the appropriate index theory is already known, the main 
difficulty is to find an appropriate pseudoindex theory. Essentially the problem is to 
determine the right class of homomorphisms ~ *. This class should be "big" enough 
in order to contain a function '1/ such that (l-9)(b) is satisfied. But if ~ * is "too 
big", it may happen that i*(A) = 0 or 1 for each A E ~ (cf. the construction of the 
pseudoindex theory of Proposition 1.6). Therefore Theorem 1.4 may not be applica-
ble or gives the existence of only one critical value (cf. (l-lO)(c». In the next section 
we shall construct pseudoindex theories which will be useful in the search for critical 
values of functionals defined on a Hilbert space which are indefinite in the sense 
given in the introduction and which are symmetric with respect to the action of some 
Lie group. 

However the abstract framework presented in this section can be applied to 
various situations and many known results about semidefinite functionals can be 
simplified and generalized. In [4] there is a detailed analysis of some of those 
situations. 

2. Index and pseudoindex theories. From now on we shall consider only index and 
pseudoindex theories on a real Hilbert space H on which the unitary representation 
Tg of a compact Lie group G acts. Some notation is now necessary. 

<. ,. > denotes the scalar product on H and the symbol (,) will be left for the 
scalar product in Rn, B/ u) denotes the closed ball of center u and radius p. Also we 
set Bp = Bp(O) and Sp = aBp. 

A functionalJ E e1(H) is said to be Tg-invariant if 

J{Tgu) = J(u} Vu E H, Vg E G. 

A map h E e(H, H) is said to be Tg-equivariant if 

h{Tgu) = Tgh(u} Vu E H, Vg E G. 

If J E e1(H), then f' E eO(H, H) since we identify H with its dual, and if J is 
Tg-invariant f' is Tg-equivariant. A subset A CHis said to be Tg-invariant if 

TgA = A Vg E G. 

F = {u E HI Tgu = u Vg E G} will denote the linear space of the Tg-invariant 
points of H. 

We recall (cf. e.g. [18]) that, by virtue of the Peter-Weyl theorem, a Hilbert space 
on which the representation of a compact Lie group acts may be decomposed in the 
following way: 

00 

(2-l) H = EB Hj where H j is finite dimensional and invariant V j EN. 
j=o 

Vk will denote a k-dimensional Tg-invariant subspace of H. 
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Moreover we set 

~(Tg) = {A CHI A is closed and T-invariant}, 

c:JlL( Tg) = {h E 8( H, H) I h is T-equivariant}. 

539 

We shall say that an index theory {~, c:JlL, i} is related to the representation T if 
~ = ~(Tg) and c:JlL = c:JlL(Tg). 

In this paper we shall consider only index theories related to some group 
representations. 

In particular we shall consider only index theories which have an important 
property described by the following definition. 

DEFINITION 2.1. An index theory is said to satisfy the dimension property if there 
is a positive integer d such that 

(2-2) i(Vdk n SI) = k for all dk-dimensional subspaces V dk E ~ such that V dk n 
F = {O}. 

If an index theory has the dimension property, it is not difficult to prove that (cf. 
e.g. [4]) 

(2-2')i(A)";;;;k if A C VdkandA nF= 0and 
(2-2") i( K) < +00 if K is compact and K n F = 0. 

It is not difficult to realize that any index theory with the dimension property has 
the further property that 

(2-3) i( A) = +00 whenever A n F =1= 0. 
In fact, if ii E F, the constant map 1/;1: H -> {ii} belongs to c:JlL. Then, if ii E A, by 
(i-5) and (2-2), we have that 

i( {ii}) ;;;. i( I/;I(H n SI)) ;;;. i(H n SI);;;' d- I dim H. 

Since, in general, dim H = +00, (2-3) follows. 
The property (2-3) causes some problems when multiplicity results need to be 

proved. This difficulty sometimes may be overcome by constructing appropriate 
pseudoindex theories and using some further tricks. All these remarks will become 
clear in the next sections. 

We shall give three examples of index theories related to the representations of 
some Lie group which satisfy the dimension property with d = 1,2 and 4 respec-
tively. The first two examples will be used in the applications in the last sections. 

I EXAMPLE. Consider the group Z2 = {O, I} and the unitary representation of this 
group on a real Hilbert space H defined as follows 

u EH. 

If A E ~(Tg) = {closed subsets of H symmetric wi th respect to the origin} we set 

yeA) = k 
if k is the smallest integer such that there exists a continuous odd map 

If such a map does not exist we set i( A) = +00 and we set y( 0) = 0. This set 
function called "genus" has been introduced by Krasnoselskii in an equivalent form 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



540 VIERI BENeI 

(see [11]) and used by many authors (d. e.g. [3,4,8, 13]). In [11] and in [13] it has 
been proved that {~(Tg)' 0lL(Tg), y} is an index theory and that it satisfies the 
dimension property with d = 1. 

Actually in the papers mentioned above the genus has been defined only for those 
sets A E ~ such that 0 tt. A, but it can be extended to all ~. In fact if 0 E A, (2-3) 
shows i( A) = +00 and that all the required properties are satisfied. 

II EXAMPLE. Consider the group Sl = {z E C II z 1= I} and a unitary represen-
tation ~ of this group on a real Hilbert space H. To simplify the notation we shall 
write 1'. instead of ~ if z = eis (s E [0,2'17». If A E ~(1'.) = {closed 1'.-invariant 
subsets of H} we set T(A) = k if k is the smallest integer for which there exist a 
number n E N+ and a continuous map 

such that 

<I>(1'.u) = eins<I>(u) "i/u EA, "i/s E [0,2'17]. 

If such a map does not exist we set T( A) = +00; moreover we set T( 0) = O. In [6] it 
has been proved that {~(1'.), 0lL(1'.), i} is an index theory. 

If V k ' E ~ is an invariant subspace of H, and V k ' n F = {O} it is not difficult to 
see that its dimension is even i.e. k' = 2k, kEN. In [6] it has been proved that the 
above index theory satisfies the dimension property with d = 2. Since all the 
invariant spaces are even dimensional this makes sense. 

III EXAMPLE. Let H be the set of all sequences of quaternions {aj}jEN (aj E H) 
such that 

00 

~ I aj 12 < +00. 
)=1 

Clearly H has the natural structure of Hilbert space on the real field if we identify H 
with R4. 

A unitary representation of 

S3 = {w E H II wi = I} 

defined in the natural way acts on H: 

In [10] it has been proved that there exists an index theory related to the above 
representation with d = 4. The index theories y and T will be used in the applications 
of §§5 and 6. In the literature there are many other ones, perhaps with different 
names. We mention only the index of Fadell and Rabinowitz [10] and we refer to 
their paper for further information on this topic. 

Our program now is to construct two pseudoindex theories Ii and Ti related to 
any index theory which satisfies the dimension property. As has already been 
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observed these pseudoindex theories will permit us to deal with indefinite function-
also To begin this program, we define the following families of maps. For X is a 
Banach space, we set 

fo(X) = {h E 2(X, X) I h = U + cp where Uis linear and cp is compact}, 

f l ( X) = {h = U + cp E fo I hand U are homeomorphisms}. 

LEMMA 2.2. Let h = U + cp E fl(X). Then 

1/; = h- I - U- I 

is compact. 

PROOF. Set v = h(u), so that 

u = h-I(V) = U-I(v) + 1/;(v) = U- I 0 h(u) + 1/;(v) 

= U-I(Uu + cp(u)) + 1/;(v) = u + U- I 0 cp(u) + 1/;(v). 
Then 

1/;(v) = -U- I 0 cp(u) = -U- I 0 cp 0 h-I(V) 
and since cp is compact, it follows that 1/; is compact. 0 

The pseudoindex theories we are going to construct are related to a linear 
Tg-invariant subspace H+ C H, H+ E ~. The most interesting case occurs when 
both the dimension and the codimension of H+ are infinite. Otherwise, our 
pseudoindex theories would give results for semidefinite functionals, but these 
functionals could be treated in a simpler and more general way (cf. [4, 13]). 

Let GLL be a group of linear homeomorphisms such that 

(2-4) { (a) Tp = UTg 

(b) UH+ = H+ 

'<;IU E GLL, 

'<;IU E GLL. 

In our applications to the functional (0-1), we shall suppose that H+ is L-invariant 
and we shall set 
(2-5) 

However, in the construction of our pseudoindex theory, every family GLL which 
satisfies (2-4) works as welL 

Let 0TL * denote a class of mappings h such that 

(2-6) 

(a) h E 0TLi.e. h is Tg-equivariant, 

(b) h E fl(H) i.e. h is a homeomorphism of the 
form U + cp where cp is compact, and 

(c) U E GLL. 

By Lemma 2.2, the following corollary is straightforward. 

COROLLARY 2.3. 0TL * is a group of homeomorphisms. 

If we suppose that F C H+ we set 

(2-7) Ii = {0TL*, in where it(A) = h~~* i(h(A) n H+). 
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Then by virtue of Corollary 2.3 and proof 1.6, It is a pseudoindex theory. In order 
that this pseudoindex theory be useful it is necessary to show that it is not trivial, i.e. 
that there are sets of any pseudoindex. 

We shall prove the following theorem. 

THEOREM 2.4. Let H-, H+ E ~ be linear subs paces of H such that cod( H- + H+ ) 
< +00, dim(H+ nH-) < +00 and Fe H+. Then 

ii(H-nSp ) = ~[dim(H+ nH-) - cod(H+ +H-)]. 

Before proving Theorem 2.4, we shall introduce another pseudoindex theory which 
will be useful in different situations. 

If we suppose that H+ nF = {OJ, we fix a constant p > 0, and we set 

(2-8) Ii = {0lL *, in where i! = min i( h(A) n Sp n H+). 
hEGJ1L* 

Also in this case, Corollary 2.3 and Proposition 1.6 show that (2-8) defines a 
pseudoindex theory. The following nontriviality theorem holds. 

THEOREM 2.5. Let H-, H+ E ~ be a linear subspace of H. Suppose that F n H+ = 
{OJ, F c H-, dim(H+ nH-) < +00; cod(H+ + H-) < +00 and that H- is invariant 
for every U E 6ll,. Then 

i!{H-) = ~ [dim{H+ nH-) - cod(H+ + H-)]. 

In order to prove Theorem 2.4 and Theorem 2.5 some work is necessary. 

LEMMA 2.6. Let V, W E ~ be two invariant subs paces of H such that 
F eve Wand cod w V < +00. 

If A E ~ is a bounded subset of W, then 
1 

i{A n V) ~ i(A) - "dcodw V. 

PROOF. In order to simplify the notation we set k = i(A); kl = d- I dim VI where 
VI is the orthogonal complement of V in W. 

Now we argue indirectly and we suppose that 
i(A n V) .;;,; k - kl - 1. 

By (i-4) there exists a neighborhood N = Nl!(A n V) such that 
i(N).;;,;k-k l -1. 

We set 

Al =A n N, 

Then we have 
dist{A 2 , V) ~ 8 > o. 

If P denotes the orthogonal projector on VI' by (i-5), (2.2'), and the above 
inequality, 
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Then using (i-3), (i-2) and the above inequalities, we get 

i(A) .;;; i(AI) + i(A 2 ) .;;; i(N) + i(A 2 ) .;;; (k - kl - 1) + kl = k - 1 

and this contradicts our assumptions. Thus the lemma is proved. 0 

543 

LEMMA 2.7. Suppose that H = ED i~ I Hi where Hi (i = 1, ... ,4) are four mutually 
orthogonal subspaces of H. Moreover suppose that dim Hi < +00 for i = 2,4 and that 
Fe H 3 • Let 

g- = {II> E 0lL III> = Id + g where g has finite dimensional range} 

then 

(2.9) 

where 

PROOF. Given II> = Id + g, let Wo be a finite dimensional space such that 
Wo => g(Ap) and we set 

and 

Then we have 

(2-10) II>(Ap) n (H2 EEl H3 ) d II>(Ap n W) n (H2 EEl H3 ) 

d [1I>(Ap n W) n w] n (H2 EEl H3)' 

By the definition of W 

II>(Apn W) C W 

so by the above formula, (i-5) and (2-2) 

i( II>(Ap n W) n W) = i( II>(Ap n W)) ;;;. i(Ap n W) 
(2-11) 

On the other hand we have that 

(2-12) cod w(H2 EEl H3) = dim VI + dim H4. 
Using Lemma 2.6, (2-10), (2-11) and (2-12) we get 

i( II>(Ap) n (H2 EEl H3») ;;;. i( II>(Ap n W) n W) - ~COdw(H2 EEl H3 ) 

;;;. ( ~ dim VI + ~ dim H 2) - ( ~ dim VI + ~ dim H 4 ) 

= ~(dim H2 - dim H4)' 0 
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LEMMA 2.8. Let H, Hi (i = 1,2,3,4) and Ap be as in Lemma 2.7 and set 
:J{ = {<I> E 0lL I <I> = Id + cp where cp is compact and <I> is a homeomorphism} 

then 

i( <1>( Ap) n (H2 EB H3 )) ;;;. ~ [dim H2 - dim H4]' 

PROOF. First of all we shall prove that the set 

(2-13) K = <I>(Ap) n (H2 EB H3 ) = {[ Sp n (HI EB H2)] + <I>(Ap)} n (H2 EB H3 ) 

is compact. Consider the sequence Un E K. Then we can write 

(2-14) 

with vn E HI' wn E H2, zn = cp(wn + vn) and vn + wn ESp. Since H2 is finite dimen-
sional and wn is bounded then we can suppose that Wn converges (possibly consider-
ing a subsequence). Since cp is a compact map we can suppose that zn converges. Let 
Pi be the orthogonal projector on Hi' Applying PI to (2-14) we get 0 = vn + Plzn. 
Thus, since Plzn converges, we deduce that vn converges too. Therefore un converges 
and K is compact. 

By virtue of (i-4) there is a constant 81 > 0 such that 

(2-15) 

where 

We set B = <1>-1(0(.8 ). Clearly we have that 
'/4 

(2-16) <1>( Ap \B) n (H2 EB H3 ) = 0. 

We claim that there exists a constant 82 > 0 such that 

(2-17) 

In order to prove (2-17) we argue indirectly and we suppose that there exists a 
sequence {un} C <I>(Ap \B) such that PIAUn -> O. As in (2-14) we set un = vn + wn + 
Zn with vn E HI' wn E H2 and zn = cp(un + wn)· Then we have 

Since PIAUn and PIAz" are convergent sequences (possibly considering subsequences) 
then also vn converges, and since wn converges, Un converges to a point U E <I>(Ap \ B) 
(we recall that <I>(Ap \ B) is a closed set since <I> is a homeomorphism). Since 
PIAU = limn~oo PI,4Un = 0, then U E H2 EB H3• Therefore 

U E <1>( Ap \B) n (H2 EB H3 ) 

and this fact contradicts (2-16), Then (2-17) is proved. Now let g be a finite 
dimensional equivariant map such that 

II g( u) - cp( U )11 ~ 8 '<t U E Ap where 8 = tmin( 81,82 ), 
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Such a map can be easily constructed by virtue of (2-1). If we set ti> = Id + g, then 
ti> E '!f ('!f is defined in Lemma 2.7) and 

(2-18) 11<I>(u) - ti>(u)11 .;;; 8 'rJu E Ap. 

It is easy to see that 

(2-19) 

In fact, if z E Ap \ B, by (2-17) and (2-18), we get 

IIP1Ati>(z)11 ~ IIP1A<I>(z)11 - IIP1A(<I>(Z) - ti>(z))11 
- 82 

~ 82 - II <I> ( z) - <I> ( z ) II ~ 2" > O. 

Using (2-19), we have that 

(2-20) ti>(Ap) n (H2 EEl H3) = ti>(Ap n B) n (H2 EEl H3)' 

Also by (2-18) we have that 

ti>(B) C 018 ,. 

By the above formula and (2-20), we get 

ti>(Ap) n (H2 EEl H3) C 018 ,. 

Therefore using (2-15), (i-2) and Lemma 2.7 we have that 

i(<I>(Ap) n (H2 EEl H3)) = i(018J ~ i(ti>(Ap) n (H2 EEl H3)) 

~ d-l(dim H2 - dim H4)' 0 

PROOF OF THEOREM 2.4. If H - n F =!= {O} then, since F is h-invariant 

h ( H - n Sp) n F =!= 0 'rJ h E 01L. 
Therefore, by (i-2). i(h(H-nSp) n H+) ~ i(h(H-nSp) n F) = +00 and Theo-
rem 2.4 is proved. If H - n F = {O}, then we set 

H2 = H+ nH-, 
HI = orthogonal complement of H2 in H-, 
H3 = orthogonal complement of H2 in H+ , 
H4 = orthogonal complement of HI EEl H2 EEl H3 in H. 

Because of our assumptions Fe H 3 • Then the assumptions of Lemma 2.8 are 
satisfied. For every h = V + ffJ E 01L *, we have 

i(h(H-nsp) n H+) = i(V-1 0 h(H-nSp) n V-1H+) by (i-5) 

= i((Id + V-I 0 ffJ )(H-nSp) n H+) by (2-4)(b) 

= i((Id + V-I 0 ffJ)((HI EEl H2) n Sp) n (H2 EEl H3))' 

Since Id + V-I 0 ffJ E 1(, by Lemma 2.8, we have that 
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Since dim H2 = dim H+ n H- and dim H4 = cod H+ + H-, by the definition of if 
the conclusion follows. 0 

PROOF OF THEOREM 2.5. We set 
H2 = H+ nH-, 
HI = orthogonal complement of H2 in H+ , 
H3 = orthogonal complement of H2 in H-, 
H4 = orthogonal complement of HI EB H2 EB H3 in H. 

Since F n H+ = {O} and Fe H-, then Fe H3. Then the assumptions of Lemma 
2.8 are satisfied. 

For every h = V + cp E 0lL *, we have 

i(h(H-) n Sp n H+) = i( H-nh-I(Sp n H+)) by (i-5). 

By Lemma 2.2, h- I = V-I + 1j; with 1j; compact. Since VH-= H- we have 

i( h( H-) n Sp n H+) = i( H- n (V- I + 1j;)( Sp n H+)) 

= i(VH-n (Id + V 0 1j; )(Sp n H-)) by (i-5) 

= i(H2 EB H3 n (Id + Vo 1j;)(Sp n HI EB H2)). 

Since Id + V 0 cp E %, by Lemma 2.8, we have that 

i(h(H-) n Sp n H+);;;' ~[dim H2 - dim H4] 

= ~ [dim(H+ nH-) - cod(H+ + H-)] 'Vh E 0lL*. 

Since for h = Id, we get the equality, the conclusion follows from the definition of 
ii. 0 

3. A deformation theorem. In §2 we have constructed two pseudoindex theories. If 
we want to apply Theorem 1.4, we need to characterize the functions fEe I( H) 
which satisfy the property (P) with respect to such pseudoindex theories. This is the 
aim of this section. Clearly the main difficulty is to find a function 1/ as in (1-9)(b). 
As usual this function will be a deformation, i.e. 1/(u) = ~(to, u) where ~ is a flow 
on Hand to a fixed real number. This flow will be related to a vector field which is a 
suitable approximation of the vector field -/'. In our case, the main difficulty in 
carrying out this program is the fact that 1/ must belong to 0lL *; therefore the 
construction of the flow ~(t, u) will involve some technicalities which will be 
treated in this section. We shall start by proving some lemmas to be used later in the 
construction of GIL 

LEMMA 3.1. Let X and Y be two Banach spaces and let f: X -> Y be a locally 
Lipschitz continuous function. Then any compact set K C X has a neighborhood iJL such 
that f 1G)t is (uniform) Lipschitz continuous. 

PROOF. For each u E K, there exist an open ball B(u, c5(u» and a constant leu) 
such that 

Ilf(v)-f(w)II~I(u)llv-wll, 'Vv,wEB(u,c5(u)). 
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The family of sets {B(u, ~8(U))}UEK is an open covering of K. Therefore we can 
extract a finite covering 

{B( ui' ~8( ui))} iEI where I is a finite set of indices. 

We now set 

liJC= U B(Ui,~8(u;)) and M= sup Iluli. 
iEI uEj(ilJL) 

M is less than infinity by the compactness of K and the construction of liJC. We set 

1= max{ 4~, ~:;/(u;)} where 8 = ~~S(u;). 

We claim that 

II f( v) - f( w ) II .;;; III v - w II for each v, w E liJC. 

In order to prove the above inequality we distinguish two cases 
First case. II v - w II ;;;. S /2. Then we have 

4M S 
Ilf{v) - f(w)ll.;;; Ilf(v)11 + Ilf(w)ll.;;; 2M.;;; T . "2 .;;; Illv - wll. 

Second case. II v - wll < 8/2. Suppose that v E B(ui, ~S(uJ). Then wand v E 
B( u i' 8( u i)). Therefore we have 

Ilf(v) - f(w)ll.;;; l(ui)llv - wll';;; Illv - wll. 0 

LEMMA 3.2. Let cp: H -> H be a compact operator. Then, given 'I> 0, there exists an 
operator cP: H -> H which satisfies the following assumptions: 

(3-1) (b) cp is locally Lipschitz continuous, {
(a) cP is compact, 

(c) Ilcp(u) - cp(u)1I .;;; y. 

Moreover, if cp is Tg-equivariant, cp can be chosen to be equivariant. 

PROOF. For each w E H, we set liJCw = {u E Hili cp(u) - cp(w)11 < 'I and II u - w II 
< I}. {liJCw}WEH is an open covering of H. Therefore there exist a locally finite 
refinement liJCi and points Wi such that liJCi C liJCw. Let Pi(U) denote the distance of u 
to the complement of liJCi. Then Pi is Lipschitz ~ontinuous and vanishes outside of 
liJCi. Let 

Pi(U) = Pi(U)/ ~ p/u). 
JEI 

Since {liJCi}iEI is a locally finite covering, for each u E H the denominator of Pi(U) is 
a finite sum and the above formula makes sense. Moreover the Pi'S are Lipschitz 
continuous and 

By the definition of the liJC 's and the liJC 's, we have that w, I 

(cp(u) - cp(wi ), v)< yllvll, 'Vu E liJCi'Vv E H. 
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Thus, since the f3; 's vanish outside of the 'VL; 's, we get 

f3;(u)(<p(u) - <p(w;), v)';;; yf3;(u)llvll "iIu, v E H. 

If we sum the above expression over the i 's, we get 

(<p(U) - ~f3;(u)<p(w;), v),;;; yllvll, "iIu, v E H. 

If we set <j)(u) = L.;f3;(u)<p(w;), by the above formula we get 

11<p(u) - <j)(u)11 ,;;; y, "iIu E H. 

Thus <j) satisfies (3-1)(c). To prove that <j) satisfies (3-1)(a) and (3-1)(b), observe that 
for each bounded ball B R C H 

<j) (BR) C {convex hull of <p(BR+ I )}. 

Indeed, for u E BR, <j)(u) is a convex combination of elements W; E BR+ I. Since 
<P(BR+ I) is relatively compact, so is its convex hull. Therefore <j)(BR) is relatively 
compact and this proves (3-1)(a). Moreover <j) is locally Lipschitz continuous since in 
each point it is the finite sum of locally Lipschitz continuous functions. Thus also 
(3-1 )(b) holds. 

It remains to prove that <j) may be chosen Tg-equivariant whenever <P is Tg-equi-
variant. Suppose we have constructed <PI which satisfies the (3-1) but it is not 
necessarily equivariant. We set 

<j)(u) = f Tg-I<pI{Tgu) dJ-L 
e 

where p, is the Haar measure on the group G. Clearly <j) is Tg-equivariant. We claim 
that it satisfies the (3-1). First of all, let us prove the compactness. For any R > 0 we 
set K = <PI (TgBR) = <PI( BR), "iIg E G. (TgBR = BR because Tg is unitary.) Clearly 

<j)(BR) = feTg- IK dp, = {v = feTg-IU dJ-L I U E K}. 

Since the map u f-> Ie Tg- I U dJ-L is continuous, <j) (B R) is compact and this proves 
(3-1)(a). Now let us prove (3-1)(b). Take u E H; the set {TgU}gEG is compact since G 
is a compact group. Therefore by Lemma 3.1, there exist a neighborhood 'VL = 
NA{Tgu}gEG) and a constant I > 0 such that 
(3-2) 11<PI{v) - <P1(w)ll,;;; Illv - wll "iIu, v E'VL. 
For each u E 'VL there exists a neighborhood 'VLa such that Tgv and Tgw E 'VL 
whenever v and w E Glla. Then for each v and w E 'VLa we have 

11<j)(v) - <j)(w)1I =llfeTg-I[<PI(TgV) - <P1{Tgw)] dJ-L1l 

,;;; ~;II<pI(T/V)) - <P1(Tg(w))lldJ-L 

,;;; If IITg(v - w)lldJ-L by (3-2) 
e 

= Illv - wll. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CRITICAL POINT THEORY FOR INDEFINITE FUNCTIONALS 

Finally we prove (3-1)(c): using the fact that cP is equivariant 

11q5(u) - cp(u)11 =II!GT/CPl{TgU) dp, - £Tg-1cp{TgU)dP,1I 

549 

= IIfGT/[ CPl{Tgu) - cp{Tgu)] dP,lI..; £IICPl{TgU) - cp{Tgu )11..; y. 

This completes the proof. 0 

LEMMA 3.3. Suppose that L + cP E fo(H) and that the following Cauchy problem 

(3-4) {.,; (t) = L1/( t) + cp( 1/( t )), 
.,,(0) = U 

has a unique solution ~(t, u) (~(t, .) E e1(R, eO(H, H»). We suppose that for every 
t, ~(t,.) maps bounded sets into bounded sets. Then for every t E R, ~(t, u) has the 
following form 

~(t, u) = etLu - get, u) 

where g(t,') is a compact operator for each t E R. 

PROOF. Without loss of generality, we suppose t > 0. The operator ~(t, u) 
satisfies the following identity which is the Volterra form of the equation (3-4): 

~(t, u) = etLu + [e(t-S)Lcp(~(s, u)) ds. 

° 
We have to show that the operator 

get, u) = - [e(t-S)Lcp(~(s, u)) ds 

° 
is compact. By our assumptions, for every R > 0, there exists R ~ R such that 

~(s, BR ) C Bi 'Vs E [0, t] 
then 

cp(~(s, BR )) c cp(Bi) 
where cp( B R) is a precompact subset of H. Now we set 

K = [ U e(t-s)Lcp( Bi)] . 
sE[O,t] 

K is a compact subset of H. In fact let {vn } be a sequence in K; then there exist 
two sequences {s n} C [0, t] and {wn} C cp( B i) such that 

Now let {snk} and {wnJ be two subsequences such that 

{sn.} --+ sand cp( wnJ --+ i E cp( BR ) 

then 

Therefore K is compact. Now set 
Kl = {convex hull of K} . 
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By a well-known theorem KI is compact. Since for every u E Eli, 

f e(t~s)L<p(';11(s, u)) ds E K, 

-g( t, u) E K. Therefore g( t, . ) is compact. 0 

THEOREM 3.4 (DEFORMATION THEOREM). Let f E el(H) be a function which 
satisfies the following assumptions 

def 
(f I) f( u) = ~ (Lu, u) + «1>( u) where L is a bounded selfadjoint operator and <p = «1>' 

is compact. 
(f2) f satisfies P.S. in [co, coo] i.e. any sequence {urn} C H such that f(u m ) ---> c E 

[co' c,,,J andf'(um ) ---> 0 as m ---> +00, has a convergent subsequence. 
Then 'tic E [co' coo], 'tIGJL = NAK c )' 3£ > 0 and 31] = eliL + 1/; (where 8> 0 is a 

constant and 1/; a compact operator) such that 

(3-6) 
where K c ' ae are defined by (1.8). 

Moreover, if 
(f3) f is Tg-invariant 

then 1] is Tg-equivariant, i.e. 1] E '!)1L *. 
PROOF. Because of (f2 ), Kc is a compact set. Then GJL is bounded. Let PI > 0 be a 

constant such that GJL C BpI' We set 

8 = d 
4(1 + 21ILllp,)' 

Because of (f 2)' there exists £ > 0 such that 

(3-7) II f'(u)11 ;;;. / ~£ for u E Zc.€ \ GJLd / 2 

where ZC.E = f-'([c - £, c + £D and GJLd / 2 = Nd / 2(KJ. 
In fact suppose that (3-7) does not hold. Then there exist a sequence {un} C H 

and a sequence £" iO such that U" E ZC.€n \ GJLd / 2 and II f'(un)11 .;;;; /4£n/8. Thus we 
have thatf(un) ---> c and II f'(u,,)11 ---> 0, and by (f2 ), {un} converges to some point Ii. 
Then we have that f( Ii) = c and f'( Ii) = 0 and this contradicts the fact that ii ff. Kc 
Thus (3-7) holds. Also we can suppose that 

(3-8) £ .;;;; 8/5. 
We now set 

(3-9) y = min( £/28; ~ /£/28). 
Now, by virtue of Lemma 3.2, there exists a compact, locally Lipschitz continuous 
operator cp such that 

(3-10) 11<p(u)-cp(u)II';;;;y, 'tIuEH. 
By the above inequality we get 
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Then 
(3-11) (cp(u), cp(u);;;. Hllcp(u)11 2 + Ilcp(u)112) - y2/2 

;;;.llcp(u)11 . Ilcp(u)11 - y2/2. 
Now set X(t) = min(l, lit) and 

_ ( Ilcp(u)11 )_ 
V(u) - X 1 + IILul1 cp(u). 

It is easy to check that V is a compact, locally Lipschitz continuous operator and 
that 
(3-12) IIV(u)11 .;;;; 1 + IILull, 'rfu E H. 
We now claim that 

(3-13) (f'( u), Lu + V( u);;;. ~e 'rfu E ZC,E \ q;cd/2' 

In order to prove (3-13) we distinguish two cases. 
First case. Suppose that II cp( u )11 .;;;; I + II L( u)ll. Then we have 

(f'(u), Lu + V(u)= (!,(u), Lu + cp(u) 
= (!'(u), Lu + cp(u)- (f'(u), cp(u) - cp(u) 
;;;'11!,(u)112_YII!,(u)11 by (3-10) 
;;;. 3elo by (3-7) and (3-9). 

Second case. Suppose that 
(3-14) Ilcp(u)ll;;;. 1 + IIL(u)ll. 
By the definition of V we get 

(f'(u), Lu + V(u)= (LU + cp(u), Lu + 1 ~ t~UII cp(u)\ 
II cp u II 'I 

Then (3-13) is proved. 

2 1 + II Lull _ 
= IILul1 + Ilcp(u)11 (Lu, cp(u)+ (cp(u), Lu) 

1 + IILul1 
+ Ilcp(u)11 (cp(u),cp(u) 

;;;. II Lul1 2 - (1 + II Lull) . II Lull - II Lull· II cp(u )11 

+(1 + IILull)llcp(u)ll- 111;tu~~III. Y22 by(3-11) 

;;;. IILul1 2 - IILul1 - IILul1 2 - IILul1 . Ilcp(u)11 
2 

+ Ilcp(u)II'IILull + Ilcp(u)ll- Y2 by (3-14) 

y2 
;;;. Ilcp(u)11 - IILul1 - 2 
;;;. 11<ii(u)11 - y - IILul1 - y2/2 by (3-10) 
;;;. 1 - y - y2/2 by (3-14) 
;;;. 5elo - el20 - 1/4. el20 ;;;. 3elo by (3-8) and (3-9). 
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Now consider the following Cauchy problem in the Hilbert space H 

(3-15) { ~tHt) = -L~(t) - V(~(t)), 

HO) = u. 

Since V is locally Lipschitz continuous, (3-15) has a unique local solution. Moreover, 
by (3-12), we have that 

(3-16) IILu + V(u)II';;; I + 211LII . Iluli. 
Then by standard results on O.D.E.'s it follows that ~(t) is defined for all t E: R. 

We shall denote by 021(t, u) the flow relative to the Cauchy problem (3-15). Now 
we shall prove that 

(3-17) 021(t, u) E: H\ 0Ld / 2 for each u E: H\ 0Ld and for each t E: [0,8]. 

In order to prove this we argue indirectly. 
Suppose that there are points to, t] E: [0,8] (to < t]) such that 

q1(to, u) E: a0Ld ; "I1(t], u) E: a0Ld / 2 and "I1(t, u) E: 0Ld \0Ld / 2 

for all t E: [to, td.Then we have 

d/2.;;; 11"I1(t], u) - 021(to, u)11 =//{'~ "I1(t, u) dtll 

=JJ{'{-ViI1(t, u) - V(02l(t, u))} dtJJ 

.;;; ['IIL02L(t, u) + V("I1(t, u))11 dt 
to 

.;;; ['(I + 21ILIIIIQ1(t, u)ll) dt by (3-16) 
to 

The last inequalities have been possible since 0l d C Bp ,. Then using the definition of 
8 we get 

d 
d/2.;;; 4(1 + 21ILllp]) . (I + 21ILllp]) = d/4. 

This is a contradiction, then (3-17) is proved. 
Next we shall prove that 

(3-18) "11(8, u) E: (fe-e' "i/u E: (fc+e \0Ld • 

First of all, we remark that, by virtue of (3-13), we have 

(3-19) ~j(qL(t, u)) = (1'(021(t, u)), ~ q1(t, u)).;;; -3e/8. 

In order to prove (3-18), we have to show that 

(3-20) there exists to E: [0,8] such that j(GIi (to, u)).;;; C - E 

"i/u E: tPe+ f \ ~~d 
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if 3t l E R such thatf(G21(t l , u» = C - e, thenf(G)L(t, u» 
";;;;c-e '<it~tl' 

553 

First we prove (3-20). We argue indirectly and we suppose that for each t E [0,8], 
f(G21(t, u» > c - e then we have 

(3-22) 18 d 
2e ~ -(j(G21(8, u)) - f(G21(O, u))] = - 0 d/(G)J(t, u)) dt. 

By (3-17), G21(t, u) tt. 'Vld / 2 . Moreover, by (3-19), the function t ~ f(G21(t, u» is 
decreasing. Then we have that G21(t, u) E ZC,E \ 'Vld / 2 . Therefore, using again (3-19) 
and by (3-22), it follows that 

2e ~ t(3e/8) dt = 3e. 
o 

This is a contradiction, thus (3-20) is proved. (3-21) follows directly from (3-19). 
Then (3-18) is proved. By Lemma 3.3, we have 

G21(t, u) = e- tL + g(t, u) 
where g( t, . ) is a compact operator for each t E R. 

If we set 

1/(u) = G21(8, u) 
we see that 1/ has the desired form with 1/;(u) = g(8, u). Moreover, by (3-18), (3-6) 
follows. Then the first part of the theorem is proved. 

If f is Tg-invariant, then Land cp are Tg-equivariant. Then by the last part of 
Lemma 3.2, <'f; can be chosen equivariant. Since Tg is a unitary representation, the 
functional 

( 11<'f;(u)11 ) 
X 1 + IILul1 

is Tg-invariant. In fact 

( 11<'f;(Tgu)11 ) = ( II Tg<'f;(u)11 ) = ( 11<'f;(u)11 ) 
X 1 + IILTgul1 X 1 + IITgLul1 X 1+ IILul1 . 

Then V is a Tg-equivariant operator. Therefore the operator G!L(t, .) and conse-
quently 1/ are Tg-equivariant. 0 

By the deformation theorem the following corollary follows. 

COROLLARY 3.5. Iff satisfies (f l ), (f2) and (f3) then {j, Co, coJ satisfy the property 
(P) with respect to p:, ~*}. 

PROOF. By (f3) it follows that ac and Kc E~. By (f2), it follows that Kc is 
compact. Then (l-9)(a) is satisfied. (1-9)(b) follows directly by Theorem 3.4. 0 

4. Some abstract multiplicity theorems. In this section we shall use the theory 
developed in the previous sections to give a lower bound for the number of critical 
values of the functional (0.1) in several different situations. 
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THEOREM 4.1. Let H be a Hilbert space with an index theory I related to a 
representation Tg which satisfies the dimension property. 

Let f be a functional which satisfies (f]) (f2) (f3) of Theorem 3.4. Moreover suppose 
that there are two invariant spaces H+ , H - E ~ and a constant p > 0 such that 

t (a) F C H+, LH+ = H+ , 
(b) feu) > Co '<iu E H+ , 
(c) feu) < Coo '<iu E H-nsp ' 

Then, if Ii is the pseudoindex theory (2-7) and if the integer 

(4-1) - 1 [ k = d dim(H+ nH-) - cod(H+ +H-)], 

is well defined and positive, the numbers 

c k = inf sup f( u ) for k = 1, ... , k 
ij'(A);;;.k uEA 

are critical values off and Co ~ c] ~ ••• ~ Ci: ~ coo' Moreover if 

(4-2) {
c = Ck = ... = Ck + r 

then 
i(KJ ;;. r + 1. 

PROOF. We apply Theorem 1.4. By (f]) (f2) (f3) and Corollary 3.5, the triplet 
{j, co' coo} satisfies the property (P). Now take A E ~ with A C (feo; then by (f4)(b), 
A n H+ = 0. Therefore ij( A) = i( A n H+ ) = 0 and (l-lO)(b) is satisfied. Setting 
A = Sp n H-, by (f3)(C) we have A C (f,,,,, then by Theorem 2.4 ij(A) = k. This 
shows that (l-lO)(c) holds and the conclusion follows. 0 

We now give a theorem analogous to Theorem 4.1 which makes use of the 
pseudoindex I;. 

THEOREM 4.2. Suppose that all the assumptions of Theorem 4.1, but (f4) are 
satisfied. Instead suppose that 

tea) FnH+={O}; 

(b) feu) > Co 

(c) f(u)<c oc 

Fe H-, LH-= H-, 

'<iu E H+ nsp ' 

'<iuEH-. 

Then, if I; is the pseudoindex theory (2-8), and k is well defined by (4-1) and positive, 
the numbers 

( 4-3) ck = inf sup f( u) 
z2(A);;;'k uEA 

are critical values off and Co ~ C I ~ ... ~ Ck ~ coo' Moreover (4-2) holds. 

PROOF. We apply again Theorem 1.4. By (f l ), (f2) and (f3) and Corollary 3.5, the 
triplet {j, co' coo} satisfies the property (P). 

Now take A E ~ such that A C (f,,,; then by (fV(b), A n H+ n Sp = 0. There-
fore minhE''lJ1..i(h(A) n H+ nSp ) = 0 and (l-10)(b) is satisfied...: Moreover, by (f:)(a), 
the assumptions of Theorem 2.5 are satisfied. Then ii( H -) = k. 
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Therefore setting A = H-, (l-lO)(c) follows. 0 
REMARK 4.3. If f satisfies the assumptions of Theorem 4.1, thus -f essentially 

satisfies the assumptions of Theorem 4.2 if we interchange H+ and H -, and Co and 
Coo· 

Those two theorems are related to Theorem 2.19 of [3] and Theorem 12 of [8] for 
indefinite functiona1s. Actually in [3] and in [8] only even functiona1s have been 
considered, and of course (f I) is not required since the functionals are semidefinite. 
Even if those theorems sound different, in a deeper analysis the similarity is evident 
(also cf. Theorem 2.19 of [3] with Corollary 4.5). While Theorems 2.19 of [3] and 12 
of [8] apply to two completely different classes of problems we see that in Theorems 
4.1 and 4.2, those two different situations are unified. 

REMARK 4.4. Theorems 4.1 and 4.2 are not sufficient to guarantee the existence of 
at least k (orbits of) critical points. In fact it might happen that Kc n F =t= 0. Then 
i(KJ = +00 but it might contain only one fixed point (cf. (2.3) and the following 
remarks). Thus to have a multiplicity result we must add some assumptions 
depending on the nature of F and/. For example in Theorem 4.1, we could assume 

inf f(u) = p > Coo 
ufCF 

and this, of course, implies Kc n F = 0 and the multiplicity result. A similar 
argument is used in the proof of Theorem 0.1 given below and Theorems 5.1 and 5.3. 
More subtle arguments for proving Kc n F = 0 are given in the applications to 
Hamiltonian systems in §5. 

PROOF OF THEOREM 0.1. We shall use Theorem 4.1 (but we could use as well 
Theorem 4.2). 

- -
(f I) is equal to (f I) and (f2) implies (f2). 
(f3) implies (f3) where the group representation is the one described in Example I 

of §2. 
For such representation F = {O}, thus (f4)(a) is satisfied. 
(f4)(b) and (c) follow by (f4). 
Thus Theorem 4.1 can be applied. 
Then in order to get the conclusion of Theorem 0.1, it is necessary to prove that 

Kc n F = 0 but this follows from Remark 4.4. 0 
By Theorem 4.2, the following corollary follows. 

COROLLARY 4.5. Suppose that f satisfies all the assumptions of Theorem 4.2, except 
(f4)(c). Moreover suppose that 

( 4-3') 
J (a) 

1 (b) 

dim( H+)1- = +00, 
f( u) is upper bounded on (H+ ) 1- EB Vdk 

for every V dk E ~, V dk C H+ . 

Then (4-3) defines a critical value for each kEN, ck ,;;; ck+ I' and (4-2) holds. 

PROOF. It is enough to choose kEN arbitrarily and to show that the ck's are 
critical values for k ,;;; k. In order to do this, we set H - = (H+ )1- EB V dk and apply 
Theorem 4.2. 0 
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From Theorem 4.1, we shall deduce another theorem which is less general, but it 
can be applied more directly to some concrete problems we shall consider later. First 
of all we make the following assumption on L: 

a rt. ae( L) where ae( L) denotes the essential spectrum of L 
(f 5) (this means that a is either an isolated eigenvalue of finite 

multiplicity or it belongs to the resolvent). 

Then we can decompose H in the following way 
H = V-EBVo EB V+ 

where 

VO = kerL; 
(4-4) (Lu, u)",;;, allul1 2 Vu E V-, 

(Lu, u)~ ,Bllul1 2 Vu E V+, 

where a < 0 ",;;, f3 are suitable constants. 
If Q is a compact operator, by well-known theorems, (see e.g. [17]) aiL) = 

ae( L + Q). Therefore H has the following decomposition: 

where 

( 4-4') 

H = W-EBWo EB W+ 

WO = ker(L + Q), 
«( L + Q) u, u)",;;, a'ii u 112 VuE W - , 

«(L + Q)u, u)~ ,B'lluI1 2 Vu E W+, 

where a ' < a < f3' are suitable constants. 
The following theorem holds. 

THEOREM 4.6. Suppose that f satisfies (f 1)' (f3), (f5) and 

(4-5) 

(a) .p(a) = o. 
(b) every sequence {un} such that f( un) ..... C < a and 

II !,(un)11 ..... a as n ..... +00 is bounded. 
(c) 

(d) 

(e) 

there exists a compact operator Q such that 
<p(u) = Qu + o(llull) where<p = .p'. 

lim 11<p(u)11 = a 
Ilull~+oo Ilull . 
Fe v+. 

If we set H+ = V+ and H - = W -, then the same conclusion of Theorem 4.1 holds with 
Co and Coc suitable negative constants. In particular we have 

- 1. 1 
k = "ddlm(V+ n W-) - "dcod(V+ + W-) 

= ~dim(v+ n W-) - ~dim[(V-EB VO) n (W+ EB WO)] 

where the above spaces are defined by (4-4) and (4-4'). 
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REMARK 4.7. If L has discrete spectrum and it commutes with Q, then k is easy to 
compute. 

In fact, let {edkEN be a common set of eigenvectors of Land Q corresponding to 
the eigenvalues {Ad of Land {qd of Q. 

Then 

and 

Therefore 

v+ n w -= Sp { e k I A k > 0; A k + q k < O} 

= Sp { e k I 0 < A k < -q k } 

(V-Ef) V O) n (W+ Ef) W O) = Sp{ ek I Ak ,,;;; 0; Ak + qk ;;;. O} 

= Sp { e k I 0 ;;;. A k ;;;. -q d . 

k = # {k E Z I 0 < Ak < -qk} - # {k E Z I 0;;;. Ak ;;;' -qd· 

Before proving the Theorem 4.6 we need the following lemma. 

LEMMA 4.8. If f satisfies (f l ), (f5) and (4-S)(b) then it satisfies (f2) in [co, cool 
(co < coo)· 

PROOF. Let {un} be a sequence such thatf(un ) --. c and 

(4-6) 

By (4-S)(b) it is bounded. 
By (f5) there is a compact operator Ko such that 

Of!:. a{L + Ko). 
By (4-6) we have that the sequence 

def 
(4-7) vn = (L + Ko)un - KOu n + <p{uJ 

is converging to O. 
Since {un} is bounded, -KOun + <p(un) is pre-compact, then the set 

D = {Koun - <p(un) + vnln EN} 

is compact. 
By (4-7), (L + Ko)u n ED, then Un E (L + KotlD. Since (L + KotlD is a 

compact set, {un} has a converging subsequence. D 
PROOF OF THEOREM 4.6. We shall check all the assumptions of Theorem 4.1 with 

H+ = V+ , H-= W-, COO = YI/2 and Co = Y2 - 1 where Y2 < YI < 0 are constants 
to be determined later. Because of Lemma 4.8, (f2) holds. Then (f l ) (f2) and (f3) are 
satisfied. Let us prove (f4). (f4)(a) follows by (4.S)(e). Before proving (f4)(b), we 
shall prove (f4)(c). We use the Taylor formula for fat 0: 

feu) = !(Lu, u)+ !(Qu, u)+ 0(lluI1 2 ) for Ilull --. O. 
Then for u E W- we have f( u) ,,;;; a'il u 112 + 0(11 U 112) where a' is the constant 
appearing in (4-4'). Since a' < 0, there exists a constant p > 0 and YI < 0 such that 

feu) < YI 'Vu E w-nsp • 

Setting c~ = Y1/2, (f4)(C) is satisfied. 
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In order to prove (f4)(b) we first observe that, by virtue of (4-5)(d), there is r > 0 
such that 

11<p(u)11 .;;;; (,8/2)\luI1 2 whenever \lu\l > r 
where ,8 is the constant appearing in (4-4). 

Moreover, since <p is compact, there is M > 0 such that 

11<p(u)11 .;;;; M if \lull.;;;; r 

thus 

11<p(u)11 .;;;; M + ,8/2\1ull Vu E H. 
Using the above formula we get 

1 q,(u) I=jfol(<p(tu), u) dtj 

.;;;;if {M. \lull + ~t Il u 11 2 } dti 

.;;;; Mllull + t,8llul1 2 Vu E H. 

Then by (4-4) and the above inequality, for every u E V+ , we get 

f(u) = 1(Lu, u)+ q,(u) 

;;;.. (,8/2)lluI1 2 -I q,(u) I;;;.. (,8/4)lluI1 2 - M· Iluli. 

This implies that f is bounded from below on V+ and we can set 

'12 = inf f( u) and Co = '12 - w with w > 0 such that '12 - w < C • 
uE v+ 00 

Then by Theorem 4.1 the conclusion follows. 0 
REMARK 4.9. Under the assumptions of Theorem 4.6, we could equally well have 

used the pseudoindex theory If and Theorem 4.2 in order to get similar results. 
REMARK 4.10. If we strengthen (fs) in the following way 

(fS) 0 fE a( L) 
then, by (4-5)(d), we can easily deduce (4-5)(b). 

(fn is a nonresonance condition at 00. 

Using this remark we have the following corollary. 

COROLLARY 4.11. If f satisfies (f l ), (f)), (fn, (4-5)(a) (c) (d) (e), then the same 
conclusion of Theorem 4.6 holds. 

REMARK 4.12. If (f4)(a) (or equivalently (f4)(a) or (4-5)(c)) does not hold, then the 
pseudoindex theories studied in §2 cannot be applied directly, and a general way to 
deal with such problems has not yet been developed. However, in [6], a method has 
been introduced which permits us to treat semidefinite functionals even when (f4)(a) 
does not hold (cf. Remark 6.9). 

5. Applications to asymptotic linear Hamiltonian systems. Let H E (S2(R2n, R) and 
consider the Hamiltonian system of ordinary differential equations 

(5-1) 
3H 3H P = -a-q(p, q), tj = a;;(p, q), 
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where p and q are n-tuples and· denotes d/dt. Setting z = (p, q) and J = (~d -~d) 

where Id denotes the identity matrix in Rn , (6-1) becomes 
(5-2) i = JHz(z) 

where Hz = CJH/CJz. We are concerned in periodic solutions of fixed period of (5-2). 
We suppose that H satisfies the following properties 

(HI) Hz(z) = Az + 0(1 z I) for z ---> +00, 

(H 2 ) Hz(z)=Bz+o(lzl) forz--O, 

where A, B: R 2n -- R2n are two linear symmetric operators. Our aim is to give a 
lower bound for the number of nontrivial T-periodic solutions of (5-2) by ap-
propriately comparing the operators A and B and the period T. 

More precisely we are going to define an even integer number {)( T B /2 7T, TA /2 7T ) 

which will give this lower bound. Given two hermitian operators A, B: C 2n __ c 2 n 

we set 

N( A) = {number of negative eigenvalues of A} , 

it ( A) = {number of nonpositive eigenvalues of A} , 

{}iB, A) = N(ijJ + B) - it(ijJ + A), 
+00 

{}(B, A) = ~ {}j(B, A). 
j=-oo 

We observe that {}(B, A) is a finite number. In fact, forj big enough N(ijJ + B) = 
it(ijJ + A) = n and this implies that {}iB, A) = 0 except for a finite number ofj's. 
N ow we can state the main theorems of this section. 

THEOREM 5.1. Suppose that H satisfies (HI)' (H2) and 
(H3) (Az, z) > 0 Vz E R2n \ {O}, 
(H4) H(z) ;;. 0 Vz E R2n, 

(Hs) o(TJA/27T) n iZ = 0. 
Then equation (5-2) has at least t {}(TA/27T, TB/27T) non constant T-periodic solutions 
whenever {}(TA/27T, TB/27T);;' O. 

(H3) is a technical assumption which will be discussed in Remark 5.9. 
(H4) is a condition which assures us that the periodic solutions we shall find are 

not constant (cf. the proof of Lemma 5.8). 
If (H4) is dropped, then we conclude that there are nonzero periodic solutions but 

they could be constant; therefore we lose information about their number (cf. 
Remark 4.4). 

(Hs) is a "nonresonance condition at 00" and it expresses the fact that the 
linearized equation at 00, i.e. i = JAz has no T-periodic solutions. If (Hs) does not 
hold, Theorem 5.1 is not any longer true unless we add some other conditions on H. 
For example we can add a condition which corresponds, roughly speaking, to the 
Landezman-Lazer condition for elliptic equations as is shown by the following 
theorem: 
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THEOREM 5.2. Suppose that H satisfies (HI)' (H 2 ), (H3 ), (H4) and 
(H6) ~(z) is bounded where V(z) = H(z) - t(Az, z). 
(H7) V(z) ..... +00 as I z I ..... +00. 

Then the conclusion of Theorem 5.1 holds. 

Other assumptions can replace (H5) as the theorem below shows. 

THEOREM 5.3. Suppose that H satisfies (HI)' (H 2 ), (H 3 ), (H4) and 
(Hg) there is R > 0 and p E (1,2) such that pH(z) ;;;. (z, Hiz» > 0 for I z I;;;. R. 
(H9) limlzl~ -+<>0 I z I-I I Hiz) I.;;; y < t· 
(HIO) there are constants a l > 0 and a2 > 0 such that H(z) ;;;. a l I z r - a2. 

Then the same conclusion of Theorem 5.1 holds. 

REMARK 5.4. In order to give a feeling for the meaning of 1't( ., . ) we shall indicate 
some of its properties even if they will not be used in the proofs of the theorems. 
First of all, we observe that 1't corresponds to the number tf defined by (4.1) as it 
will be shown in Lemma 6.6. 

Moreover it satisfies the following properties: 
(1't I) if 1't(AB, AA) ;;;. 0, then 1't(AA, AB) .;;; O. 
(1't2) fi(AA, AA) .;;; O. 
(1't3 ) if B and A satisfy the nonresonance condition i.e. 

a(AJA) n iZ = a(AJB) n iZ = 0 (cf. (H5)) 

then 
1't(AB, AA) = -1't(AA, AB). 

(fi4)ifa(JA) n iR = a(JB) n iR = 0thenfi(AB, AA) = fi(AA, AB) = O. 
(1't5 ) fi(·,·) is a symplectic invariant in both its arguments i.e. 

fi(ASTAS I , AS!BS2) = fi(AA, AB) 'VSI , S2 E Sp(2n). 

Amann and Zehnder in [1] have introduced a symplectic invariant Ind(A, B, ex) with 
ex real number. We have 

(fi6) if AB and AA satisfy (H5) then 

Ind(B, A, A-I) = fi(AB, AA) 

and in general we have 

I Ind(B, A, A-I) I;;;. fi(AB, AA). 

PROOF. (fi l ) and (fi2) follow directly from the definition. 
Let us prove ( 1't3 ). Since J2 = -Id we have that 

ker(ijJ + AA) = {v E C 2n I AJAv = jv}. 

Therefore if (H5) holds, 

ker(ijJ + AA) = {O} and N(ijJ + AA) = N(ijJ + AA). 

For the same reason N(ijJ + AB) = N(ijJ + AB). 
Then (fi3) follows from the definition. 
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If o(JA) n iR = 0, then ker(ijJ + AA) = {O} VA E R. Then, since the operator 
ijJ + AA is not singular for any A E R, the function 

A ~ N(iJ + AA) = N(iJ + AA) 
is constant. In particular it equals n since for A = 0 we have that N(iJ) = n. Arguing 
in the same manner we get that N(iJ + AB) = N(iJ + AB) = n. Then (-&4) follows. 

Let us prove (-&5)' It is known that if Q: C2n -> c2 n is any hermitian operator and 
S is any nonsingular operator 

N(Q) = N(S*QS) and N(Q) = N(S*QS) 
where S* is the adjoint of S. 

If S E Sp(2n), then ST = S* (the transpose is equal to the adjoint since S has real 
coefficients). Then using the above formula with Q = ijJ + AA and Q = ijJ + AB, 
we get 

N(ijJ + AA) = N(ijSfJSI + AS(ASI) = N(ijJ + AS(ASI) "lSI E Sp(2n) 

and 

N(ijJ + AB) = N(ijJ + AS!BS2 ) VS2 E Sp(2n). 

By the definition of -&( ., . ) the conclusion follows. 
(-&6) follows from the characterization (5-16) of the eigenvalues of ijJ + AA and 

easy computations. 
REMARK 5.4'. If A and B commute withJ the number -&(AB, AA) is expressible in 

a form which is easy to compute. In fact let iLl ... iL2n be the set of eigenvalues of A 
corresponding to the eigenvectors v I' ... , v2n . Then the vectors v k + iJ v k are eigen-
vectors of the operator ijJ + AA and they correspond to the eigenvalues j + AiLk 
(k = 1, ... ,2n). Thensetting~ = {l, ... ,2n} we get 

N(ijJ+AA) = #{kE~U+AiLk';;;;O}. 

If the pk's are the eigenvalues of B, arguing in the same manner we get 
N(ijJ+AB) = #{kE~U+Apk<O}. 

Then, for A > 0, we have 

and 

Thus 

{k E ~ I APk < -j} = {k E ~ I Pk < iLk; AiLk .;;;; -j} 
U {k E ~ I Pk < iLk; APk < -j';;;; AiLd 

U {k E ~ I P k ~ iL k; A P k < -j} 

{kE~IAiLk';;;;-j} = {kE~lpk~iLk;Apk<-j} 
U {kE~lpk~iLk;AiLk';;;;-j';;;;Apd 

U {kE~lpk<iLk;AiLk';;;;-j}. 

-&/AB, AA) = # {k E ~ I Pk < iLk and APk < -j';;;; AiLd 

- # {k E ~ I iLk';;;; Pk and AiLk .;;;; -j';;;; Apd· 
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Therefore we have that 

-&(hB,hA) = #{(j,k) E Z X 0I>lpk <P-kandhPk<j";;;;hP-k} 

- # {(j, k) E Z X 01> I Pk ;;;" P-k and hP-k ";;;;j ,,;;;; hPk}. 

We remark that the number -&(hA, hB) does not depend on the order of the P-k'S 
and the Pk's. If it is possible to order them in such a way that Pk < P-k for each 
k E 01>, then 

-&(hB, hA) ;;;" ° and lim (hB, hA) = +00. 
.\~ +00 

This fact has an obvious interpretation in terms of the number of periodic solutions 
of (5-2). 

In order to prove Theorems 5.1,5.2,5.3 we shall use Theorem 4.6 (or Corollary 
4.11). Before doing this some work is necessary. 

First of all, making the change of variable 

(5-3) 
2'lT t ~ - t = h-1t, (5-2) transforms to i = hJHz ( z) 

T 

and we seek 2'lT-periodic solutions of (5-3) which, of course, correspond to the 
T-periodic solutions of (5-2). We shall treat (5-3) in the Hilbert space H = 
HI/2(sI,R2n), i.e. the space of 2n-ples of 2'lT-periodic functions which possess 
square integrable "derivative of order 1". Perhaps the simplest way to introduce this 
space is as follows. Let eOO(sl, R2n) be the space of 2'lT-periodic n-ples of eoo-func-
tions. If z E eOO(SI, R2n) it has the following Fourier expansion 

a 1 +00 
z( t) = ~ + c L (aj cos jt + f3j sin jt ), 

y2'lT y'lT j=O 
(5-4) a, f3 E R2 n, 

which in complex notation becomes 

(5-5) 
+00 

z(t) = _1_ "" ae ijl with a. = a. E c2 n 
~ ~ J J J . 

y2'lT )=-00 

HI/2(SI, R2n) is the closure of eOO(sl, R2n) with respect to the Hilbert space norm 

(5-6) 

HI/2(sl, R2n) can also be obtained by interpolation from the Sobolev spaces 
HI(SI, R2n) and L2(SI, R2n). From now on HI/2(SI, R2n) will be denoted by H. On 
H a "canonical" representation of the group Sl acts. If s E Sl (s is thought of as a 
real number in [0, 2'lT» we have the representation 

1'.,z( t) = z( t + s) 
here the" +" is the operation of the group S I; i.e. the sum modulo 2'lT. 
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In terms of the Fourier expansion (5-5), the representation T,; has the following 
form: 

+00 

T,;z( t) = ~ (aje ijS )eij{ 
j=-oo 

i.e. the Fourier expansion is a decomposition of T,; in its irreducible components (see 
e.g. Weyl [18]). 

We shall denote by I = p:, 0R" i} the index theory relative to the representation 
T,; described in II Example of §2. The 2'1T-periodic solutions of (5-3) correspond to 
the critical points in H of the functional of the action: 

f(z) = _1271{(p, q)Rn - AH(z)} dt 
o 

= 1a271{HJi, Z)R2n + AH(z)} dt. 
(5-7) 

(We have put the minus sign in front of the functional in order to make the notation 
consistent with the abstract theorems of §4.) If we set 

1271 
V(z) = H(z) - HAz, z) and q>(z) = A V(z) dt 

o 
(5-8) 

then we can write 

(5-9) 1 271 
f(z) = t (Ji + AAz, Z)R2ndt + q>(z). 

o 
Let L, c:p: H ---> H bc the operators defined by the following formulas: 

1 271 
(Lz, v)= 0 (Ji + AAz, V)R2n dt 'Vv E H, 

12'TT 
( c:p ( z ), v) = A ( v: (z ), v ) dt 'V v E H, 

o 
then we have 

f(u) = t(Lu, u)+ q>(u) and f'(u) = Lu + c:p(u). 
The following lemma holds. 

LEMMA 5.5. If the Hamiltonian function H satisfies (HI) and (H 2 ) then f (defined by 
(5-7» satisfies (f l ), (fJ ), (fs) (4-5) (a),(d) and (4-5)(c) where Q is defined by the 
formula 

( 5-9') 12'TT 
(QZ,V)=A (Bz-Az,v)dt. 

o 

PROOF. By the Sobolev inequalities and standard arguments, it follows that 
c:p = q>' is compact (see e.g. [7]). Then f satisfies (f I) and since Land c:p are 
equivariant with respect to T,;,f satisfies (fJ ). 

In order to prove (fs), it is enough to observe that the essential spectrum of the 
operator defined by the bilinear form 

(z, v ) ~ f'TT ( J ~ z, v) dt 
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is just { + 1, -I}. Since L is a compact perturbation of such operator, by well-known 
theorems (see e.g. [17]), it follows that 

0o( L) = { + 1, -I}. 
(4-5)(a) follows by the definition of <1>. 
Let us prove (4-5)(d). By (HI)' for every e > 0, 3M> ° such that 

I Hz(z) -Azl.;;;elzl +M. 

Then, by (5-8), using the Holder inequality we get 

thus 

If''(r:;(z),v)dtl=I102''(Hz(z) -Az,v)dtl 

lim 
Ilzll~ +00 

.;;; el102 ''1 z 1'1 v I dtl + 27TMllvll 

.;;; ellzll . Ilvll + 27TMllvll 

11<p(z)ll_ l' I (<p(z),v)1 1m sup 
Ilzll Ilzll~+OO IIvll=1 Ilzll 

. A 112" I = hm sup -II -II (r:;(z), v) dt 
II z II ~ +00 II v II = I z 0 

. ( 27TAM) .;;; hm Ae + -II -11- = Ae. 
Ilzll~+OO z 

By the arbitrariness of e, (4-5)( d) follows. 
It remains to prove (4-5)(c). By (HI) we have that "ife > 0, 381 E (0, 1) such that 

IHz(z) -Bzl';;;elzl iflzl.;;;81· 

On the other hand, by (Hz), 382 > 1, such that 

I H( z) - Bz I.;;; (I A I + I B I + 1) I z I for I z I> 82 

and by the continuity of Hz(z) there is a constant a l > ° such that 

I H z ( z) - Bz I.;;; a l for 81 .;;; I z I.;;; 82 , 

By the above inequality we get 

I Hz(z) - Bz I.;;; e I z I +a21 z 12 with a2 = max{ a I 8]2, I A I + I B I + 1) 
for all z E R2n. 

Then we have 

1102 " (H/ z) - Bz, v) dtl.;;; 102 "1 Hz( z) - Bz II v I dt 

.;;; e12"1 z I ·1 v I dt + a212"1 Z 121 v I dt 
o 0 

( 2 )1/2 .;;;ellzll·llvll +a2 10 "lzl4dt ·llvll 

.;;; ellzll . Ilvll + a2 11zlli4 ' Ilvll 
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where II . II L4 is the norm in L 4(SI, R2n). By the Sobolev inequalities II z II L4 ,,;; a3 11 z II. 
Then we get 

Ifo2"(Hz(Z) - Bz, v) dtl,,;; ellz II . Ilv n + a2aj liz 11 2. II vii. 

Then using the above formula we have 

Then 

I (cp(u) - Qu, v)l= Alfo2"(~(z) - (B - A)z, v) dtl 

";;Alf"(Hz(Z)-Bz,v)dtl by (6-8) 

,,;; Aellzll . IIvll + Aa2a~llzI12. Ilvll. 

-1' Ilcp(z)-Qzll -1' (cp(z)-Qz,v),,:::, 1m = 1m sup "'" 1\10. 
Ilzll~O liz II Ilzll~O Ilvll=1 IIzll 

By the arbitrariness of 10, (4-5)(c) follows. 0 
In order to apply Theorem 4.6 or Corollary 4.11, we need the following lemma. 

LEMMA 5.6. If H satisfies (HI) and (H 2 ), using the notation (5-8), (5-9), (5-9'), (4-4), 
and (4-4') we have 

dim(V+ n W-) - cod(V+ + W-) = &(AB, AA). 
In order to prove Lemma 5.6, we shall study the structure of the spaces defined by 

(4-4) and (4-4'). 
We start this program by studying the spectrum of the differential operators 

ez = (J ~ + AA)Z 

and 

regarded as (unbounded) selfadjoint operators in L2(SI, R2n) since we have 

(Lz, v)= 12"(ez, v) dt 'Vz E D(e), 'Vv E H, 
o 

(b) «L + Q)z, v)= 12"(l':z, v) dt 'Vz E D(I':), 'Vv E H. 
o 

(a) 
(5-10) 

Let us consider the following eigenvalue problem 

(5-11) , ;-;-{ u E C 2n 

(-ijJ + AA)u = IW, i = V-I ,j E Z. 

The operator ijJ is a Hermitian operator, so there exists an orthonormal basis {ujk } 

(k = 1, ... , 2n; j E Z) of eigenvectors corresponding to real eigenvalues {Pjd. If ujk 

is an eigenvector, then iijk is also an eigenvector corresponding to the same 
eigenvalue. 
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We claim that ujk cannot have all real components for} =1= O. In fact we have 

ij(Jujk , ujk ) + (Aujk , ujk ) = J-tk(Ujk , ujk )· 

In the above equality, the second term and the right-hand side term are real; 
therefore ij(Jujk , ujk ) is real. Therefore, for} =1= 0, (Jujk , ujk ) must be a purely 
imaginary number, and this contradicts the fact that all the components of ujk are 
real. Then it follows that ujk and ujk are linearly independent. Therefore every 
eigenvalue has even multiplicity (for) =1= 0). Also we can order the ujk's in such a 
way that ujk corresponds to the same eigenvalue ujk as uj,k+n for k = 1, ... ,no 

Also we can suppose that 

(5-12) Uj,k = -iuj,k+n for} =1= O. 

For k = 1, ... ,2n and} E Z we set 

(5-13) 

Then by (5-12), 

(5-14) { (a) Vj,n+k ==Wjk 

(b) wj,n+k vjk 
for} =1= O. 

For} = 0, we choose all the uO,k real, then we have 

(5-15) UO,k = VO,k' WO,k = O. 
Using elementary linear algebra we have 

LEMMA 5.7. The Vj,k'S are an orthonormal basis for R2n for each} E Z. Similarly the 
Wj,k'S are an orthonormal basis for R2n for each} E Z \ {O}. 

PROOF. For} =1= 0 take a vector a E R2n. In particular a E C 2n , so there are 
numbers a k = 13k + iYk E C (13k, Yk E R) such that 

2n 2n 2n 

a = ~ akujk = ~ (f3kVjk - YkWjk) + i ~ YkVjk + f3kWjk. 
k=l k=l k=l 

Since we have assumed a real, the last term vanishes and using (5-14) we have 
n n 

a = ~ f3kVjk - YkVj,n+k + ~ f3k+ nVj ,n+k - Yn+kVjk' 
k=l k=l 

This proves that the Vj,k'S are a basis in R2n. 

The same argument shows that also the wjk form a basis in R2n for} =1= O. For} = 0 
the conclusion follows by (5-15). 0 

Using (5-11) and (5-13) we can write a formula which involves only real compo-
nents: 

(5-16) { 
!JWjk + AAvjk : J-tjkVjk' 

jJvjk + AAwjk J-tjkWjk' 

The above formula could give an alternative definition of the vj,k'S and the wj.k's. We 
now set 

(5-17) 1 
ej ,k = --;::::=- ( vjk cos }t + wjk sin }t), 

-,j21T 
k = 1, ... ,2n and} E Z. 
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It is easy to check that the ej,k's are eigenfunctions of e, i.e. 

eej,k = }Ljkejk for k = 1, ... ,2n and} E Z. 

I t is easy to see that the eigenspace 
k= 1, ... ,n,}EZ\{0}, 

is T,-invariant. 
For} = 0, we get that 

567 

Since the Uj,k'S have been chosen normalized in C2n , all the ej,k's are normalized in 
L2(SI, R2n ). Using the Fourier expansion (5-5) and the fact that the vk's and the wk's 
form a basis in R2n (Lemma 5.7), it is not difficult to show that the ej,k's form an 
orthonormal basis in L2( S I, R2 n). 

Using (5-10) and (5-6') it is easy to see that the functions 

}EZ,k= 1, ... ,2n, 

are the normalized eigenvectors of L corresponding to the eigenvalues (1 + I) Itl}Ljk 
and that they form an orthonormal basis in H = Hl/2(SI, R2n). 

Next we consider the eigenvalue problem 

(5-18) 

Using the same arguments used for the eigenvalue problem (5-11) we can find a 
basis of normalized eigenfunctions of e 

ej,k = i5jk cos}t + wjk sin}t 

where i5jk + iWjk = ujk are the eigenvectors of the problem (5-18). These eigenfunc-
tions correspond to the eigenvalues iljk of the problem (5-18). 

Then the functions (1 + I) 1)- leJ,k are normalized in H. They are the eigenvectors 
of L + Q and they correspond to the eigenvalues (1 + I) 1)-I}Ljk' 

Finally we are able to characterize the spaces of the formulas (4-4) and (4-4'). 
In fact we have 

V ± = Sp { ej , k' ej , n +k I} E Z, k = 1"." n, and }L jk ~ O} , 

VO = Sp{ ej,k' ej,n+k I} E Z, k = 1, ... ,n, and }Ljk = OJ, 

W"= Sp{ej,k,ej,n+kI}EZ,k= 1" .. ,n,andiljk~O}, 

WO = Sp{ ej,k' ejk I} E Z, k = 1, ... ,n, and iljk s: O} 

(the closures are taken in H). 
Now we are able to prove Lemma 5.6. 
PROOF OF LEMMA 5.6. We set 

Hj = Sp{ ejk' ej,k+n I k = 1, ... ,n}, } E Z, 
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By our construction we get 

(a) dim Uj-= N(ijJ + XB), 

(b) dim Vj+ = 2n - N(ijJ + XA). 
(5-19) 

By elementary linear algebra, we have 

(5-20) dim(Vj+ + Uj-) = dim Vj+ +dim Uj--dim(Vj+ n Uj-) 

and, since Vj+ and Uj- C ~ 

dim(Vj+ + Uj-) = dim Hj - codH;(Vj+ + Uj-) 
= 2n - cOdH/Vj+ + Uj-). (5-21 ) 

Combining (5-20) and (5-21) and using (5-19) we get: 

dim( Vj+ n Uj-) - cod HJ { Vj+ + Uj-) = dim Vj+ + dim Uj- - 2n 

= N(ijJ + XB) - N(ijJ + XA) = itj(XB; XA). 

Since H = (f)jEZHj we get 
dim(V+ n W-) - codH(V+ + W-) = ~itiXB; XA) = it(XB, XA). 

j 

Thus Lemma 5.6 is proved. D 

LEMMA 5.8. If the Hamiltonian function satisfies (HI)' (H 2 ), (H 3 ), H 4 ) and the 
functional (5-7) satisfies (4-5)(b), then the equation (5-3) has at least tit(XB, XA) 
nontrivial 27T-periodic solutions. 

PROOF. By our assumptions and Lemma 5.6, f satisfies all the hypotheses of 
Theorem 4.6 except (4-5)(e). F in our case is the space of the constants. By (H 3 ), 

}-to k > 0, so Fe v+ . Now we can apply Theorem 4.6 and we can define k critical 
vaiues with k = tit(XB, XA) via Lemma 5.6. It remains to prove that they do not 
correspond to constant functions (cf. Remark 4.4). We argue indirectly and we 
suppose that zk E F is a critical point of f. Then, since all the critical values defined 
by Theorem 4.6 are negative we have 

f(zk) = Ck < o. 
By the definition off(6-7), we get 

f(zk) = 27TXH(Zk) 

and 
H(Zk) = (27TXt ck < 0 

which contradicts (H4). Thus the lemma is proved. D 
PROOF OF THEOREM 5.1. We claim that if (Hs) holds, then 0 fl. a(L). 
We have proved that 

a(L) = {o + IJlrl}-tj,kIJ E Zandk = 1, ... ,2n}. 

Thus it is sufficient to show that 

o fl. a( ijJ + XA) with X = 2T7T. 
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We argue indirectly and we suppose there is a v E C 2n such that 
ijJv + AAv = O. 

Then, applying J, we get 
AJAv = ijv. 

569 

Thus ij E o(AJA) = o('rJA/27T) which contradicts (Hs). Then, from easy computa-
tions, (4-5)(b) follows (cf. Remark 4.10). Therefore we get the conclusion from 
Lemma 5.8. 0 

PROOF OF THEOREM 5.2. Because of Lemma 5.8, it is enough to prove that the 
functional (5-7) satisfies (4-5)(b). We let M I , M2 , ••• be positive constants. Let Zm be 
a sequence such that 
(5-22) 

We shall write zm = z;;; + z~ + z;;. E V+ EB V O EB V-. 
By (5-22), for m large enough, we get 

!<LZm,Z;;;>+AIa2"(v:(z),z;;;)dt!,;;;; liz;;; II. 

By (H 6 ), 1 V:( z) I,;;;; MI' Then by the above inequality and (4-4) 

,8 liz;;; 112';;;;1 (Lzm, Z;;;>I,;;;; 27TAMlllz;;; II + liz;;; II (,8>0). 
This gives a uniform bound for z;;;. In the same manner, we can get a uniform 
bound for z;;'. Moreover, since f( Z m) is supposed to converge, it is bounded and 

M2 ;;;. f(zm);;;' A l 2"V(zm) dt -I <Lzm, zm>1 
o 

;;;. A f"v(z~) dt + A12"(V(zm) - V(z~)) dt - M3 
o 0 

;;;. A l2"v(z~) dt - AM11 2" 1 Zm - z~ 1 dt - M3 
o 0 

;;;. A t"v(z~) dt - 27TAMlllz;;; +z;;.11 - M;;;. A l2"v(z~) - M4 • 
o 0 

Therefore M"V(z~) dt is uniformly bounded by a constant Ms. Because of (H7) 
there is a function x: R+ -> R+ such that 

(a) X(O)=O; lim X(t)= +oo;x'(t) >0, 
,~ +00 

(b) V(z);;;'X(lzi)-M6 • 

(5-23) 

Since VO is a finite dimensional space, if II z~ II -> +00, then 

On the other hand, by (5-23)(b), we have 

12" x(1 z~ I) dt ,;;;; t'" v( z~) dt + 27T ,;;;; Ms + 27T6 • 
o 0 

Therefore also the z~ are uniformly bounded and the theorem is proved. 
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PROOF OF THEOREM 5.3. Because of Lemma 5.8, it is enough to show that the 
functional (5-7) satisfies (4-5)(b). This fact is shown in [7] in the proof of Corollary 
4.11. 0 

REMARK 5.9. Amann and Zehnder [2] have estimated the number of T-periodic 
solutions for uniformly convex Hamiltonians which satisfy HI' H2 and other techni-
cal assumptions. Under (Hs) (cf. (-It3», this number is greater or equal to 

max{Ind(B, A, A-I); Ind(A, B, A-I)} 

which, by (-It6) and (-It3 ), equals 1-It(AB, AA) I . 
Their proof reduces the problem to a finite dimensional one with no fixed points. 

Our proof works directly in infinite dimensional setting. Moreover we have treated 
more general Hamiltonians, at the expense of the condition 
(5-24) -It(AB, AA) > 0 

which we needed to control F and get meaningful results in Theorems 5.1, 5.2 and 
5.3. 

Adding the further symmetry property H( z) = H( -z) to the Hamiltonian the 
space of fixed points F reduces to to} and the previous theorem can be improved as 
is shown in Theorem 5.10. 

In addition to the result of Amann and Zehnder and Theorem 5.10, other results 
are available when -It(AB, AA) < O. If the Hamiltonian function has the form 

H( p, q) = tp2 + V( q ), 

an estimate of the number of T-periodic solution given in [6] using the fact that the 
corresponding variational problem was semidefinite. For example, under (HI)' (H 2 ), 

(H4) and V(q)';;; 0 for every q E Rn such that 3V(q)/3q = 0 it was shown (Theo-
rem 4.4) that (5.2) possesses at least t -It(AA, AB) nonconstant periodic solutions 
(actually the number of solutions was estimated by comparing the eigenvalues of 
32V/3q2 at 0 and at 00; but it is not difficult to show that this number equals 
t-lt(AA, AB». 

We conclude this section with 

THEOREM 5.10. Suppose that H satisfies (HI)' (H 2), (Hs) and 

(H II ) H(z) = H(-z). 
Then the equation (5-2) has at least k nonzero independent T-periodic solutions where 

k = ~ max { -It ( 2T7T B, 2T7T A ) ; -It ( 2T7T A, 2T7T B ) } . 

PROOF. We consider the space 
HI/2(sl,R2n) 

with the action of the antipodal mapping described in the examples of §2. 
If -It(AB, AA) ;;;.-It(AA, AB) (A = T/27T) then we argue in the same manner we 

have done for proving Lemma 5.8 and Theorem 5.1. We do not need (H3) since it 
was used only to prove that F C V+ while here F = {O}. Also we do not need (H4) 
since it has been used only for proving that the critical values do not correspond to 
constant functions. 
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Therefore we get the same conclusion as Theorem 4.6 and since in this case d = 1, 
we get {}CAB, AA) critical values. However, if they correspond to nonconstant 
periodic solutions, they are degenerate, i.e. i(Kc) = 2 (or a multiple of 2). If we want 
to count the independent periodic solutions (i.e. if we identify the solutions obtained 
from each other by a time translation) we have to divide this number by 2. 

If {}(AA, "AB) > {}("AB, "AA) we argue in the same way replacing the functional 
(6-7) with its negative. 0 

REMARK 5.11. We have not used (H 4 ), which was used in the proof of Lemma 5.8 
to show that we did not get constant solutions. In fact the conclusion of Theorem 
5.l0 is about nonzero periodic solutions, but it might happen that there are some 
constant solutions. 

REMARK 5.12. Theorem 5.10 could have been applied also to the non autonomous 
case for a T-periodic Hamiltonian function since we have exploited only the evenness 
and not the time translation invariancy. Then, instead of getting k independent 
families of T-periodic solutions we would just get 2k pairs of periodic solutions. 

6. Remarks on superquadratic Hamiltonian systems. The Hamiltonian system (5-2) 
is called superquadratic if 

(6-1) {there is a constant p E (2, +(0) and R > 0 such that 0 < 
pH(z) .;;; (HzCz), z) when 1 z I> R. 

In [16] the existence of at least one periodic solution for any T > 0 was established 
for superquadratic Hamiltonian systems. 

This fact of course implies that (5-2) possesses infinitely many T-periodic solutions 
since a T / I-periodic solution is also a T-periodic solution for any I E N+ . Thus if we 
apply our abstract theorems, we do not improve such known results for autonomous 
superquadratic Hamiltonian systems. 

However, when H is even and time dependent Theorem 4.6 can be applied to get a 
new result: 

THEOREM 6.1. Suppose H(t, z) = 1(Az, z) + H(t, z) with A: R2n --> R2n is a 
symmetric operator and H satisfies 

(a) H(t,z);;;'0"iltER,"iIzER2n . 

(b) H( t, z) = 0{1 z n as 1 z 1--> O. 
(c) there is p E (2, +(0) and R > 0 such that 

o < pH( t, z) .;;; ( Hz ( z ), z ), "iI t E Rand 1 z I;;;. R. 

(6-2) (d) thereisT>OsuchthatH(t+T,z) 
= H(t, z) "iIt E R, "iIz E R2n. 

( e) there are constants a, R I > 0 such that 

1 Hz ( t, z) I.;;; a( z, Hz ( t, z)), "iIt E R, 1 z I> R I • 

(f) H(t,z)=H(t,-z). 

Moreover suppose that the eigenvalue problem 

(6-3) 
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has 2n purely imaginary eigenvalues different from O. Then the Hamiltonian system 

(6-4) t=JHz(t,z) 
has infinitely many T-periodic solutions. 

In [14] Rabinowitz proved that the system (6-4) has at least one T-periodic solution 
without requiring (6-2)(f). Adding the symmetry property (6-2)(f) to N, we can prove 
that (6-4) has infinitely many periodic solutions. The proof is a straightforward 
application of Corollary 6.5, Lemma 4.8 and the estimates of [14]; so we shall not 
carry out the details. 
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