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ABSTRACT We construct multi-currency models with stochastic volatility (SV) and correlated
stochastic interest rates with a full matrix of correlations. We first deal with a foreign exchange
(FX) model of Heston-type, in which the domestic and foreign interest rates are generated by
the short-rate process of Hull–White (Hull, J. and White, A. [1990] Pricing interest-rate deriva-
tive securities, Review of Financial Studies, 3, pp. 573–592). We then extend the framework by
modelling the interest rate by an SV displaced-diffusion (DD) Libor Market Model (Andersen,
L. B. G. and Andreasen, J. [2000] Volatility skews and extensions of the libor market model,
Applied Mathematics Finance, 1[7], pp. 1–32), which can model an interest rate smile. We provide
semi-closed form approximations which lead to efficient calibration of the multi-currency models.
Finally, we add a correlated stock to the framework and discuss the construction, model calibration
and pricing of equity–FX–interest rate hybrid pay-offs.

KEY WORDS: foreign exchange (FX), stochastic volatility, Heston model, stochastic interest
rates, interest rate smile, forward characteristic function, hybrids, efficient calibration

1. Introduction

Since the financial crisis, investors tend to look for products with a long-time horizon

that are less sensitive to short-term market fluctuations. When pricing these exotic

contracts, it is desirable to incorporate in a mathematical model the patterns present in

the market that are relevant to the product.

Due to the existence of complex foreign exchange (FX) products, like the Power-

Reverse Dual-Currency (Sippel and Ohkoshi, 2002), the Equity-CMS Chameleon or the

Equity-Linked Range Accrual TRAN swaps (Caps, 2007), that all have a long lifetime

and are sensitive to smiles or skews in the market, improved models with stochastic

interest rates need to be developed.

The literature on modelling FX rates is rich and many stochastic models are avail-

able. An industrial standard is a model from Frey and Sommer (1996) and Sippel
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2 L. A. Grzelak and C. W. Oosterlee

and Ohkoshi (2002), where log-normally distributed FX dynamics are assumed and

Gaussian, one-factor, interest rates are used. This model gives analytic expressions

for the prices of basic products for at-the-money options. Extensions on the interest

rate side were presented in Schlögl (2002b) and Mikkelsen (2001), where the short-rate

model was replaced by a Libor Market Model framework.

A Gaussian interest rate model was also used in Piterbarg (2006), in which a local

volatility model was applied for generating the skews present in the FX market. In

another paper, Kawai and Jäckel (2007), a displaced-diffusion (DD) model for FX was

combined with the interest rate Libor Market Model.

Stochastic volatility (SV) FX models have also been investigated. For example, in

Haastrecht and Pelsser (2011), the Schöbel–Zhu model was applied for pricing FX

in combination with short-rate processes. This model leads to a semi-closed form for

the characteristic function. However, for a normally distributed volatility process, it

is difficult to outperform the Heston model with independent stochastic interest rates

(Haastrecht and Pelsser, 2011).

Research on the Heston dynamics in combination with correlated interest rates has

led to some interesting models. In Andreasen (2006) and Giese (2006), an indirectly

imposed correlation structure between Gaussian short-rates and FX was presented.

The model is intuitively appealing, but it may give rise to very large model param-

eters (Antonov et al., 2008). An alternative model was presented in Antonov and

Misirpashaev (2006) and Antonov et al. (2008), in which calibration formulas were

developed by means of Markov projection techniques.

In this article we present an FX Heston-type model in which the interest rates are

stochastic processes, correlated with the governing FX processes. We first discuss the

Heston FX model with Gaussian interest rate (Hull–White model (Hull and White

1990)) short-rate processes. In this model a full matrix of correlations is used.

This model, denoted by FX-HHW here, is a generalization of our work in Grzelak

and Oosterlee (2011), where we dealt with the problem of finding an affine approxi-

mation of the Heston equity model with a correlated stochastic interest rate. In this

article, we apply this technique in the world of FX.

Secondly, we extend the framework by modelling the interest rates by a market

model, that is, by the SV-DD Libor Market Model (Andersen and Andreasen, 2002;

Piterbarg, 2005). In this hybrid model, called FX-HLMM here, we incorporate a non-

zero correlation between the FX and the interest rates and between the rates from

different currencies. Because it is not possible to obtain closed form formulas for the

associated characteristic function, we use a linearization approximation, developed

earlier, in Grzelak and Oosterlee (2010).

For both models we provide details on how to include a foreign stock in the multi-

currency pricing framework.

Fast model evaluation is highly desirable for FX options in practice, especially

during the calibration of the hybrid model. This is the main motivation for the gener-

alization of the linearization techniques in Grzelak and Oosterlee (2010, 2011) to the

world of FX. We will see that the resulting approximations can be used very well in the

FX context.

This article is organized as follows: Section 2 discusses the extension of the Heston

model by stochastic interest rates, described by short-rate processes. We provide

details about some approximations in the model and then derive the related forward
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Stochastic Volatility and Correlated Interest Rates 3

characteristic function. We also discuss the model’s accuracy and calibration results.

Section 3 gives the details for the cross-currency model with interest rates driven by the

market model and Section 4 concludes.

2. Multi-Currency Model with Short-Rate Interest Rates

Here, we derive the model for the spot FX, ξ (t), expressed in units of domestic

currency, per unit of a foreign currency.

We start the analysis with the specification of the underlying interest rate processes,

rd(t) and rf (t). At this stage we assume that the interest rate dynamics are defined

via short-rate processes, which under their spot measures, that is, Q − domestic and

Z − foreign, are driven by the Hull–White (Hull and White, 1990) one-factor model:

drd(t) = λd(θd(t) − rd(t))dt + ηddW
Q

d (t), (1)

drf (t) = λf (θf (t) − rf (t))dt + ηf dWZ
f (t), (2)

where W
Q

d (t) and WZ
f (t) are Brownian motions under Q and Z, respectively.

Parameters λd , λf determine the speed of mean reversion to the time-dependent term

structure functions θd(t), θf (t), and parameters ηd , ηf are the volatility coefficients.

These processes, under the appropriate measures, are linear in their state variables,

so that for a given maturity T (0 < t < T), the zero-coupon bonds (ZCBs) are known

to be of the following form:

Pd(t, T) = exp(Ad(t, T) + Bd(t, T)rd(t)),

Pf (t, T) = exp(Af (t, T) + Bf (t, T)rf (t)), (3)

with Ad(t, T), Af (t, T) and Bd(t, T), Bf (t, T) are analytically known quantities (see, e.g.

Brigo and Mercurio, 2007). In the model the money market accounts are given by

dMd(t) = rd(t)Md(t)dt, and dMf (t) = rf (t)Mf (t)dt. (4)

Using the Heath–Jarrow–Morton arbitrage-free argument (Heath et al., 1992), the

dynamics for the ZCBs, under their own measures generated by the money savings

accounts, are known and given by the following result:

Result 2.1 (ZCB dynamics under the risk-free measure.) The risk-free dynamics of the

ZCBs, Pd(t, T) and Pf (t, T), with maturity T are given by

dPd(t, T)

Pd(t, T)
= rd(t)dt −

(∫ T

t

Ŵd(t, s)ds

)
dW

Q

d (t), (5)

dPf (t, T)

Pf (t, T)
= rf (t)dt −

(∫ T

t

Ŵf (t, s)ds

)
dWZ

f (t), (6)
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4 L. A. Grzelak and C. W. Oosterlee

where Ŵd(t, T), Ŵf (t, T) are the volatility functions of the instantaneous forward rates

fd(t, T), ff (t, T), respectively, that are given by

dfd(t, T) = Ŵd(t, T)

∫ T

t

Ŵd(t, s)ds + Ŵd(t, T)dW
Q

d (t), (7)

dff (t, T) = Ŵf (t, T)

∫ T

t

Ŵf (t, s)ds + Ŵf (t, T)dWZ
f (t). (8)

Proof. For the proof see Musiela and Rutkowski (1997).

The spot-rates at time t are defined by rd(t) ≡ fd(t, t), rf (t) ≡ ff (t, t).

By means of the volatility structures, Ŵd(t, T), Ŵf (t, T), one can define a num-

ber of short-rate processes. In our framework the volatility functions are chosen to

be Ŵd(t, T) = ηd exp (−λd(T − t)) and Ŵf (t, T) = ηf exp
(
−λf (T − t)

)
. The Hull–White

short-rate processes, rd(t) and rf (t) as in Equations (1) and (2), are then obtained and

the term structures, θd(t), θf (t), expressed in terms of instantaneous forward rates, are

also known. The choice of specific volatility determines the dynamics of the ZCBs:

dPd(t, T)

Pd(t, T)
= rd(t)dt + ηdBd(t, T)dW

Q

d (t),

dPf (t, T)

rPf (t, T)
= rf (t)dt + ηf Bf (t, T)dWZ

f (t), (9)

with Bd(t, T) and Bf (t, T) as in Equation (3), given by

Bd(t, T) =
1

λd

(
e−λd (T−t) − 1

)
, Bf (t, T) =

1

λf

(
e−λf (T−t) − 1

)
. (10)

For a detailed discussion on short-rate processes, we refer to the analysis of Musiela

and Rutkowski (1997). In the next subsection we define the FX hybrid model.

2.1. The Model with Correlated Gaussian Interest Rates

The FX-HHW model, with all processes defined under the domestic risk-neutral

measure, Q, is of the following form:

dξ (t)
ξ (t)

=
(
rd(t) − rf (t)

)
dt +

√
v(t)dW

Q
ξ (t), ξ (0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√

v(t)dWQ
v (t), v(0) > 0,

drd(t) = λd(θd(t) − rd(t))dt + ηddW
Q

d (t), rd(0) > 0,

drf (t) =
(
λf (θf (t) − rf (t)) − ηf ρξ ,f

√
v(t)
)

dt + ηf dW
Q

f (t), rf (0) > 0.

(11)
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Stochastic Volatility and Correlated Interest Rates 5

Here, the parameters κ, λd and λf determine the speed of mean reversion of the latter

three processes and their long-term mean is given by v̄, θd(t) and θf (t), respectively.

The volatility coefficients for the processes rd(t) and rf (t) are given by ηd and ηf and

the volatility-of-volatility parameter for process v(t) is γ .

In the model we assume a full matrix of correlations between the Brownian motions

W(t) = [W
Q
ξ (t), WQ

v (t), W
Q

d (t), W
Q

f (t)]T :

dW(t)(dW(t))T =

⎛
⎜⎝

1 ρξ ,v ρξ ,d ρξ ,f

ρξ ,v 1 ρv,d ρv,f

ρξ ,d ρv,d 1 ρd,f

ρξ ,f ρv,f ρd,f 1

⎞
⎟⎠ dt. (12)

Under the domestic-spot measure the drift in the short-rate process, rf (t), gives rise

to an additional term, −ηf ρξ ,f

√
v(t). This term ensures the existence of martingales,

under the domestic-spot measure, for the following prices (for more discussion, see

Shreve (2004)):

χ1(t) := ξ (t)
Mf (t)

Md(t)
and χ2(t) := ξ (t)

Pf (t, T)

Md(t)
,

where Pf (t, T) is the price foreign ZCB (Equation (9)), and the money savings accounts

Md(t) and Mf (t) are from Equation (4).

To see that the processes χ1(t) and χ2(t) are martingales, one can apply the Itô

product rule, which gives

dχ1(t)

χ1(t)
=
√

v(t)dW
Q
ξ (t), (13)

dχ2(t)

χ2(t)
=
√

v(t)dW
Q
ξ (t) + ηf Bf (t, T)dW

Q

f (t). (14)

The change of dynamics of the underlying processes, from the foreign-spot to

the domestic-spot measure, also influences the dynamics for the associated bonds,

which, under the domestic risk-neutral measure, Q, with the money savings account

considered as a numéraire, have the following representations:

dPd(t, T)

Pd(t, T)
= rd(t)dt + ηdBd(t, T)dW

Q

d (t), (15)

dPf (t, T)

Pf (t, T)
=
(

rf (t) − ρξ ,f ηf Bf (t, T)
√

v(t)
)

dt + ηf Bf (t, T)dW
Q

f (t), (16)

with Bd(t, T) and Bf (t, T) as in Equation (10).
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6 L. A. Grzelak and C. W. Oosterlee

2.2. Pricing of FX Options

In order to perform efficient calibration of the model, we need to be able to

price basic options on the FX rate, V (t, X(t)), for a given state vector, X(t) =
[ξ (t), v(t), rd(t), rf (t)]T :

V (t, X(t)) = EQ

(
Md(t)

Md(T)
max(ξ (T) − K , 0)

∣∣∣F(t)

)
,

with

Md(t) = exp

(∫ t

0

rd(s)ds

)
.

Now, we consider a forward price, �(t), such that

EQ

(
max(ξ (T) − K , 0)

Md(T)

∣∣∣F(t)

)
=

V (t, X (t))

Md(t)
=: �(t).

By Itô’s lemma we have

d�(t) =
1

Md(t)
dV (t) − rd(t)

V (t)

Md(t)
dt, (17)

with V (t) := V (t, X(t)). We know that �(t) must be a martingale, that is, E(d�(t)) = 0.

Including this in Equation (17) gives the following Fokker–Planck forward equation for

V :

rdV =
1

2
η2

f

∂2V

∂r2
f

+ ρd,f ηdηf

∂2V

∂rd∂rf

+
1

2
η2

d

∂2V

∂r2
d

+ ρv,f γ ηf

√
v

∂2V

∂v∂rf

+ ρv,dγ ηd

√
v

∂2V

∂v∂rd

+
1

2
γ 2v

∂2V

∂v2
+ ρξ ,f ηf ξ

√
v

∂2V

∂ξ∂rf

+ ρx,dηdξ
√

v
∂2V

∂ξ∂rd

+ ρξ ,vγ ξv
∂2V

∂ξ∂v
+

1

2
ξ 2v

∂2V

∂ξ 2
+
(
λf (θf (t) − rf ) − ρξ ,f ηf

√
v
) ∂V

∂rf

+ λd(θd(t) − rd)
∂V

∂rd

+ κ(v̄ − v)
∂V

∂v
+ (rd − rf )ξ

∂V

∂ξ
+

∂V

∂t
.

This 4D partial differential equation (PDE) contains non-affine terms, like square-

roots and products. It is therefore difficult to solve it analytically and a numerical PDE

discretization, like finite differences, needs to be employed. Finding a numerical solu-

tion for this PDE is therefore rather expensive and not easily applicable for model

calibration. In Subsection 2.2.1, we propose an approximation of the model, which is

useful for calibration.
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Stochastic Volatility and Correlated Interest Rates 7

2.2.1 The FX Model under the Forward Domestic Measure. To reduce the complex-

ity of the pricing problem, we move from the spot measure, generated by the money

savings account in the domestic market, Md(t), to the forward FX measure where the

numéraire is the domestic ZCB, Pd(t, T). As indicated in Musiela and Rutkowski

(1997) and Piterbarg (2006), the forward is given by

FXT (t) = ξ (t)
Pf (t, T)

Pd(t, T)
, (18)

where FXT (t) represents the forward exchange rate under the T-forward measure, and

ξ (t) stands for FX rate under the domestic-spot measure. The superscript should not

be confused with the transpose notation used at other places in the text.

By switching from the domestic risk-neutral measure, Q, to the domestic T-forward

measure, QT , the discounting will be decoupled from taking the expectation, that is,

�(t) = Pd(t, T)ET
(
max

(
FXT (T) − K , 0

)
|F(t)

)
. (19)

In order to determine the dynamics for FXT (t) in Equation (18), we apply Itô’s

formula:

dFXT (t) =
Pf (t, T)

Pd(t, T)
dξ (t) +

ξ (t)

Pd(t, T)
dPf (t, T) − ξ (t)

Pf (t, T)

P2
d(t, T)

dPd(t, T)

+ ξ (t)
Pf (t, T)

P3
d(t, T)

(dPd(t, T))2 +
1

Pd(t, T)
(dξ (t)dPf (t, T))

−
Pf (t, T)

P2
f (t, T)

(dPd(t, T)dξ (t)) −
ξ (t)

P2
d(t, T)

dPd(t, T)dPf (t, T). (20)

After substitution of SDEs (11), (15) and (16) into (20), we arrive at the following FX

forward dynamics:

dFXT (t)

FXT (t)
= ηdBd(t, T)

(
ηdBd(t, T) − ρξ ,d

√
v(t) − ρd,f ηf Bf (t, T)

)
dt

+
√

v(t)dW
Q
ξ (t) − ηdBd(t, T)dW

Q

d (t) + ηf Bf (t, T)dW
Q

f (t). (21)

Since FXT (t) is a martingale under the T-forward domestic measure, that

is, Pd(t, T)ET (FXT (T)|F(t)) = Pd(t, T)FXT (t) =: Pf (t, T)ξ (t), the appropriate

Brownian motions under the T-forward domestic measure, dW T
ξ (t), dW T

v (t), dW T
d (t)

and dW T
f (t), need to be determined.

A change of measure from domestic-spot to domestic T-forward measure requires

a change of numéraire from money savings account, Md(t), to ZCB Pd(t, T). In the

model we incorporate a full matrix of correlations, which implies that all processes
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8 L. A. Grzelak and C. W. Oosterlee

will change their dynamics by changing the measure from spot to forward. Lemma 2.2

provides the model dynamics under the domestic T-forward measure, QT .

Lemma 2.2. (The FX-HHW model dynamics under the QT measure.) Under the T-

forward domestic measure, the model in Equation (11) is governed by the following

dynamics:

dFXT (t)

FXT (t)
=
√

v(t)dW T
ξ (t) − ηdBd(t, T)dW T

d (t) + ηf Bf (t, T)dW T
f (t), (22)

where

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T)

√
v(t)
)

dt + γ
√

v(t)dW T
v (t), (23)

drd(t) =
(
λd(θd(t) − rd(t)) + η2

dBd(t, T)
)

dt + ηddW T
d (t), (24)

drf (t) =
(
λf (θf (t) − rf (t)) − ηf ρξ ,f

√
v(t) + ηdηf ρd,f Bd(t, T)

)
dt + ηf dW T

f (t), (25)

with a full matrix of correlations given in Equation (12), and with Bd(t, T), Bf (t, T)

given by Equation (10).

The proof can be found in Appendix A.

From the system in Lemma 2.2 we see that after moving from the domestic-spot Q

measure to the domestic T-forward QT measure, the forward exchange rate FXT (t)

does not depend explicitly on the short-rate processes rd(t) or rf (t). It does not contain

a drift term and only depends on dW T
d (t), dW T

f (t) (see Equation (22)).

Remark 1. Since the sum of three correlated, normally distributed random variables,

Q = X + Y + Z, remains normal with the mean equal to the sum of the individual

means and the variance equal to

v2
Q = v2

X + v2
Y + v2

Z + 2ρX ,Y vX vY + 2ρX ,ZvX vZ + 2ρY ,ZvY vZ,

we can represent the forward Equation (22) as

dFXT

FXT
=
(

v + η2
dB2

d + η2
f B2

f − 2ρξ ,dηdBd

√
v

+ 2ρξ ,f ηf Bf

√
v − 2ρd,f ηdηf BdBf

) 1
2

dW T
F . (26)

Although the representation in Equation (26) reduces the number of Brownian

motions in the dynamics for the FX, one still needs to find the appropriate cross-terms,

like dW T
F (t)dW T

v (t), in order to obtain the covariance terms. For clarity we therefore

prefer to stay with the standard notation.
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Stochastic Volatility and Correlated Interest Rates 9

Remark 2. The dynamics of the forwards, FXT (t) in Equation (22) or in Equation

(26), do not depend explicitly on the interest rate processes, rd(t) and rf (t), and are

completely described by the appropriate diffusion coefficients. This suggests that the

short-rate variables will not enter the pricing PDE. Note that this is only the case for

models in which the diffusion coefficient for the interest rate does not depend on the

level of the interest rate.

In Section 2.3, we derive the corresponding pricing PDE and provide model

approximations.

2.3. Approximations and the Forward Characteristic Function

As the dynamics of the forward FX, FXT (t), under the domestic forward measure

involve only the interest rate diffusions dW T
d (t) and dW T

f (t), a significant reduction of

the pricing problem is achieved.

In order to find the forward ChF we take, as usual, the log-transform of the forward

rate FXT (t), that is, xT (t) := log FXT (t), for which we obtain the following dynamics:

dxT (t) = (ζ (t,
√

v(t)) −
1

2
v(t))dt +

√
v(t)dW T

ξ (t) − ηdBddW T
d (t) + ηf Bf dW T

f (t), (27)

with the variance process, v(t), given by

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd

√
v(t)
)

dt + γ
√

v(t)dW T
v (t), (28)

where we used the notation Bd := Bd(t, T) and Bf := Bf (t, T), and

ζ (t,
√

v(t)) =
(
ρx,dηdBd − ρx,f ηf Bf

)√
v(t) + ρd,f ηdηf BdBf −

1

2

(
η2

dB2
d + η2

f B2
f

)
.

By applying the Feynman–Kac theorem, we can obtain the characteristic function of

the forward FX rate dynamics. The forward characteristic function

φT := φT (u, X(t), t, T) = ET
(

eiuxT (T)
∣∣F(t)

)
,

with final condition, φT (u, X(T), T , T) = eiuxT (T), is the solution of the following

Kolmogorov backward PDE:

−
∂φT

∂t
=
(
κ(v̄ − v) + ρv,dγ ηd

√
vBd(t, T)

) ∂φT

∂v
+
(

1

2
v − ζ (t,

√
v)

)(
∂2φT

∂x2
−

∂φT

∂x

)

+
(
ρx,vγ v − ρv,dγ ηd

√
vBd(t, T) + ρv,f γ ηf

√
vBf (t, T)

) ∂2φT

∂x∂v
+

1

2
γ 2v

∂2φT

∂v2
.

This PDE contains, however, non-affine
√

v-terms so that it is non-trivial to find the

solution. Recently, in Grzelak and Oosterlee (2011), we have proposed two methods for

linearization of these non-affine1 square roots of the square root process (Cox et al.,
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10 L. A. Grzelak and C. W. Oosterlee

1985). The first method is to project the non-affine square root terms on their first

moments. This is also the approach followed here.2

The approximation of the non-affine terms in the corresponding PDE is then done

as follows: We assume

√
v(t) ≈ E

(√
v(t)
)

=: ϕ(t), (29)

with the expectation of the square root of v(t) given by

E

(√
v(t)
)

=
√

2c(t)e
−ω(t)

2

∞∑

k=0

1

k!

(
ε(t)

2

)k Ŵ
(

1+ℓ
2

+ k
)

Ŵ( ℓ
2

+ k)
, (30)

and

c(t) =
1

4κ
γ 2(1 − e−κt), ℓ =

4κ v̄

γ 2
, ε(t) =

4κv(0)e−κt

γ 2(1 − e−κt)
. (31)

Ŵ(k) is the gamma function defined by

Ŵ(k) =
∫ ∞

0

tk−1e−tdt.

Although the expectation in Equation (30) is a closed form expression, its evaluation

is rather expensive. One may prefer to use a proxy, for example,

E(
√

v(t)) ≈ β1 + β2e−β3t, (32)

in which the constant coefficients β1, β2 and β3 can be determined by asymptotic

equality with Equation (30) (see Grzelak and Oosterlee (2011) for details).

Projection of the non-affine terms on their first moments allows us to derive the

corresponding forward characteristic function, φT , which is then of the following form:

φT (u, X (t), t, T) = exp(A(u, τ ) + B(u, τ )xT (t) + C(u, τ )v(t)),

where τ = T − t, and the functions A(τ ) := A(u, τ ), B(τ ) := B(u, τ ) and C(τ ) :=
C(u, τ ) are given by

B′(τ ) = 0,

C′(τ ) = −κC(τ ) +
B2(τ ) − B(τ )

2
+ ρx,vγ B(τ )C(τ ) +

γ 2C2(τ )

2
,

A′(τ ) = κ v̄C(τ ) + ρv,dγ ηdϕ(τ )Bd(τ )C(τ ) − ζ (τ , ϕ(τ ))
(
B2(τ ) − B(τ )

)

+
(
−ρv,dηdγ ϕ(τ )Bd(τ ) + ρv,f γ ηf ϕ(τ )Bf (τ )

)
B(τ )C(τ ),
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Stochastic Volatility and Correlated Interest Rates 11

with ϕ(t) = E(
√

v(t)) and Bi(τ ) = λ−1
i

(
e−λiτ − 1

)
for i = {d, f }. The initial conditions

are B(0) = iu, C(0) = 0 and A(0) = 0.

With B(τ ) = iu, the complex-valued function C(τ ) is of the Heston-type (Heston,

1993), and its solution reads

C(τ ) =
1 − e−dτ

γ 2(1 − ge−dτ )

(
κ − ρx,vγ iu − d

)
, (33)

with d =
√

(ρx,vγ iu − κ)2 − γ 2iu(iu − 1), g = κ−γρx,viu−d

κ−γρx,viu+d
.

The parameters κ, γ , ρx,v are given in Equation (11).

Function A(τ ) is given by

A(τ ) =
∫ τ

0

(κ v̄ + ρv,dγ ηdϕ(s)Bd(s) − ρv,dηdγ ϕ(s)Bd(s)iu

+ρv,f γ ηf ϕ(s)Bf (s)iu)C(s)ds + (u2 + iu)

∫ τ

0

ζ (s, ϕ(s))ds, (34)

with C(s) in Equation (33). It is most convenient to solve A(τ ) numerically with, for

example, Simpson’s quadrature rule. With correlations ρv,d , ρv,f equal to zero, a closed

form expression for A(τ ) would be available (Grzelak and Oosterlee, 2011).

We denote the approximation, by means of linearization, of the full-scale FX-HHW

model by FX-HHW1. It is clear that efficient pricing with Fourier-based methods can

be done with FX-HHW1, and not with FX-HHW.

By the projection of
√

v(t) on its first moment in Equation (29), the corresponding

PDE is affine in its coefficients, and reads

−
∂φT

∂t
= (κ(v̄ − v) + �1)

∂φT

∂v
+
(

1

2
v − ζ (t, ϕ(t))

)(
∂2φT

∂x2
−

∂φT

∂x

)

+
(
ρx,vγ v − �2

) ∂2φT

∂x∂v
+

1

2
γ 2v

∂2φT

∂v2
, (35)

with

φT (u, X (T), T , T) = ET
(

eiuxT (T)
∣∣∣F(T)

)
= eiuxT (T),

and ζ (t, ϕ(t)) = �3 + ρd,f ηdηf Bd(t, T)Bf (t, T) −
1

2

(
η2

dB2
d(t, T) + η2

f B2
f (t, T)

)
.

The three terms, �1, �2 and �3, in the PDE (Equation (35)) contain the function

ϕ(t):

�1 := ρv,dγ ηdBd(t, T)ϕ(t),

�2 :=
(
ρv,dγ ηdBd(t, T) − ρv,f γ ηf Bf (t, T)

)
ϕ(t),
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12 L. A. Grzelak and C. W. Oosterlee

�3 :=
(
ρx,dηdBd(t, T) − ρx,f ηf Bf (t, T)

)
ϕ(t).

When solving the pricing PDE for t → T , the terms Bd(t, T) and Bf (t, T) tend to zero,

and all terms that contain the approximation vanish. The case t → 0 is furthermore

trivial, since
√

v(t)
t→0→ E(

√
v(0)).

Under the T-forward domestic FX measure, the projection of the non-affine terms

on their first moments is expected to provide high accuracy. In Section 2.5 we perform

a numerical experiment to validate this.

It is worth mentioning that also an alternative approximation for the non-affine

terms
√

v(t) is available (see Grzelak and Oosterlee, 2011). This alternative approach

guarantees that the first two moments are exact. In this article we stay, however, with

the first representation.

2.4. Pricing a Foreign Stock in the FX-HHW Model

Here, we focus our attention on pricing a foreign stock, Sf (t), in a domestic market.

With this extension we can in principle price equity–FX–interest rate hybrid products.

With an equity smile/skew present in the market, we assume that Sf (t) is given by

the Heston SV model:

dSf (t)

Sf (t)
= rf (t)dt +

√
ω(t)dWZ

Sf
(t),

dω(t) = κf (ω̄ − ω(t))dt + γf

√
ω(t)dWZ

ω (t),

drf (t) = λf (θf (t) − rf (t))dt + ηf dWZ
f (t),

(36)

where Z indicates the foreign-spot measure and the model parameters, κf , γf , λf , θf (t)

and ηf , are as before.

Before deriving the stock dynamics in domestic currency, the model has to be cali-

brated in the foreign market to plain vanilla options. This can be efficiently done with

the help of a fast pricing formula.

With the foreign short-rate process, rf (t), established in Equation (11), we need to

determine the drifts for Sf (t) and its variance process, ω(t), under the domestic-spot

measure. The foreign stock, Sf (t), can be expressed in domestic currency by mul-

tiplication with the FX, ξ (t), and by discounting with the domestic money savings

account, Md(t). Such a stock is a tradable asset, so the price ξ (t)Sf (t)/Md(t) (with ξ (t)

in Equation (11), Sf (t) from Equation (36) and the domestic money-saving account

Md(t) in Equation (4)) needs to be a martingale.

By applying Itô’s lemma to ξ (t)Sf (t)/Md(t), we find

d
(
ξ (t)

Sf (t)

Md (t)

)

ξ (t)
Sf (t)

Md (t)

= ρξ ,Sf

√
v(t)
√

ω(t)dt +
√

v(t)dW
Q
ξ (t) +

√
ω(t)dWZ

Sf
, (37)

where Q and Z indicate the domestic-spot and foreign-spot measures, respectively. To

make process ξ (t)Sf (t)/Md(t) a martingale we set

dWZ
Sf

(t) = dW
Q

Sf
− ρξ ,Sf

√
v(t)dt,
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Stochastic Volatility and Correlated Interest Rates 13

where v(t) is the variance process of FX defined in Equation (11).

Under the change of measure, from foreign- to domestic-spot, Sf (t) has the

following dynamics:

dSf (t)

Sf (t)
= rf (t)dt +

√
ω(t)dWZ

Sf
(t)

=
(

rf (t) − ρξ ,Sf

√
v(t)
√

ω(t)
)

dt +
√

ω(t)dW
Q

Sf
(t). (38)

The variance process is correlated with the stock and by the Cholesky decomposition

we find

dω(t) = κf (ω̄ − ω(t))dt + γf

√
ω(t)

(
ρSf ,ωdW̃Z

Sf
(t) +

√
1 − ρ2

Sf ,ωdW̃Z
ω (t)

)

=
(
κf (ω̄ − ω(t)) − ρSf ,ωρSf ,ξγf

√
ω(t)

√
v(t)
)

dt + γf

√
ω(t)dWQ

ω (t). (39)

Sf (t) in Equation (38) and ω(t) in Equation (39) are governed by several non-affine

terms. Assuming that the foreign stock, Sf (t), is already calibrated to market data,

we only need to simulate the foreign stock dynamics in the domestic market. Monte

Carlo simulation of the foreign stock under domestic measure can be done as, for

example, presented in Andersen (2007). The outstanding property of Andersen’s QE

Monte Carlo scheme is that the Heston model can be accurately simulated when the

Feller condition is satisfied as well as when this condition is violated.

2.5. Numerical Experiment for the FX-HHW Model

In this section we check the errors resulting from the various approximations of the

FX-HHW1 model. We use the set-up from Piterbarg (2006), which means that the

interest rate curves are modelled by ZCBs defined by Pd(t = 0, T) = exp(−0.02T) and

Pf (t = 0, T) = exp(−0.05T). Furthermore,

ηd = 0.7%, ηf = 1.2%, λd = 1%, λf = 5%.

We choose3

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1. (40)

The correlation structure, defined in Equation (12), is given by

⎛
⎜⎝

1 ρξ ,v ρξ ,d ρξ ,f

ρξ ,v 1 ρv,d ρv,f

ρξ ,d ρv,d 1 ρd,f

ρξ ,f ρv,f ρd,f 1

⎞
⎟⎠ =

⎛
⎜⎝

100% −40% −15% −15%

−40% 100% 30% 30%

−15% 30% 100% 25%

−15% 30% 25% 100%

⎞
⎟⎠ . (41)
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14 L. A. Grzelak and C. W. Oosterlee

The initial spot FX rate (Dollar, $, per Euro, €) is set to 1.35. For the FX-HHW model,

we compute a number of FX option prices with many expiries and strikes, using two

different pricing methods.

The first method is the plain Monte Carlo method, with 50.000 paths and 20Ti steps,

for the full-scale FX-HHW model, without any approximations.

For the second pricing method, we have used the ChF, based on the approximations

in the FX-HHW1 model in Section 2.3. Efficient pricing of plain vanilla products

is then done by means of the COS method (Fang and Oosterlee, 2008), based on a

Fourier cosine series expansion of the probability density function, which is recovered

by the ChF with 500 Fourier cosine terms.

We also define the experiments as in Piterbarg (2006), with expiries given by

T1, . . . , T10, and the strikes are computed by the formula

Kn(Ti) = FXTi (0) exp
(

0.1δn

√
Ti

)
, (42)

with

δn = {−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5},

and FXTi (0) as in Equation (18) with ξ (0) = 1.35. This formula for the strikes is

convenient, since for n = 4, strikes K4(Ti) with i = 1, . . . , 10 are equal to the for-

ward FX rates for time Ti. The strikes and maturities are presented in Table B1 in

Appendix B.

The option prices resulting from both models are expressed in terms of the implied

Black volatilities. The differences between the volatilities are tabulated in Table 1.

The approximation FX-HHW1 appears to be highly accurate for the parameters

considered.

We report a maximum error of about 0.1% volatility for at-the-money options with

a maturity of 30 years and less than 0.07% for the other options.

Given that the exchange rate is defined in units of domestic currency per unit of for-

eign currency, it is also plausible to assume positive correlation between the exchange

Table 1. Differences, in implied volatilities, between the FX-HHW and FX-HHW1 models.

Ti K1(Ti) (%) K2(Ti) (%) K3(Ti) (%) K4(Ti) (%) K5(Ti) (%) K6(Ti) (%) K7(Ti) (%)

6m −0.03 −0.02 0.00 0.02 0.03 0.04 0.05
1y −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
3y 0.05 0.04 0.02 −0.01 −0.03 −0.06 −0.09
5y 0.06 0.04 0.02 0.00 −0.03 −0.07 −0.10
7y 0.08 0.06 0.04 0.03 0.01 −0.01 −0.03
10y −0.02 −0.03 −0.03 −0.05 −0.07 −0.09 −0.12
15y −0.12 −0.10 −0.09 −0.09 −0.09 −0.09 −0.10
20y 0.09 0.09 0.09 0.08 0.08 0.07 0.06
25y −0.15 −0.11 −0.08 −0.06 −0.05 −0.04 −0.04
30y 0.10 0.11 0.12 0.12 0.12 0.12 0.12

Notes: The corresponding FX option prices and the standard deviations are tabulated in Table B5. Strike
K4(Ti) is the at-the-money strike.
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Figure 1. Comparison of implied volatilities from the market and the FX-HHW1 model for FX
European call options for maturities of 1, 10 and 20 years. The strikes are provided in Table B1

in Appendix B (ξ (0) = 1.35).

rate and foreign interest rates. Similar results in terms of accuracy are obtained when

the correlations ρξ ,d and ρξ ,f are positive (see Table B3 in Appendix B).

In Subsection 2.5.1, the calibration results to FX market data are presented.

2.5.1 Calibration to Market Data. We discuss the calibration of the FX-HHW

model to FX market data. In the simulation the reference market-implied volatili-

ties are taken from Piterbarg (2006) and are presented in Table B2 in Appendix B.

In the calibration routine the approximate model FX-HHW1 was applied. The corre-

lation structure is as in Equation (41). In Figure 1 some of the calibration results are

presented.

Our experiments show that the model can be well calibrated to the market

data. For long maturities and for deep-in-the-money options, some discrepancy is

present. This is however typical when dealing with the Heston model (not related

to our approximation), since the skew/smile pattern in FX does not flatten for

long maturities. This was sometimes improved by adding jumps to the model

(Bates’ model). In Appendix B in Table B4 the detailed calibration results are

tabulated.

Short-rate interest rate models can typically provide a satisfactory fit to at-the-

money interest rate products. They are therefore not used for pricing derivatives that

are sensitive to the interest rate skew. This is a drawback of the short-rate interest rate

models. In Section 3, an extension of the framework, so that interest rate smiles and

skews can be modelled as well, is presented.

3. Multi-Currency Model with Interest Rate Smile

In this section, we discuss a second extension of the multi-currency model, in which an

interest rate smile is incorporated. This hybrid model models two types of smiles, the

smile for the FX rate and the smiles in the domestic and foreign fixed income markets.

We abbreviate the model by FX-HLMM. It is especially interesting for FX products
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16 L. A. Grzelak and C. W. Oosterlee

that are exposed to interest rate smiles. A description of such FX hybrid products can

be found in the handbook by Hunter (Hunter and Picot 2005).

A first attempt to model the FX by SV and interest rates driven by a market model

was proposed in Takahashi and Takehara (2008), assuming independence between

log-normal-Libor rates and FX. In our approach we define a model with non-zero

correlation between FX and interest rate processes.

As in the previous sections, the SV FX is of the Heston type, which under domestic

risk-neutral measure, Q, follows the following dynamics:

dξ (t)
ξ (t)

= (. . .)dt +
√

v(t)dW
Q
ξ (t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√

v(t)dWQ
v (t), v(0) > 0,

(43)

with the parameters as in Equation (11). Since we consider the model under the for-

ward measure, the drift in the first SDE does not need to be specified (the dynamics of

domestic-forward FX ξ (t)Pf (t, T)/Pd(t, T) do not contain a drift term).

In the model we assume that the domestic and foreign currencies are independently

calibrated to interest rate products available in their own markets. For simplicity, we

also assume that the tenor structure for both currencies is the same, that is, Td ≡ Tf =
{T0, T1, . . . , TN ≡ T} and τk = Tk − Tk−1 for k = 1, . . . , N. For t < Tk−1 we define

the forward Libor rates Ld,k(t) := Ld(t, Tk−1, Tk) and Lf ,k(t) := Lf (t, Tk−1, Tk) as

Ld,k(t) :=
1

τk

(
Pd(t, Tk−1)

Pd(t, Tk)
− 1

)
, Lf ,k(t) :=

1

τk

(
Pf (t, Tk−1)

Pf (t, Tk)
− 1

)
. (44)

For each currency we choose the SV-DD Libor Market Model from Andersen and

Andreasen (2002) for the interest rates, under the T-forward measure generated by the

numéraires Pd(t, T) and Pf (t, T), given by

dLd,k(t) = vd,kφd,k(t)
√

vd(t)
(
μd(t)

√
vd(t)dt + dW

d,T
k (t)

)
,

dvd(t) = λd(vd(0) − vd(t))dt + ηd

√
vd(t)dW

d,T
v (t),

(45)

and

dLf ,k(t) = vf ,kφf ,k(t)
√

vf (t)
(
μf (t)

√
vf (t)dt + dŴ

f ,T
k (t)

)
,

dvf (t) = λf (vf (0) − vf (t))dt + ηf

√
vf (t)dŴ

f ,T
v (t),

(46)

with

μd(t) = −
N∑

j=k+1

τjφd,j(t)vd,j

1 + τjLd,j(t)
ρd

k,j, μf (t) = −
N∑

j=k+1

τjφf ,j(t)vf ,j

1 + τjLf ,j(t)
ρ

f
k,j, (47)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
z
e
l
a
k
,
 
L
e
c
h
 
A
.
]
 
A
t
:
 
1
2
:
0
5
 
2
6
 
M
a
y
 
2
0
1
1



Stochastic Volatility and Correlated Interest Rates 17

where

φd,k = βd,kLd,k(t) + (1 − βd,k)Ld,k(0),

φf ,k = βf ,kLf ,k(t) + (1 − βf ,k)Lf ,k(0).

The Brownian motion, dW
d,T
k , corresponds to the kth domestic Libor rate, Ld,k(t),

under the T-forward domestic measure; and the Brownian motion, dŴ
f ,T
k , relates to

the kth foreign market Libor rate, Lf ,k(t), under the terminal foreign measure T .

In the model, vd,k(t) and vf ,k(t) determine the level of the interest rate volatility

smile; the parameters βd,k(t) and βf ,k(t) control the slope of the volatility smile; and

λd , λf determine the speed of mean-reversion for the variance and influence the speed

at which the interest rate volatility smile flattens as the swaption expiry increases

(Piterbarg, 2005). Parameters ηd , ηf determine the curvature of the interest rate smile.

The following correlation structure is imposed4, between

FX and its variance process, v(t): dW T
ξ (t)dW T

v (t) = ρξ ,vdt,

FX and domestic Libors, Ld,j(t) : dW T
ξ (t)dW

d,T
j (t) = ρd

ξ ,jdt,

FX and foreign Libors, Lf ,j(t) : dW T
ξ (t)dŴ

f ,T
j (t) = ρ

f
ξ ,jdt,

Libors in domestic market: dW
d,T
k (t)dW

d,T
j (t) = ρd

k,jdt,

Libors in foreign market: dŴ
f ,T
k (t)dŴ

f ,T
j (t) = ρ

f
k,jdt,

Libors in domestic and foreign markets: dW
d,T
k (t)dŴ

f ,T
j (t) = ρ

d,f
k,j dt.

(48)

We prescribe a zero correlation between the remaining processes, that is, between

Libors and their variance process,

dW
d,T
k (t)dW d,T

v (t) = 0, dŴ
f ,T
k (t)dŴ f ,T

v (t) = 0,

Libors and the FX variance process,

dW
d,T
k (t)dW T

v (t) = 0, dŴ
f ,T
k (t)dW T

v (t) = 0,

all variance processes,

dW T
v (t)dW d,T

v (t) = 0, dW T
v (t)dŴ f ,T

v (t) = 0, dW d,T
v (t)dŴ f ,T

v (t) = 0,

FX and the Libor variance processes,

dW T
ξ (t)dW d,T

v (t) = 0, dW T
ξ (t)dŴ f ,T

v (t) = 0.

The correlation structure is graphically displayed in Figure 2.

Throughout this article we assume that the SV-DD model in Equations (45) and

(46) is already in the effective parameter framework as developed in Piterbarg (2005).

This means that approximate time-homogeneous parameters are used instead of the

time-dependent parameters, that is, βk(t) ≡ βk and vk(t) ≡ vk.
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18 L. A. Grzelak and C. W. Oosterlee

Foreign

exchange

rate

Foreign

exchange SV

Foreign SVDomestic SV

Domestic

Libor Market

Model

Foreign

Libor Market

Model

Figure 2. The correlation structure for the FX-HLMM model. Arrows indicate non-zero
correlations. SV is Stochastic Volatility.

With this correlation structure, we derive the dynamics for the forward FX, given by

FXT (t) = ξ (t)
Pf (t, T)

Pd(t, T)
, (49)

(see also Equation (18)) with ξ (t) the spot exchange rate and Pd(t, T) and Pf (t, T) ZCB.

Note that the bonds are not yet specified.

When deriving the dynamics for Equation (49), we need expressions for the ZCB,

Pd(t, T) and Pf (t, T). With Equation (44), the following expression for the final bond

can be obtained:

1

Pi(t, T)
=

1

Pi(t, Tm(t))

N∏

j=m(t)+1

(
1 + τjLi,j(t)

)
, for i = {d, f }, (50)

with T = TN and m(t) = min(k : t ≤ Tk) (empty products in Equation (50) are defined

to be equal to 1). The bond Pi(t, TN) in Equation (50) is fully determined by the Libor

rates Li,k(t), k = 1, . . . , N and the bond Pi(t, Tm(t)). Whereas the Libors Li,k(t) are

defined by Equation (45) and (46), the bond Pi(t, Tm(t)) is not yet well defined in the

current framework.

To define continuous time dynamics for a ZCB, interpolation techniques are available

(see, e.g. Beveridge and Joshi, 2009; Davis and Mataix-Pastor, 2009; Piterbarg, 2004;

Schlögl, 2002a). We consider here the linear interpolation scheme, proposed in Schlögl

(2002a), which reads

1

Pi(t, Tm(t))
= 1 + (Tm(t) − t)Li,m(t)(Tm(t)−1), for Tm(t)−1 < t < Tm(t). (51)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
z
e
l
a
k
,
 
L
e
c
h
 
A
.
]
 
A
t
:
 
1
2
:
0
5
 
2
6
 
M
a
y
 
2
0
1
1



Stochastic Volatility and Correlated Interest Rates 19

In our previous work (Grzelak and Oosterlee, 2010), this basic interpolation technique

was very satisfactory for the calibration. By combining Equation (51) with Equation

(50), we find for the domestic and foreign bonds:

1

Pd(t, T)
=
(
1 + (Tm(t) − t)Ld,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(
1 + τjLd(t, Tj−1, Tj)

)
,

1

Pf (t, T)
=
(
1 + (Tm(t) − t)Lf ,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(
1 + τjLf (t, Tj−1, Tj)

)
.

When deriving the dynamics for FXT (t) in Equation (49) we will not encounter any

dt-terms (as FXT (t) has to be a martingale under the numéraire Pd(t, T)).

For each ZCB, Pd(t, T) or Pf (t, T), the dynamics are determined under the appro-

priate T-forward measures (for Pd(t, T) the domestic T-forward measure, and for

Pf (t, T) the foreign T-forward measure). The dynamics for the ZCB, driven by the

Libor dynamics in Equations (45) and (46), are given by

dPd(t, T)

Pd(t, T)
= (. . .)dt −

√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW

d,T
j (t), (52)

dPf (t, T)

Pf (t, T)
= (. . .)dt −

√
vf (t)

N∑

j=m(t)+1

τjvf ,jφf ,j(t)

1 + τjLf ,j(t)
dŴ

f ,T
j (t), (53)

and the coefficients were defined in Equations (45) and (46).

By changing the numéraire from Pf (t, T) to Pd(t, T) for the foreign bond, only

the drift terms will change. Since FXT (t) in Equation (49) is a martingale under the

Pd(t, T) measure, it is not necessary to determine the appropriate drift correction.

By taking Equation (20) for the general dynamics of Equation (49) and neglecting

all the dt-terms, we get

dFXT (t)

FXT (t)
=
√

v(t)dW T
ξ (t) +

√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW

d,T
j (t)

−
√

vf (t)

N∑

j=m(t)+1

τjvf ,jφf ,j(t)

1 + τjLf ,j(t)
dW

f ,T
j (t). (54)

Note that the hat in Ŵ disappeared from the Brownian motion dW
f ,T
j (t) in Equation

(54), which is an indication for the change of measure from the foreign to the domestic

measure for the foreign Libors.
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20 L. A. Grzelak and C. W. Oosterlee

Since the SV process, v(t), for FX is independent of the domestic and foreign Libors,

Ld,k(t) and Lf ,k(t), the dynamics under the Pd(t, T)-measure do not change5 and are

given by

dv(t) = κ(v̄ − v(t))dt + γ
√

v(t)dW T
v (t). (55)

The model given in Equation (54) with the stochastic variance in Equation (55) and

the correlations between the main underlying processes is not affine. In Section 3.1 we

discuss a linearization.

3.1. Linearization and Forward Characteristic Function

The model in Equation (54) is not of the affine form, as it contains terms like

φi,j(t)/(1 + τi,jLi,j(t)) with φi,j = βi,jLi,j(t) + (1 − βi,j)Li,j(0) for i = {d, f }. In order to

derive a characteristic function, we freeze the Libor rates, which is standard practice

(see, e.g. Glasserman and Zhao, 1999; Hull and White, 2000; Jäckel and Rebonato,

2000), that is,

Ld,j(t) ≈ Ld,j(0) ⇒ φd,j ≡ Ld,j(0),

Lf ,j(t) ≈ Lf ,j(0) ⇒ φf ,j ≡ Lf ,j(0). (56)

This approximation gives the following FXT (t)-dynamics:

⎧
⎪⎪⎨
⎪⎪⎩

dFXT (t)

FXT (t)
≈

√
v(t)dW T

ξ (t) +
√

vd(t)
∑
j∈A

ψd,jdW
d,T
j (t) −

√
vf (t)

∑
j∈A

ψf ,jdW
f ,T
j (t),

dv(t) = κ(v̄ − v(t))dt + γ
√

v(t)dW T
v (t),

dvi(t) = λi(vi(0) − vi(t))dt + ηi

√
vi(t)dW

i,T
v (t),

with i = {d, f }, A = {m(t) + 1, . . . , N}, the correlations are given in Equation (48) and

ψd,j :=
τjvd,jLd,j(0)

1 + τjLd,j(0)
, ψf ,j :=

τjvf ,jLf ,j(0)

1 + τjLf ,j(0)
. (57)

We derive the dynamics for the log-transform of FXT (t), xT (t) = log FXT (t), for

which we need to calculate the square of the diffusion coefficients.6
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Stochastic Volatility and Correlated Interest Rates 21

With the notation,

a :=
√

v(t)dW T
ξ (t), b :=

√
vd(t)

∑

j∈A

ψd,jdW
d,T
j (t), c :=

√
vf (t)

∑

j∈A

ψf ,jdW
f ,T
j (t),

(58)

we find for the square diffusion coefficient (a + b − c)2 = a2 + b2 + c2 + 2ab −
2ac − 2bc. So, the dynamics for the log-forward, xT (t) = log FXT (t), can be expressed

as

dxT (t) ≈ −
1

2
(a + b − c)2 +

√
v(t)dW T

ξ (t) +
√

vd(t)
∑

A

ψd,jdW
d,T
j (t)

−
√

vf (t)
∑

A

ψf ,jdW
f ,T
j (t), (59)

with the coefficients a, b and c given in Equation (58). Since

⎛
⎝(

N∑

j=1

xj)
2

⎞
⎠ =

N∑

j=1

x2
j +

∑

i,j=1,. . .,N
i �=j

xixj, for N > 0,

we find

a2 = v(t)dt,

b2 = vd(t)

⎛
⎜⎜⎝
∑

j∈A

ψ2
d,j +

∑

i,j∈A
i �=j

ψd,iψd,jρ
d
i,j

⎞
⎟⎟⎠ dt =: vd(t)Ad(t)dt, (60)

c2 = vf (t)

⎛
⎜⎜⎝
∑

j∈A

ψ2
f ,j +

∑

i,j∈A
i �=j

ψf ,iψf ,jρ
f
i,j

⎞
⎟⎟⎠ dt =: vf (t)Af (t)dt, (61)

ab =
√

v(t)
√

vd(t)
∑

j∈A

ψd,jρ
d
j,xdt,

ac =
√

v(t)
√

vf (t)
∑

j∈A

ψf ,jρ
f
j,xdt,

bc =
√

vd(t)
√

vf (t)
∑

j∈A

ψd,j

∑

k∈A

ψf ,kρ
d,f
j,k dt,
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22 L. A. Grzelak and C. W. Oosterlee

with ρd
j,x, ρ

f
j,x the correlation between the FX and jth domestic and foreign Libor,

respectively. The correlation between the kth domestic and jth foreign Libor is ρ
d,f
k,j .

By setting f (t,
√

v(t),
√

vd(t),
√

vf (t)) := (2ab − 2ac − 2bc)/dt, we can express the

dynamics for dxT (t) in Equation (59) by

dxT (t) ≈ −
1

2

(
v(t) + Ad(t)vd(t) + Af (t)vf (t) + f (t,

√
v(t),

√
vd(t),

√
vf (t))

)
dt

+
√

v(t)dW T
ξ (t) +

√
vd(t)

∑

A

ψd,jdW
d,T
j (t) −

√
vf (t)

∑

A

ψf ,jdW
f ,T
j (t).

The coefficients ψd,j, ψf ,j, Ad and Af in Equations (57), (60) and (61) are deterministic

and piecewise constant.

In order to make the model affine, we linearize the non-affine terms in the drift in

f (t,
√

v(t),
√

vd(t),
√

vf (t)) by a projection on the first moments, that is,

f (t,
√

v(t),
√

vd(t),
√

vf (t)) ≈ f (t, E(
√

v(t)), E(
√

vd(t)), E(
√

vf (t))) =: f (t). (62)

The variance processes v(t), vd(t) and vf (t) are independent CIR-type processes (Cox

et al., 1985), so the expectation of their products equals the product of the expectations.

Function f (t) can be determined with the help of the formula in Equation (30).

The approximation in Equation (62) linearizes all non-affine terms in the corre-

sponding PDE. As before, the forward characteristic function, φT := φT (u, X(t), t, T),

is defined as the solution of the following backward PDE:

0 =
∂φT

∂t
+

1

2

(
v + Ad(t)vd + Af (t)vf + f (t)

) (∂2φT

∂x2
−

∂φT

∂x

)

+ λd(vd(0) − vd)
∂φT

∂vd

+ λf (vf (0) − vf )
∂φT

∂vf

+ κ(v̄ − v)
∂φT

∂v

+
1

2
η2

dvd

∂2φT

∂v2
d

+
1

2
η2

f vf

∂2φT

∂v2
f

+
1

2
γ 2v

∂2φT

∂v2
+ ρx,vγ v

∂2φT

∂x∂v
, (63)

with the final condition φT (u, X(T), T) = eiuxT (T). Since all coefficients in this PDE are

linear, the solution is of the following form:

φT (u, X(t), t, T) = exp(A(u, τ ) + B(u, τ )xT (t) + C(u, τ )v(t)

+ Dd(u, τ )vd(t) + Df (u, τ )vf (t)), (64)

with τ := T − t. Substitution of Equation (64) in Equation (63) gives us the following

system of ordinary differential equations (ODEs) for the functions A(τ ) := A(u, τ ),

B(τ ) := B(u, τ ), C(τ ) := C(u, τ ), Dd(τ ) := Dd(u, τ ) and Df (τ ) := Df (u, τ ):
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Stochastic Volatility and Correlated Interest Rates 23

A′(τ ) = f (t)
B2(τ ) − B(τ )

2
+ λdvd(0)D1(τ ) + λf vf (0)D2(τ ) + κ v̄C(τ ),

B′(τ ) = 0,

C′(τ ) =
B2(τ ) − B(τ )

2
+
(
ρx,vγ B(τ ) − κ

)
C(τ ) +

γ 2C2(τ )

2
,

D′
d(τ ) = Ad(t)

B2(τ ) − B(τ )

2
− λdDd(τ ) +

η2
dD2

d(τ )

2
,

D′
f (τ ) = Af (t)

B2(τ ) − B(τ )

2
− λf Df (τ ) +

η2
f D2

f (τ )

2
,

with initial conditions A(0) = 0, B(0) = iu, C(0) = 0, Dd(0) = 0, Df (0) = 0 with Ad(t)

and Af (t) from Equations (60) and (61), respectively, and f (t) as in Equation (62).

With B(τ ) = iu, the solution for C(τ ) is analogous to the solution for the ODE for

the FX-HHW1 model in Equation (33). As the remaining ODEs involve the piecewise

constant functions Ad(t), Af (t), the solution must be determined iteratively, like for the

pure Heston model with piecewise constant parameters in Andersen and Andreasen

(2000). For a given grid 0 = τ0 < τ1 < . . . < τN = τ , the functions Dd(u, τ ), Df (u, τ )

and A(u, τ ) can be expressed as

Dd(u, τj) = Dd(u, τj−1) + χd(u, τj),

Df (u, τj) = Df (u, τj−1) + χf (u, τj),

for j = 1, . . . , N and

A(u, τj) = A(u, τj−1) + χA(u, τj) −
1

2
(u2 + u)

∫ τj

τj−1

f (s)ds,

with f (s) in Equation (62) and analytically known functions χk(u, τj), for k = {d, f }
and χA(u, τj):

χk(u, τj) :=
(
λk − δk,j − η2

kDk(u, τj−1)
)

(1 − e−δk,jsj )

(η2
k(1 − ℓk,je

−δk,jsj ))
,

and

χA(u, τj) =
κ v̄

γ 2

(
(κ − ρx,vγ iu − dj)sj − 2 log

(
1 − gje

−djsj

1 − gj

))

+ vd(0)
λd

η2
d

(
(λd − δd,j)sj − 2 log

(
1 − ℓd,je

−δd,jsj

1 − ℓd,j

))

+ vf (0)
λf

η2
f

(
(λf − δf ,j)sj − 2 log

(
1 − ℓf ,je

−δf ,jsj

1 − ℓf ,j

))
,
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where

dj =
√

(ρx,vγ iu − κ)2 + γ 2(iu + u2), gj =
(κ − ρx,vγ iu) − dj − γ 2C(u, τj−1)

(κ − ρx,vγ iu) + dj − γ 2C(u, τj−1)
,

δk,j =
√

λ2
k + η2

kAk(t)(u2 + iu), ℓk,j =
λk − δk,j − η2

kDk(u, τj−1)

λk + δk,j − η2
kDk(u, τj−1)

,

with sj = τj − τj−1, j = 1, . . . , N, Ad(t) and Af (t) are from Equations (60) and (61).

The resulting approximation of the full-scale FX-HLMM model is called FX-

LMM1 here.

3.2. Foreign Stock in the FX-HLMM Framework

We also consider a foreign stock, Sf (t), driven by the Heston SV model, with the inter-

est rates driven by the market model. The stochastic processes of the stock model are

assumed to be of the same form as the FX (with one, foreign, interest rate curve) with

the dynamics, under the forward foreign measure, given by

dST
f (t)

ST
f (t)

=
√

ω(t)dW
f ,T
Sf

(t) +
√

vf (t)

N∑

j=m(t)+1

τjvf ,jφf ,j(t)

1 + τjLf ,j(t)
dW

f ,T
j (t),

dω(t) = κf (ω̄ − ω(t))dt + γf

√
ω(t)dW f ,T

ω (t). (65)

Variance process, ω(t), is correlated with forward stock ST (t).

We move to the domestic-forward measure. The forward stock, ST
f , and forward FX

rate, FXT (t), are defined by

ST
f (t) =

Sf (t)

Pf (t, T)
, FXT (t) = ξ (t)

Pf (t, T)

Pd(t, T)
. (66)

The quantity,

ST
f (t)FXT (t) =

Sf (t)

Pf (t, T)
ξ (t)

Pf (t, T)

Pd(t, T)
=

Sf (t)

Pd(t, T)
ξ (t), (67)

is therefore a tradable asset. So, foreign stock exchanged by an FX rate and denomi-

nated in the domestic ZCB is a tradable quantity, which implies that ST
f (t)FXT (t) is a

martingale. By Itô’s lemma, one finds

d
(

ST
f (t)FXT (t)

)

ST
f (t)FXT (t)

=
dFXT (t)

FXT (t)
+

dST
f (t)

ST
f (t)

+
(

dFXT (t)

FXT (t)

)(
dST

f (t)

ST
f (t)

)
. (68)

The two first terms at the RHS of Equation (68) do not contribute to the drift. The

last term involves all dt-terms, that, by a change of measure, will enter the drift of the

variance process dω(t) in Equation (65).
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3.3. Numerical Experiments with the FX-HLMM Model

We here focus on the FX-HLMM model covered in Section 3 and consider the errors

generated by the various approximations that led to the model FX-HLMM1. We have

performed basically two linearization steps to define FX-HLMM1: We have frozen

the Libors at their initial values and projected the non-affine covariance terms on a

deterministic function. We check, by a numerical experiment, the size of the errors of

these approximations.

We have chosen the following interest rate curves Pd(t = 0, T) = exp(−0.02T),

Pf (t = 0, T) = exp(−0.05T), and, as before, for the FX SV model we set:

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1. (69)

In the simulation, we have chosen the following parameters for the domestic and

foreign markets:

βd,k = 95%, vd,k = 15%, λd = 100%, ηd = 10%, (70)

βf ,k = 50%, vf ,k = 25%, λf = 70%, ηf = 20%. (71)

In the correlation matrix, a number of correlations need to be specified. For the

correlations between the Libor rates in each market, we prescribe large positive val-

ues, as frequently observed in fixed income markets (see, e.g. Brigo and Mercurio,

2007), ρd
i,j = 90%, ρ

f
i,j = 70%, for i, j = 1, . . . , N (i �= j). In order to generate skew

for FX, we prescribe a negative correlation between FXT (t) and its SV process, v(t),

that is, ρξ ,v = −40%. The correlation between the FX and the domestic Libors is set

as ρd
ξ ,k = −15%, for k = 1, . . . , N, and the correlation between FX and the foreign

Libors is ρ
f
ξ ,k = −15%. The correlation between the domestic and foreign Libors is

ρ
d,f
i,j = 25% for i, j = 1, . . . , N (i �= j). The following block correlation matrix results

C =

⎡
⎢⎣

Cd Cd,f Cξ ,d

CT
d,f Cf Cξ ,f

CT
ξ ,d CT

ξ ,f 1

⎤
⎥⎦ , (72)

with the domestic Libor correlations given by

Cd =

⎡
⎢⎢⎢⎣

1 ρd
1,2 . . . ρd

1,N

ρd
1,2 1 . . . ρd

2,N

...
...

. . .
...

ρd
1,N ρd

2,N . . . 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 90% . . . 90%

90% 1 . . . 90%
...

...
. . .

...

90% 90% . . . 1

⎤
⎥⎥⎦

N×N

, (73)
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the foreign Libors correlations given by

Cf =

⎡
⎢⎢⎢⎣

1 ρ
f
1,2 . . . ρ

f
1,N

ρ
f
1,2 1 . . . ρ

f
2,N

...
...

. . .
...

ρ
f
1,N ρ

f
2,N . . . 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 70% . . . 70%

70% 1 . . . 70%
...

...
. . .

...

70% 70% . . . 1

⎤
⎥⎥⎦

N×N

, (74)

the correlation between Libors from the domestic and foreign markets given by

Cd,f =

⎡
⎢⎢⎢⎣

1 ρ
d,f
1,2 . . . ρ

d,f
1,N

ρ
d,f
1,2 1 . . . ρ

d,f
2,N

...
...

. . .
...

ρ
d,f
1,N ρ

d,f
2,N . . . 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 25% . . . 25%

25% 1 . . . 25%
...

...
. . .

...

25% 25% . . . 1

⎤
⎥⎥⎦

N×N

, (75)

and the vectors C
ξ ,d and C

ξ ,f as used in Piterbarg (2006) are given by

C
ξ ,d =

⎡
⎢⎢⎢⎢⎢⎣

ρd
ξ ,1

ρd
ξ ,2

...

ρd
ξ ,N

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−15%

−15%
...

−15%

⎤
⎥⎥⎦

N×1

, C
ξ ,f =

⎡
⎢⎢⎢⎢⎢⎣

ρ
f
ξ ,1

ρ
f
ξ ,2

...

ρ
f
ξ ,N

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−15%

−15%
...

−15%

⎤
⎥⎥⎦

N×1

. (76)

Since in both markets the Libor rates are assumed to be independent of their

variance processes, we can neglect these correlations here.

Now we find the prices of plain vanilla options on FX in Equation (49). The simu-

lation is performed in the same spirit as in Section 2.5 where the FX-HHW model was

considered. In Table 2 we present the differences, in terms of the implied volatilities

between the models FX-HLMM and FX-HLMM1. While the prices for the FX-

HLMM were obtained by Monte Carlo simulation (20.000 paths and 20 intermediate

Table 2. Differences, in implied Black volatilities, between the FX-HLMM and FX-LMM1

models.

Ti K1(Ti) (%) K2(Ti) (%) K3(Ti) (%) K4(Ti) (%) K5(Ti) (%) K6(Ti) (%) K7(Ti) (%)

2y 0.19 0.14 0.09 0.05 0.00 −0.05 −0.10
3y 0.29 0.25 0.21 0.16 0.11 0.06 0.02
5y 0.32 0.28 0.23 0.17 0.10 0.05 0.00
7y 0.30 0.28 0.25 0.21 0.18 0.14 0.10
10y 0.39 0.32 0.25 0.18 0.12 0.05 −0.03
15y 0.38 0.29 0.21 0.13 0.05 −0.04 −0.14
20y 0.02 −0.09 −0.18 −0.27 −0.34 −0.40 −0.44
25y 0.08 0.04 −0.14 −0.25 −0.34 −0.40 −0.46
30y 0.11 0.07 0.00 −0.09 −0.18 −0.21 −0.24

Notes: The corresponding strikes K1(Ti), . . . , K7(Ti) are tabulated in Table B1. The prices and associated
standard deviations are presented in Table B6.
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points between the dates Ti−1 and Ti for i = 1, . . . , N), the prices for FX-HLMM1

were obtained by the Fourier-based COS method (Fang and Oosterlee, 2008) with 500

Fourier series terms.

The FX-HLMM1 model performs very well, as the maximum difference in terms of

implied volatilities is about 0.2−0.5%.

3.3.1 Sensitivity to the Interest Rate Skew. Approximation FX-HLMM1 was based

on freezing the Libor rates. By freezing the Libors, that is, Ld,k(t) ≡ Ld,k(0) and

Lf ,k(t) ≡ Lf ,k(0), we have

φd,k(t) = βd,kLd,k(t) + (1 − βd,k)Ld,k(0) = Ld,k(0), (77)

φf ,k(t) = βf ,kLf ,k(t) + (1 − βf ,k)Lf ,k(0) = Lf ,k(0). (78)

In the SV-DD models for the Libor rates Ld,k(t) and Lf ,k(t) for any k, the parameters

βd,k, βf ,k control the slope of the interest rate volatility smiles. Freezing the Libors to

Ld,k(0) and Lf ,k(0) is equivalent to setting βd,k = 0 and βf ,k = 0 in Equations (77) and

(78) in the approximation FX-HLMM1.

By a Monte Carlo simulation, we obtain the FX implied volatilities from the full-

scale FX-HLMM model for different values of β and by comparing them to those

from FX-HLMM1 with β = 0 we check the influence of the parameters βd,k and βf ,k

on the FX. In Table 3, the implied volatilities for the FX European call options for

Table 3. Implied volatilities of the FX options from the FX-HLMM and FX-HLMM1 models,

T = 10 and parameters were as in Section 3.3.

FX-HLMM (Monte Carlo simulation)
FX-HLMM1

βf = 0.5 βd = 0.5 (Fourier)

Strike
Equation (42) βd = 0(%) βd = 0.5(%) βd = 1(%) βf = 0(%) βf = 1(%)

βd = 0
βf = 0(%)

0.6224 31.98 31.91 31.98 31.99 31.96 31.56
(0.20) (0.17) (0.17) (0.15) (0.18)

0.7290 31.49 31.43 31.48 31.51 31.46 31.12
(0.21) (0.16) (0.19) (0.15) (0.18)

0.8538 31.02 30.96 31.01 31.04 30.97 30.69
(0.21) (0.17) (0.20) (0.15) (0.18)

1.0001 30.58 30.53 30.56 30.61 30.52 30.30
(0.21) (0.17) (0.22) (0.15) (0.17)

1.1714 30.16 30.11 30.15 30.20 30.08 29.93
(0.20) (0.17) (0.24) (0.15) (0.16)

1.3721 29.77 29.73 29.77 29.82 29.68 29.60
(0.22) (0.16) (0.26) (0.16) (0.17)

1.6071 29.41 29.38 29.43 29.48 29.31 29.30
(0.24) (0.17) (0.28) (0.17) (0.18)

Note: The numbers in parentheses correspond to the standard deviations (the experiment was performed
20 times with 20T time steps).
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FX-HLMM and FX-HLMM1 are presented. The experiments are performed for

different combinations of the interest rate skew parameters, βd and βf .

The experiment indicates that there is only a small impact of the different βd,k –

and βf ,k – values on the FX implied volatilities, implying that the approximate model,

FX-HLMM1 with βd,k = βf ,k = 0, is useful for the interest rate modelling, for the

parameters studied. With βd,k �= 0 and βf ,k �= 0, the implied volatilities obtained

by the FX-HLMM model appear to be somewhat higher than those obtained by

FX-HLMM1, a difference of approximately 0.1−0.15%, which is considered highly

satisfactory.

4. Conclusion

In this article, we have presented two FX models with SV and correlated stochastic

interest rates. Both FX models were based on the Heston FX model and differed with

respect to the interest rate processes.

In the first model we considered a model in which the domestic and foreign interest

rates were driven by single factor Hull–White short-rate processes. This model enables

the pricing of FX–interest rate hybrid products that are not exposed to the smile in the

fixed income markets.

For hybrid products sensitive to the interest rate skew, a second model was presented

in which the interest rates were driven by the SV Libor Market Model. For both hybrid

models we have developed approximate models for the pricing of European options

on the FX. These pricing formulas form the basis for highly efficient model calibration

strategies.

The approximate models are based on the linearization of the non-affine terms in the

corresponding pricing PDE, in a very similar way as in our previous article (Grzelak

and Oosterlee, 2011) on equity–interest rate options. The approximate models perform

very well in the world of FX. These models can also be used to obtain an initial guess

when the full-scale models are used.
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Notes

1According to Duffie et al. (2000) the n-dimensional system of SDEs,

dX(t) = μ (X(t)) dt + v(X(t))dW(t),

is of the affline form if

μ (X(t)) = a0 + a1X(t), for any(a0, a1) ∈ Rn × Rn×n,

v(X(t))v(X(t))T = (c0)ij + (c1)T
ij X(t), for arbitary(c0, c1) ∈ Rn×n × Rn×n×n,

r(X(t)) = (r0) + (r1)T
1 X(t), for (r0, r1) ∈ R × Rn,

for i, j = 1,. . . ,n, with r(X(t)) being an interest rate component.

2Since the moments of the square root process under the T-forward measure are difficult to determine for√
v(t), we have set ρv,d = 0 or, in other words, the expectation is calculated under measure Q.

3The model parameters do not satisfy the Feller condition, γ 2 > 2κ v̄.
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4As it is insightful to relate the covariance matrix with the necessary model approximations, the correlation

structure is introduced here by means of instantaneous correlation of the scalar diffusions.
5In Grzelak and Oosterlee (2010), the proof for this statement is given when a single yield curve is

considered.
6As in the standard Black–Scholes analysis for dS(t) = vS(t)dW (t), the log-transform gives d log S(t) =
− 1

2
v2dt + vdW (t).
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Appendix A: Proof of Lemma 2.2

Since the domestic short-rate process, rd(t), is driven by one source of uncer-

tainty (only one Brownian motion dW
Q

d (t)), it is convenient to change the order of

the state variables, from dX(t) = [dFXT (t)/FXT (t), dv(t), drd(t), drf (t)]T to dX∗(t) =
[drd(t), drf (t), dv(t), dFXT (t)/FXT (t)]T , and express the model in terms of the inde-

pendent Brownian motions dW̃
Q

(t) = [dW̃d(t), dW̃f (t), dW̃v(t), dW̃ξ (t)]T , that is,

⎡
⎢⎣

drd

drf

dv

dFXT/FXT

⎤
⎥⎦ = μ(X∗)dt +

⎡
⎢⎢⎢⎣

ηd 0 0 0

0 ηf 0 0

0 0 γ
√

v 0

−ηdBd ηf Bf 0
√

v

⎤
⎥⎥⎥⎦H

⎡
⎢⎢⎣

dW̃
Q

d

dW̃
Q

f

dW̃Q
v

dW̃
Q
ξ

⎤
⎥⎥⎦ , (A1)

which, equivalently, can be written as

dX∗(t) = μ(X∗)dt + AHdW̃
Q

(t), (A2)
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where μ(X∗) represents the drift for system dX∗(t) and H is the Cholesky lower-

triangular matrix of the following form:

H =

⎡
⎢⎣

1 0 0 0

H2,1 H2,2 0 0

H3,1 H3,2 H3,3 0

H4,1 H4,2 H4,3 H4,4

⎤
⎥⎦ �=

⎡
⎢⎣

1 0 0 0

ρf ,d H2,2 0 0

ρv,d H3,2 H3,3 0

ρξ ,d H4,2 H4,3 H4,4

⎤
⎥⎦ . (A3)

The representation presented above seems to be favourable, since the short-rate process

rd(t) can be considered independent of the other processes.

The matrix model representation in terms of orthogonal Brownian motions results

in the following dynamics for the domestic short rate rd(t) under measure Q:

drd(t) = λd(θd(t) − rd(t))dt + ζ1(t)dW̃
Q

(t),

and for the domestic ZCB:

dPd(t, T)

Pd(t, T)
= rd(t)dt + Bd(t, T)ζ1(t)dW̃

Q
(t),

with ζk(t) being the kth row vector resulting from multiplying the matrices A and H.

Note that for the 1D Hull–White short-rate processes ζ1(t) = [ηd , 0, 0, 0].

Now, we derive the Radon–Nikodým derivative (Geman et al., 1996):

�T
Q(t) =

dQT

dQ
=

Pd(t, T)

Pd(0, T)Md(t)
. (A4)

By calculating the Itô derivative of Equation (A4) we get

d�T
Q

�T
Q

= Bd(t, T)ζ1(t)dW̃
Q

(t), (A5)

which implies that the Girsanov kernel for the transition from Q to QT is given by

Bd(t, T)ζ1(t), which is the T-bond volatility given by ηdBd(t, T), that is,

�T
Q = exp

(
−

1

2

∫ T

0

B2
r (s, T)ζ 2

1 (s)ds +
∫ T

0

Br(s, T)ζ1(s)dW̃
Q

(s)

)
. (A6)

So,

dW̃
T

(t) = −Bd(t, T)ζ T
1 (t)dt + dW̃

Q
(t).

Since the vector ζ T
1 (t) is of scalar form, the Brownian motion under the T-forward

measure is given by

dW̃
Q

(t) =
[
dW̃ T

d (t) + ηdBd(t, T)dt, dW̃ T
f (t), dW̃ T

v (t), dW̃ T
ξ (t)

]T

.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
z
e
l
a
k
,
 
L
e
c
h
 
A
.
]
 
A
t
:
 
1
2
:
0
5
 
2
6
 
M
a
y
 
2
0
1
1



32 L. A. Grzelak and C. W. Oosterlee

Now, from the vector representation in Equation (A2) we get that

HdW̃
Q =

⎡
⎢⎢⎢⎢⎣

ηdBd + dW̃ T
d dt

ρd,f ηdBddt + ρd,f dW̃ T
d + H2,2dW̃ T

f

ρv,dηdBddt + ρv,ddW̃ T
d + H3,2dW̃ T

f + H3,3dW̃ T
ξ

ρξ ,dηdBddt + ρξ ,ddW̃ T
d + H4,2dW̃ T

f + H4,3dW̃ T
ξ + H4,4dW̃ T

v

⎤
⎥⎥⎥⎥⎦

.

(A7)

Returning to the dependent Brownian motions under the T-forward measure, gives us

dFXT (t)

FXT (t)
=
√

v(t)dW T
ξ (t) − ηdBd(t, T)dW T

d (t) + ηf Bf (t, T)dW T
f (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T)

√
v(t)
)

dt + γ
√

v(t)dW T
v (t),

drd(t) =
(
λd(θd(t) − rd(t)) + η2

dBd(t, T)
)

dt + ηddW T
d (t),

drf (t) =
(
λf (θf (t) − rf (t)) − ηf ρξ ,f

√
v(t) + ηdηf ρd,f Bd(t, T)

)
dt + ηf dW T

f (t),

with full matrix of correlations given in Equation (12).

Appendix B: Tables

In this appendix we present tables with details for the numerical experiments.

Table B1. Expiries and strikes of FX options used in the FX-HHW model.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 1.1961 1.2391 1.2837 1.3299 1.3778 1.4273 1.4787
1y 1.1276 1.1854 1.2462 1.3101 1.3773 1.4479 1.5221
3y 0.9515 1.0376 1.1315 1.2338 1.3454 1.4671 1.5999
5y 0.8309 0.9291 1.0390 1.1620 1.2994 1.4531 1.6250
7y 0.7358 0.8399 0.9587 1.0943 1.2491 1.4257 1.6274
10y 0.6224 0.7290 0.8538 1.0001 1.1714 1.3721 1.6071
15y 0.4815 0.5844 0.7093 0.8608 1.0447 1.2680 1.5389
20y 0.3788 0.4737 0.5924 0.7409 0.9265 1.1587 1.4491
25y 0.3012 0.3868 0.4966 0.6377 0.8188 1.0514 1.3500
30y 0.2414 0.3174 0.4174 0.5489 0.7218 0.9492 1.2482

Note: The strikes Kn(Ti) were calculated as given in Equation (42) with ξ (0) = 1.35.
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Table B2. Market-implied Black volatilities for FX options as given in Piterbarg (2006).

Ti K1(Ti) (%) K2(Ti) (%) K3(Ti) (%) K4(Ti) (%) K5(Ti) (%) K6(Ti) (%) K7(Ti) (%)

6m 11.41 10.49 9.66 9.02 8.72 8.66 8.68
1y 12.23 10.98 9.82 8.95 8.59 8.59 8.65
3y 12.94 11.35 9.89 8.78 8.34 8.36 8.46
5y 13.44 11.84 10.38 9.27 8.76 8.71 8.83
7y 14.29 12.68 11.23 10.12 9.52 9.37 9.43
10y 16.43 14.79 13.34 12.18 11.43 11.07 10.99
15y 20.93 19.13 17.56 16.27 15.29 14.65 14.29
20y 22.96 21.19 19.68 18.44 17.50 16.84 16.46
25y 23.97 22.31 20.92 19.80 18.95 18.37 18.02
30y 25.09 23.48 22.17 21.13 20.35 19.81 19.48

Note: The strikes Kn(Ti) were tabulated in Table B1.

Table B3. Differences, in implied volatilities, between the FX-HHW and FX-HHW1 models.

Ti K1(Ti) (%) K2(Ti) (%) K3(Ti) (%) K4(Ti) (%) K5(Ti) (%) K6(Ti) (%) K7(Ti) (%)

6m 0.00 0.02 0.04 0.06 0.07 0.08 0.09
1y −0.05 −0.03 −0.02 −0.01 0.00 0.01 0.01
3y 0.04 0.04 0.03 0.02 0.02 0.01 0.01
5y 0.10 0.09 0.07 0.05 0.03 0.00 −0.02
7y 0.05 0.04 0.03 0.02 0.01 0.00 −0.03
10y 0.14 0.13 0.12 0.11 0.10 0.08 0.07
15y −0.01 0.01 0.03 0.03 0.02 0.02 0.00
20y −0.08 −0.04 −0.02 0.00 0.02 0.02 0.02
25y −0.21 −0.14 −0.08 −0.05 −0.02 −0.01 0.00
30y −0.13 −0.07 −0.03 0.01 0.03 0.05 0.06

Note: The parameters were chosen as in Section 2.5 except for the correlations: ρξ ,d = ρξ ,f = +15%.

Table B4. The calibration results for the FX-HHW model, in terms of the differences between

the market (given in Table B2) and FX-HHW model-implied volatilities.

Ti K1(Ti) (%) K2(Ti) (%) K3(Ti) (%) K4(Ti) (%) K5(Ti) (%) K6(Ti) (%) K7(Ti) (%)

6m 0.12 −0.12 −0.25 −0.23 −0.01 0.20 0.22
1y 0.13 −0.08 −0.18 −0.09 0.14 0.16 −0.14
3y 0.16 −0.07 −0.17 −0.08 0.18 0.22 −0.14
5y 0.11 −0.06 −0.12 −0.07 0.10 0.13 −0.14
7y 0.07 −0.03 −0.06 −0.03 0.06 0.10 −0.08
10y 0.04 −0.01 −0.01 −0.02 0.02 0.05 −0.02
15y 0.11 −0.05 −0.09 −0.04 0.03 0.09 −0.05
20y 0.94 0.39 0.02 −0.19 −0.24 −0.16 0.02
25y 1.43 0.59 −0.02 −0.43 −0.63 −0.64 −0.51
30y 1.65 0.70 0.00 −0.48 −0.74 −0.82 −0.74

Note: Strikes Kn(Ti) are given in Table B1.
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Table B5. Average FX call option prices obtained by the FX-HHW model with

20 Monte Carlo simulations, 50.000 paths and 20 × Ti steps.

Ti Method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m MC 0.1907 0.1636 0.1382 0.1148 0.0935 0.0748 0.0585
SD 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004

COS 0.1908 0.1637 0.1382 0.1147 0.0934 0.0746 0.0583
1y MC 0.2566 0.2209 0.1870 0.1553 0.1264 0.1008 0.0785

SD 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
COS 0.2567 0.2210 0.1870 0.1554 0.1265 0.1008 0.0786

3y MC 0.3768 0.3281 0.2805 0.2349 0.1923 0.1538 0.1200
SD 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014

COS 0.3765 0.3279 0.2804 0.2349 0.1926 0.1543 0.1207
5y MC 0.4216 0.3709 0.3205 0.2713 0.2246 0.1816 0.1432

SD 0.0021 0.0021 0.0021 0.0020 0.0020 0.0019 0.0018
COS 0.4212 0.3706 0.3203 0.2713 0.2249 0.1822 0.1441

7y MC 0.4368 0.3878 0.3383 0.2895 0.2426 0.1986 0.1587
SD 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0016

COS 0.4362 0.3873 0.3380 0.2893 0.2425 0.1987 0.1590
10y MC 0.4310 0.3871 0.3420 0.2967 0.2521 0.2096 0.1702

SD 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0030
COS 0.4311 0.3873 0.3423 0.2971 0.2528 0.2106 0.1714

15y MC 0.3894 0.3553 0.3195 0.2826 0.2455 0.2092 0.1744
SD 0.0038 0.0037 0.0037 0.0036 0.0036 0.0036 0.0035

COS 0.3900 0.3560 0.3202 0.2834 0.2463 0.2100 0.1754
20y MC 0.3362 0.3109 0.2838 0.2553 0.2260 0.1966 0.1677

SD 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036
COS 0.3358 0.3104 0.2833 0.2548 0.2254 0.1960 0.1672

25y MC 0.2809 0.2626 0.2425 0.2211 0.1987 0.1757 0.1526
SD 0.0048 0.0048 0.0048 0.0048 0.0047 0.0046 0.0045

COS 0.2814 0.2630 0.2429 0.2215 0.1990 0.1759 0.1529
30y MC 0.2322 0.2191 0.2046 0.1888 0.1720 0.1545 0.1367

SD 0.0050 0.0050 0.0050 0.0050 0.0049 0.0048 0.0048
COS 0.2319 0.2188 0.2042 0.1883 0.1714 0.1539 0.1359

Notes: MC stands for Monte Carlo and COS for Fourier cosine expansion technique (Fang and Oosterlee,
2008) for the FX-HHW1 model with 500 expansion terms. The strikes Kn(Ti) are tabulated in Table B1.D
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Table B6. Average FX call option prices obtained by the FX-HLMM model with

20 Monte Carlo simulations, 50.000 paths and 20 × Ti steps.

Ti Method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

2y MC 0.3336 0.2889 0.2456 0.2046 0.1667 0.1327 0.1030
SD 0.0008 0.0009 0.0010 0.0010 0.0011 0.0011 0.0012

COS 0.3326 0.2880 0.2450 0.2043 0.1667 0.1330 0.1037
3y MC 0.3786 0.3299 0.2823 0.2366 0.1939 0.1553 0.1213

SD 0.0006 0.0007 0.0008 0.0009 0.0011 0.0012 0.0013
COS 0.3768 0.3282 0.2808 0.2354 0.1931 0.1548 0.1212

5y MC 0.4243 0.3738 0.3234 0.2743 0.2274 0.1843 0.1457
SD 0.0012 0.0013 0.0014 0.0015 0.0016 0.0016 0.0016

COS 0.4222 0.3717 0.3215 0.2727 0.2265 0.1838 0.1457
7y MC 0.4399 0.3914 0.3424 0.2938 0.2470 0.2031 0.1631

SD 0.0013 0.0014 0.0015 0.0016 0.0018 0.0019 0.0021
COS 0.4379 0.3893 0.3402 0.2918 0.2453 0.2017 0.1621

10y MC 0.4363 0.3928 0.3482 0.3031 0.2587 0.2162 0.1764
SD 0.0012 0.0016 0.0019 0.0023 0.0026 0.0027 0.0028

COS 0.4338 0.3905 0.3461 0.3014 0.2576 0.2157 0.1767
15y MC 0.3964 0.3632 0.3280 0.2917 0.2550 0.2186 0.1834

SD 0.0008 0.0010 0.0012 0.0014 0.0016 0.0019 0.0023
COS 0.3944 0.3613 0.3265 0.2907 0.2545 0.2190 0.1848

20y MC 0.3417 0.3171 0.2907 0.2629 0.2342 0.2052 0.1768
SD 0.0010 0.0013 0.0015 0.0018 0.0021 0.0025 0.0030

COS 0.3416 0.3176 0.2918 0.2647 0.2367 0.2085 0.1806
25y MC 0.2886 0.2715 0.2525 0.2321 0.2107 0.1887 0.1664

SD 0.0011 0.0014 0.0016 0.0019 0.0023 0.0027 0.0033
COS 0.2883 0.2715 0.2532 0.2335 0.2127 0.1913 0.1697

30y MC 0.2396 0.2281 0.2152 0.2011 0.1858 0.1699 0.1534
SD 0.0012 0.0015 0.0018 0.0021 0.0024 0.0029 0.0035

COS 0.2393 0.2279 0.2152 0.2014 0.1866 0.1710 0.1548

Notes: MC stands for Monte Carlo and COS for the Fourier cosine expansion technique (Fang and
Oosterlee, 2008) for the FX-HLMM1 model with 500 expansion terms. The strikes Kn(Ti) are tabulated
in Table B1.
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