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Abstract

Polygenic risk scores (PRS) can provide useful information for personalized risk stratifica-

tion and disease risk assessment, especially when combined with non-genetic risk factors.

However, their construction depends on the availability of summary statistics from genome-

wide association studies (GWAS) independent from the target sample. For best compatibil-

ity, it was reported that GWAS and the target sample should match in terms of ancestries.

Yet, GWAS, especially in the field of cancer, often lack diversity and are predominated by

European ancestry. This bias is a limiting factor in PRS research. By using electronic health

records and genetic data from the UK Biobank, we contrast the utility of breast and prostate

cancer PRS derived from external European-ancestry-based GWAS across African, East

Asian, European, and South Asian ancestry groups. We highlight differences in the PRS dis-

tributions of these groups that are amplified when PRS methods condense hundreds of

thousands of variants into a single score. While European-GWAS-derived PRS were not

directly transferrable across ancestries on an absolute scale, we establish their predictive

potential when considering them separately within each group. For example, the top 10% of

the breast cancer PRS distributions within each ancestry group each revealed significant

enrichments of breast cancer cases compared to the bottom 90% (odds ratio of 2.81 [95%

CI: 2.69,2.93] in European, 2.88 [1.85, 4.48] in African, 2.60 [1.25, 5.40] in East Asian, and

2.33 [1.55, 3.51] in South Asian individuals). Our findings highlight a compromise solution

for PRS research to compensate for the lack of diversity in well-powered European GWAS

efforts while recruitment of diverse participants in the field catches up.
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Author summary

The translation of results from genome-wide association studies (GWAS) into polygenic

risk scores (PRS) to predict disease risk or outcomes is a major aspiration in the field of

statistical genetics. While there has been significant progress in this area for many com-

plex diseases, the lack of diversity in GWAS is transferred to PRS research. Discovery of

genetic risk factors, especially for cancer traits, are almost exclusively based on individuals

with European-ancestry, and it remains unclear if these results can be utilized for PRS

applications across non-European ancestries.
Here, we used external European-ancestry based GWAS results to construct breast and

prostate cancer PRS and showcase their utility as predictors across African, East Asian,

European, and South Asian ancestry groups using data from the UK Biobank. We

observed ancestry-specific PRS distributions, that when scaled within each group, could

identify individuals at higher risk of prostate and breast cancer in each group. Our study

highlights an opportunity to use results from large European GWAS for the construction

of PRS in diverse ancestry groups. To realize the full potential of PRS in early detection

and prevention of cancer across ethnic groups, we need rapid expanded recruitment of

diverse participants in the field of GWAS.

Introduction

Translating findings from genome-wide association studies (GWAS) to clinical utility in terms

of complex trait prediction is a major milestone in genetics research [1]. This is especially

important for traits whose estimated heritability was reported to be high. However, the identi-

fied common single nucleotide polymorphisms (SNPs) seldom have deterministic conse-

quences. While each identified common risk SNP contributes to the overall disease risk, by

itself it is unlikely to predict a large degree of variation in a disease outcome and thus usually

represents a poor predictor by itself. The combination of all risk SNPs into a polygenic risk

score (PRS) is a popular approach to improve predictive power and can be valuable for risk

stratification, i.e., the identification of a small subset of a population with extreme PRS values

that is at higher risk to develop a disease [1].

The discovery of risk SNPs through GWAS often depends on very large sample sizes of gen-

otyped data (hundreds of thousands of tag SNPs or more) especially if one aims to capture a

large fraction of the SNP heritability [2–4]. Until recently, GWAS of this scale were either

exclusively or predominantly based on European populations, trailed by Asian populations,

while all other ancestry groups comprised less than 5% [5]. The resulting bias in published

GWAS results [6] is passed on to the development and application of PRS for many complex

traits and despite current efforts to increase diversity in genetics research will likely continue

in the foreseeable future [6].

The lack of portability of PRS across populations with different ancestry compositions is

known and usually attributed to differences in causal variants, linkage disequilibrium (LD)

patterns, allele frequencies, and effect sizes [7,8]. In addition, genotyping or imputation meth-

ods that were originally developed for European ancestry (EUR) studies can amplify such dif-

ferences [7,8].

There are several examples of studies that explore PRS constructed using GWAS results

from different ancestry groups. Belsky et al. [9] constructed an obesity PRS based on EUR-

GWAS and found that it performed poorly individuals of African American compared to

those of EA [9]. Grinde et al. [10] assessed the performance of PRS based on EUR GWAS in a
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Hispanic/Latino population for three groups of traits: anthropometric measures, blood pres-

sure, and blood count. The EUR-based PRS performed well for anthropometric and blood

count traits but performed poorly for blood pressure traits [10]. EUR-based PRS for these

quantitative traits also showed on average a 3.3-fold decrease in predictive performance in

East Asian population when compared to the European population [11]. Others have demon-

strated an association between PRS and genetic ancestry [12,13]. Simply put, the literature cau-

tions against the transferability of EUR-based GWAS to other populations [5,8]. Recently we

have provided a catalog of more than 500 PRS for various cancer using EUR-based GWAS

[14]. However, there are little or no reports on the transferability of cancer PRS or whether

these PRS can be used for other ancestries.

The UK Biobank Study (UKB) offers detailed questionnaire, electronic health record

(EHR) and genetic data representing an excellent resource to study the influence of genetic

risk factors on common complex disease. While predominantly European ancestry, it also

includes over 20,000 participants of self-reported non-EUR ancestry (reported as “ethnic

groups”) [15] that can, together with genetically inferred ancestry information, be stratified

into the four main ancestry groups: African, East Asian, European or South Asian ancestry (S1

Table). Thus, UKB offers the opportunity to evaluate the performance of PRS across various

ancestry groups and to assess the transferability of EUR-based cancer PRS.

To increase power for such an evaluation, we focus on two common cancer traits, breast

and prostate cancer. Both of these traits offer several advantages for PRS explorations: high dis-

ease prevalence, large fraction of heritability already explained through known risk variants,

low chance of phenotype misclassification, and available full summary statistics from very

large, EUR-based GWAS [16,17].

Results

We constructed cancer PRS specifically for the European subgroup of UKB individuals using

two different approaches for each cancer trait: GPRS is an effect-size weighted PRS based on a

sparse set of GWAS hits (independent risk SNPs with P-value below 5x10-8) and CSPRS, a PRS

based on the Bayesian-regression method CS-PRS that uses continuous shrinkage (CS) priors

[18]. Relatively sparse sets of 334 and 377 SNPs were incorporated in the GPRS for breast can-

cer and prostate cancer, respectively. By contrast the CSPRS constructs integrated over 1.1 mil-

lion SNPs for each of the two cancers.

What can be clearly seen in Fig 1 are the different distributions of PRS across the European,

South Asian, African and East Asian ancestry groups that were statistically significantly differ-

ent in group means by one-way ANOVA (P < 2.31x10-141; S2 Table). Both breast cancer PRS

were on average higher in non-EUR groups, whereas prostate cancer PRS were higher in Afri-

can and lower in East and South Asian ancestry groups (Fig 1 and S2 Table). These differences

were pronounced for the CSPRS. This is likely a result of the summation of hundreds of thou-

sands allele-frequency differences between ancestry groups compared to a few hundred for the

GPRS. Overall, this suggests that these PRS are not directly transferable, e.g., a high breast can-

cer PRS in EUR individuals might fall into the lower PRS distribution of Africans ancestry

individuals. Fig 1 also shows that most of the EAS and AFR and half of the SAS female control

individuals would have a breast cancer CSPRS above the 10% population threshold and thus

might be considered at increased risk, when using the EUR-based scale as reference. And con-

versely, most if not all the EAS males would not reach the 10% population threshold of the

prostate cancer CSPRS, and males with genetic profiles that would place them at risk within

the EAS ancestry group would not be considered at risk on a EUR-centric scale.
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Still, what is striking is the consistent right shift of the PRS distributions in cases compared

to controls with each ancestry group (Fig 1). With exception of the small sample of East Asian

prostate cancer cases (n = 7), all PRS were significantly associated with increased continuous

ORs for their corresponding cancers when standardized to one standard deviation (S.D.)

within each ancestry group (OR [per unit S.D.]� 1.44, Table 1). Furthermore, all PRS also

Fig 1. Violin plots of the breast and prostate cancer PRS distributions. Breast cancer (left) and prostate cancer (right) GPRS (GWAS hit-based PRS, top)

and CSPRS (PRS-CS-based PRS, bottom) stratified by ancestry group are shown. Black vertical lines indicate 25, 50, and 75% quantiles within the ancestry-

specific case (orange) and control (green) distributions. Red lines indicate 10% quantiles of the corresponding UKB PRS distribution in all controls. Sample

sizes for each sub-set can be found in Table 1.

https://doi.org/10.1371/journal.pgen.1009670.g001
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indicated satisfactory discriminative performance within each ancestry group (covariate-

adjusted AUC [AAUC] > 0.589).

The CSPRSs usually outperformed the GPRSs in terms of association strength, accuracy

and discrimination (Table 1). Especially for the breast cancer, the CSPRS showed consistent

effect sizes across the ancestry groups (1.66�OR [per unit S.D.]� 1.77) and good discrimina-

tory ability (0.64� AAUC� 0.66)

To evaluate if the increased risk is observable with increasing score or only present in the

tails of the distribution, we stratified the PRS, again standardized within each ancestry group,

and detected a trend of increasing number of cases within the increasing CSPRS deciles. This

trend was strikingly monotonous in the substantially larger sample of European ancestry and,

except for the small sample of prostate cancer cases of East Asian ancestry, noticeable though

more capricious in non-EUR groups (Cochran-Armitage P < 0.00297; Fig 2 and S3 and S4

Tables). We saw similar trends for the GPRS (S1 Fig and S3 and S4 Tables).

Finally, we quantified the PRS’s ability to enrich cases in the top 10% of the PRS distribution

(defined in controls within each ancestry group) when compared to the bottom 90%. We

observed an enrichment for breast cancer cases in the tail of the PRS distribution when we

defined the top 10% within each ancestry group (breast cancer: OR Top10%> 2.18; prostate

cancer: OR Top10% > 1.41). The enrichment was particularly sizable for breast cancer CSPRS

for cases in European and African ancestry females (OR Top10%: 2.81 [95% CI: 2.69, 2.93]

and 2.88 [95% CI: 1.85, 4.48], respectively) as well as for the prostate cancer CSPRS for cases in

European, South Asian and East Asian ancestry males (OR Top10%: 4.00 [95% CI: 3.78, 4.23];

4.41 [95% CI: 2.43, 8.04] and 6.53 [95% CI: 1.71, 25.0], respectively; Table 2).

One may be concerned regarding the unbalanced case: control ratio used in our analysis

and potential distortion of the asymptotic properties of the test statistics. For our ancestry

Table 1. Association and evaluation of cancer PRS across ancestry groups.

GWAS Trait/Outcome PRS Method (SNPs) Ancestry Group n Cases n Controls PRS Association PRS Evaluation

AAUC (95% CI)Odds Ratio� (95% CI) P

Overall Breast Cancer GPRS (334) EUR 14109 214163 1.594 (1.567, 1.622) 1.7x10-613 0.628 (0.623, 0.632)

SAS 149 3598 1.451 (1.231, 1.71) 8.80x10-6 0.603 (0.557, 0.651)

AFR 116 3666 1.442 (1.199, 1.735) 0.00011 0.6 (0.546, 0.65)

EAS 45 1069 1.852 (1.385, 2.475) 3.20x10-5 0.676 (0.59, 0.757)

CSPRS (1,120,410) EUR 14109 214163 1.771 (1.739, 1.803) 5.4x10-857 0.653 (0.648, 0.657)

SAS 149 3598 1.656 (1.4, 1.958) 4.00x10-9 0.641 (0.594, 0.687)

AFR 116 3666 1.761 (1.453, 2.134) 7.90x10-9 0.651 (0.598, 0.701)

EAS 45 1069 1.761 (1.297, 2.39) 0.00029 0.66 (0.585, 0.735)

Prostate Cancer GPRS (377) EUR 6561 182590 1.943 (1.894, 1.993) 3.1x10-566 0.68 (0.674, 0.687)

SAS 51 4305 1.785 (1.389, 2.295) 6.00x10-6 0.652 (0.576, 0.726)

AFR 144 2681 1.501 (1.254, 1.796) 9.70x10-6 0.615 (0.567, 0.66)

EAS 7 622 1.63 (0.83, 3.205) 0.16 0.619 (0.442, 0.811)

CSPRS (1,120,596) EUR 6561 182590 2.14 (2.085, 2.197) 4.2x10-711 0.702 (0.695, 0.708)

SAS 51 4305 2.383 (1.826, 3.111) 1.70x10-10 0.745 (0.684, 0.8)

AFR 144 2681 1.325 (1.107, 1.586) 0.0021 0.579 (0.527, 0.63)

EAS 7 622 1.943 (1.005, 3.755) 0.048 0.626 (0.385, 0.853)

Analyses were adjusted for birth year, genotyping array, and first ten principal components. Odds ratios are given per standard deviation within ethnic group.

Abbreviations: AAUC, covariate-adjusted area under the receiver-operator characteristics curve; CI, confidence interval; GWAS, genome-wide association study; PRS,

polygenic risk score; GPRS: GWAS Hits-based PRS; CSPRS: PRS-CS based PRS; SNP, single nucleotide polymorphism; AFR: African; EAS: East Asian; EUR: European,

SAS: South Asian

https://doi.org/10.1371/journal.pgen.1009670.t001
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specific calibration and reference group selection, we need to retain the maximal number of

controls. We conducted a sensitivity analysis by using a matched sample that does not use all

of the controls and we noted consistent point estimates but wider confidence intervals due to

loss of sample size (S1 Text and S9 and S10 Tables).

Discussion

Overall, our findings in the UKB data are encouraging and suggest that cancer PRS derived

from large EUR-based GWAS can, to a certain degree, be useful for risk stratification within
EUR or within non-EUR individuals even though their distributions are dissimilar. However,

there are limitations in regard to the generalizability of this approach.

First, a matching ancestry group with sufficiently large control sample sizes is needed to

adequately place a person’s PRS within its reference PRS distributions. In this study, we

Fig 2. Observed case proportion across CSPRS (PRS-CS-based PRS) risk deciles. Proportions of breast cancer cases (A) and prostate cancer cases (B)

stratified by ancestry groups are shown. Total case counts per ancestry group are given in parentheses. Underlying sample counts and corresponding

Cochran-Armitage Test for Trend P-values are reported in S3 and S4 Tables.

https://doi.org/10.1371/journal.pgen.1009670.g002

Table 2. Case enrichment in breast and prostate cancer PRS top 10% versus bottom 90%.

GWAS Trait/Outcome Ancestry Group GPRS CSPRS

OR Top 10% (95% CI) P OR Top 10% (95% CI) P

Overall Breast Cancer EUR 2.36 (2.26, 2.47) 1.0x10-328 2.81 (2.69, 2.93) 2.5x10-499

SAS 2.54 (1.70, 3.79) 5.98x10-6 2.33 (1.55, 3.51) 5.01x10-5

AFR 2.18 (1.36, 3.49) 0.00116 2.88 (1.85, 4.48) 2.75x10-6

EAS 3.52 (1.79, 6.9) 0.000254 2.60 (1.25, 5.40) 0.0106

Prostate Cancer EUR 3.32 (3.13, 3.52) 1.26x10-346 4.00 (3.78, 4.23) 3.77x10-495

SAS 3.11 (1.66, 5.84) 0.000409 4.41 (2.43, 8.04) 1.18x10-6

AFR 1.41 (0.85, 2.34) 0.179 1.78 (1.09, 2.92) 0.0223

EAS 4.89 (1.26, 19.0) 0.0219 6.53 (1.71, 25.0) 0.00614

Abbreviations: PRS, polygenic risk score; GPRS: GWAS Hits-based PRS; CSPRS: PRS-CS based PRS; AFR, African; EAS, East Asian; EUR, European, SAS, South Asian

https://doi.org/10.1371/journal.pgen.1009670.t002
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obtained more homogenous groups by combining self-reported ethnic groups with genetically

inferred ancestry groups. However, even within such groups an adjustment for any remaining

population stratification, e.g., by including the first ten principal components, should be

considered.

Secondly, overall breast and prostate cancer were selected because they offered several

advantages compared to other traits: their estimated heritability is relatively high [17,19,20],

they are common across all ancestry groups (breast cancer 3.1–6.2%; prostate cancer 1.2–5.1%;

S1 Table) and each had summary statistics publicly available from large EUR-based GWAS

meta-analyses.

Thirdly, the UKB study individuals were recruited from the same country, the UK, where

healthcare coverage and non-genetic risk factors might be more similar compared to diverse

ancestries from geographically separate populations. Though we recognize that lifestyle, health

disparities and socioeconomic factors (e.g., education and income, S1 Table) might vary

between ethnic groups of the UKB study.

While a fraction of risk variants is likely population-specific, our observation of a decent

predictive PRS performance across ancestry groups indicated that, for the two analyzed can-

cers, a fraction of the cancer risk variants obtained from an EUR-based GWAS is shared with

non-EUR groups. So, while PRS that rely on EUR-based GWAS were reported to be not ideal

for non-EUR groups, they can be useful for risk stratification also in non-EUR groups. In our

examples, the proportion of cases by PRS risk decile was informative within the studies ances-

try group, i.e., an increasing PRS was associated with increased proportion of cases also among

non-EUR groups. However, we noted that the EUR-based prostate cancer PRS performed par-

ticularly poor in AFR males indicating ancestry-specific diversity for prostate cancer as previ-

ously reported [21]. This also suggested that transferability of PRS across ancestries needs to

be carefully evaluated by cancer and by ancestry group.

In our manuscript we focused on the two primary methods GPRS and CSPRS representing

a simple and complex method of the spectrum of PRS methods. However, we also compared

the performance of three alternative methods C+T PRS, Lassosum PRS, and LDpred PRS. For

breast and prostate cancer these additional methods performed better than GPRS but poorer

than CSPRS (S1 Text and S6–S10 Figs and S5 and S6 Tables). Furthermore, we repeated the

same approach in another genetics linked biorepository at the University of Michigan, the

Michigan Genomics Initiative (MGI) and though much limited in sample size, we saw similar

performance behavior of GPRS and CSPRS in relative terms and the improved performance in

terms of risk stratification by using ancestry-specific reference groups (S1 Text and S11 and

S12 Figs and S7 and S8 Tables).

We recommend that PRS be constructed using GWAS based on the same ancestry group, if

large diverse GWAS and their summary statistics are available. In the absence of large-scale

GWAS for non-EUR groups, several groups are developing methods to improve PRS perfor-

mance in non-EUR groups. These methods may leverage evidence that SNP selection based on

EUR-based GWAS is generally appropriate while the use of EUR-based GWAS effect sizes in

ethnically mismatched groups might not [22]. Duncan et al. [5] highlight the need for

improved understanding and consideration of LD and variant frequencies when applying

European ancestry based GWAS to non-EUR groups, while at the same time calling for large-

scale GWAS in diverse populations [5]. Modelling ancestry into polygenic risk predictors or

focusing on global risk variants might allow the retention of comparable predictive power

across ancestries [8] and allow risk stratification also in understudies populations as shown for

Hispanics/Latinos [10]. However, a restriction to global risk variants, e.g., defined by similar

frequencies across all ancestry groups, might lead to the exclusion of true causal risk variants.

When we applied such a global risk variant approach to the current dataset through simple
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frequency filtering, we made PRS distributions more similar across ancestry groups but also

observed markedly reduced predictive power (S2–S5 Figs). While efforts are underway to con-

tribute more diverse samples to genetic studies, their sample sizes will trail behind sample sizes

of European ancestry GWAS for a long time [6]. Multiethnic PRS that combine larger EUR-

based GWAS with smaller GWAS of the target ancestry group were recently proposed and

might alleviate the discrepancies in sample sizes for the time being [23]. Until we obtain com-

parable/reasonable sized discovery cohorts, we need alternative approaches that make the best

use of the data we already have, so that diverse ancestry groups can benefit from PRS research,

too.

Taken together, our findings suggest that cross-ancestry cancer PRS can be useful for risk

stratification, especially when there is a lack of well-powered diverse cancer GWAS. However,

caution needs to be applied to the interpretation and application of such genetic risk predictors

as they can be prone to multiple sources of bias [8].

Materials and methods

Ethics statement

UK Biobank received ethical approval from the NHS National Research Ethics Service North

West (11/NW/0382). Michigan Genomic Initiative (MGI) study participants’ consent forms

and protocols were reviewed and approved by the University of Michigan Medical School

Institutional Review Board (IRB ID HUM00099605 and HUM00155849). All participants gave

full informed written consent.

Subjects/Genotypes

The UK Biobank (UKB) is a population-based cohort collected from multiple sites across the

United Kingdom and includes over 500,000 participants aged between 40 and 69 years when

recruited in 2006–2010 [15]. The open-access UK Biobank data used in this study included

questionnaire data, electronic health record data, and genotype and genotyped derived data.

The present analyses were conducted under UK Biobank data application number 24460.

We excluded 2,338 samples which were flagged by the UK Biobank quality control docu-

mentation as (1) het.missing.outliers, (2) putative.sex.chromosome.aneuploidy, (3) excess.rela-

tives, (4) excluded.from.kinship.inference, (5) the reported gender did not match the inferred

sex, (6) withdrew from the UKB study and (7) were not included in the phased and imputed

genotype data of chromosomes 1–22, and X (in.Phasing.Input.chr1_22 and in.Phasing.Input.

chrX) [24]. 485,434 individuals remained after sample QC filtering. We used the UK BioBank

Imputed Dataset (v3, https://www.ebi.ac.uk/ega/datasets/EGAD00010001474) and limited

analyses to variants with imputation information score > = 0.3 and MAF > = 0.01%.

Phenotype and covariate data

For the current study we included self-reported ethnic group (field: 21000), sex (fields: 31,

22001), income (field: 738), education (field: 6138), diet (fields: 1309, 1319, 1329, 1339, 1349,

1359, 1369, 1379, 1389), year of birth (field: 34).

We used ICD9 (fields: 40013, 41203, and 41205) and ICD10 code data (fields: 40001, 40002,

40006, 41201, 41202, and 41204) to define breast and prostate cancer case control studies

using PheWAS codes ‘174.1‘and ‘185‘[25]. Underlying ICD codes for cases were as follows:

breast cancer: ICD9: 233.0; ICD10: C50.�, D05.1, D05.7, D05.9, and Z85.3; and prostate cancer:

ICD9: 185, 233.4; ICD10: C61, D07.5.
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We used both principal component-based ancestry prediction and self-reported ethnic

information to define ancestry groups. For the ancestry prediction, we applied online augmen-

tation, decomposition and Procrustes (OADP) method to the genotype data of 488,366 UK

Biobank samples with 2492 samples from the 1000 Genomes Project data as the reference

(FRAPOSA; see Web resources) [26] to infer the super populations membership (AFR: Afri-

can, AMR: Ad Mixed American, EAS: East Asian, EUR: European, and SAS: South Asian

ancestry). We combined the self-reported ethnic group and the inferred super population

membership to define the following four ancestry groups for downstream analyses: African

(self-reported “Black or Black British” and inferred AFR), East Asian (self-reported “Asian or

Asian British” or East Asian and inferred EAS), European (self-reported European and

inferred EUR), and South Asian individuals (self-reported “Asian or Asian British” and

inferred SAS). By doing so we excluded individuals with admixed and/or unknown ancestry as

well as individuals where self-reported ethnic group did not match their inferred ancestry.

For each cancer trait and each ancestry group, we extracted a maximal set of unrelated indi-

viduals (defined as kinship coefficient < 0.0884) [27] by first selecting a maximal set of unre-

lated cases before selecting a set of unrelated controls that was not related to any of the selected

cases. [28]

PRS construction

PRS combine information across a defined set of genetic loci, incorporating each locus’s asso-

ciation with the target trait. The PRS for person j takes the form PRSj = ∑iβiGij where i indexes

the included loci for that trait, weight βi is the log odds ratios retrieved from the external

GWAS summary statistics for locus i, and Gij is a continuous version of the measured dosage

data for the risk allele on locus i in subject j.
We downloaded full GWAS summary statistics made available by the “Breast Cancer Asso-

ciation Consortium” (BCAC) [20], and the “Prostate Cancer Association Group to Investigate

Cancer Associated Alterations in the Genome” (PRACTICAL) [17] (also see Web resources)

both based on European ancestry samples. For each set of GWAS summary statistics, we create

two PRS. For the first PRS construction method, we performed linkage disequilibrium (LD)

clumping of variants with p-values below 5x10-8 by using the imputed allele dosages of 10,000

randomly selected samples and a pairwise correlation cut-off at r2 < 0.1 within 1Mb window.

Using the resulting loci (“independent GWAS hits”), we calculated the weighted PRS (see

above) denoted as GPRS (“GWAS hits-based PRS”). For the second PRS construction method,

we used the software package “PRS-CS” [18] which uses a precomputed LD reference panel

based on external European samples of the 1000 Genomes Project (“EUR reference”) to define

a PRS based on the continuous shrinkage (CS) priors that we denote as CSPRS. We applied a

MAF filter of 1% and, in contrast to the GPRS only included autosomal variants that overlap

between summary statistics, LD reference panel, and target panel. Full list of weights can be

downloaded from our web site (see Web resources).

We obtained deep sequenced data on the 2504 samples in the 1000 Genomes Project’s phase

three panel that were generated by the New York Genome Center (see Web resources). Sequenc-

ing data was filtered to have a minimum depth of 10, to be polymorphic and located on chromo-

somes 1–22, X. We stratified the data according to their super populations (AFR, African; AMR,

Ad Mixed American; EAS, East Asian; EUR, European; SAS, South Asian) and calculated their

population specific allele frequencies using PLINK 1.9 (see Web resources). We created five sets

of variants whose MAF was>1% in AFR, EAS, EUR, SAS and whose maximal allele frequency

difference between any of the four populations was below 5, 10, 15, 20 or 25%. The resulting sets

were used to filter the GWAS summary statistics before running PRS-CS.
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Using the R package “Rprs” (see Web resources) and the weights from the two PRS meth-

ods, the dosage-based value of each PRS was then calculated for each UKB individual. For

comparability of association effect sizes corresponding to the continuous PRS across cancer

traits and PRS construction methods, we centered PRS values to their mean and scaled them

to have a standard deviation of 1.

Statistical tests

For the PRS evaluations, we fit the following model for each PRS and cancer phenotype adjust-

ing for covariates Birthyear, genotyping Array, and the first ten principal components (PC):

logit ðPðPhenotype is presentjPRS; Birthyear; Array; PCÞÞ
¼ b0 þ bPRSPRSþ bBirthyearBirthyearþ bArrayArray þ β PC; ð1Þ

where the PCs were the first ten principal components obtained from the principal component

analysis provided by the UK Biobank study and where “Array” represents the genotyping array.

For each PRS derived for each GWAS source/method combination, we also assessed the fol-

lowing PRS performance measures relative to observed binary disease status: overall associa-

tion and the ability to discriminate between cases and controls as measured by the area under

the covariate-adjusted receiver operating characteristic (AROC; semiparametric frequentist

inference [29]) curve (denoted AAUC) using R package “ROCnReg” [30]. Firth’s bias reduc-

tion method was used to resolve the problem of separation in logistic regression (R package

“brglm2”) [31,32].

For each ancestry group (African, East Asian, European, and South Asian), we also strati-

fied the UKB control dataset (i.e., the corresponding gender subset depending on cancer type)

into ten groups of equal size by PRS deciles and determined the number of observed case sub-

jects that were observed in the range of each risk decile. To assess for the presence of an associ-

ation between cancer and increasing PRS risk deciles, we performed a Cochran Armitage Test

for Trend implemented in the R package “DescTools” [33]. To study the ability of the PRS to

identify high risk patients, we fit the above model (Eq 1) by replacing the PRS with an indicator

for whether the PRS value was in the top decile or not.

To test if the PRS means between the ancestry groups are equal we used ANOVA adjusting

for genotyping array, birthyear and the first 10 principal components.
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