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On crystal plasticity FLD analysis

By P.D. Wul, K. W. NEALE! AND E. VAN DER GIESSEN?

Y University of Sherbrooke, Faculty of Applied Science,
Sherbrooke, Quebec, Canada JIK 2R1
2Delft University of Technology, Laboratory for Engineering Mechanics,
Mekelweg 2, 2628 CD Delft, The Netherlands

This paper is concerned with the computation of forming limit diagrams (FLDs)
using a rate-sensitive polycrystal plasticity model together with the Marciniak—
Kuczynski approach. Sheet necking is initiated from an initial imperfection in terms
of a narrow band. The deformations inside and outside the band are assumed to be
homogeneocus and conditions of compatibility and equilibrium are enforced across
the band interfaces. Thus, the polycrystal model needs only to be applied to two
polycrystalline aggregates, one inside and one outside the band. Each grain is mod-
elled as an FCC crystal with 12 distinct slip systems. The response of an aggregate
comprised of many grains is based on an elastic—viscoplastic Taylor-type polycrystal
model developed by Asaro & Needleman in 1985. The effects of initial imperfection
intensity and orientation, initial distribution of grain orientations, crystal elasticity,
strain rate sensitivity, single slip hardening and latent hardening on the FLD are
discussed in detail. The predicted FLD is compared with experimental data for an
aluminium alloy sheet.

1, Introduction

The forming limit diagram (FLD) concept has proved to be extremely useful for
representing conditions for the onset of sheet necking (e.g. Hecker 1975), and is now
a standard tool for characterizing materials in terms of their drawability. Past studies
have clearly established that predictions of FLDs depend on numerous parameters.
There is thus a considerable need to analyse the influence of each parameter on the
FLD in order to improve and optimize the sheet forming process. However, it is
difficult to experimentally assess the influence of each parameter individually since
it is virtually impossible to change only one at a time. Furthermore, experiments on
FLDs are time consuming and expensive relative to numerical simulations. Therefore,
reliable theoretical analyses and numerical simulations for FLDs turn out to be of
great practical importance.

Theoretical calculations of FLDs were initially based on Hill’s criterion for localized
necking along a direction of zero extension (Hill 1952). However, when a sheet is
deformed by biaxial tension so that both principal strain increments in the plane of
the sheet are positive (dez/de; = p > 0), there is no line of zero extension in the
plane, and the description of localized necking given by Hill (1952) does not predict
the onset of localized necking.

Marciniak & Kuczynski (1967), by introducing a thickness imperfection of infi-
nite length normal to the principal stress direction, developed the first analytical

Proc. R. Soc. Lond. A (1997) 453, 1831-1848 © 1997 The Royal Society
Printed in Great Britain 1831 TEX Paper



1832 P. D. Wu, K. W. Neale and E. Van der Giessen

model (hereafter referred to as the M-K approach) to predict localized necking in
biaxial stretching (p > 0) of sheets. They showed that the presence of even slight
intrinsic inhomogeneities in load bearing capacity throughout a deforming sheet can
lead to unstable growth of strain in the weaker regions, and subsequently lead to
localized necking and failure. Within this framework, the influence of various consti-
tutive features on FLDs has been explored using phenomenological plasticity models
(e.g. Chan 1989; Ferron & Molinari 1989). It is now well known that the FLD is
very sensitive to, amongst other things, effects of yield surface vertices, anisotropy
and material rate sensitivity (e.g. Hutchinson & Neale 1978; Storen & Rice 1978;
Bassani et al. 1979). For instance, a slight change of the shape of the yield surface
for a sheet metal can result in a large variation of its FLD (Neale & Chater 1980;
Lian et al. 1989). Since the mechanical properties of a sheet metal are determined by
its microstructure and microscopic properties, the FLD based on phenomenological
models remains a diagnostic tool rather than a predictive one because phenomeno-
logical models cannot account for the effects of microstructure and its evolution with
deformation. Crystallographic texture is usually the prime feature of microstructural
evolution in sheet metals. To incorporate this, crystal plasticity FLD analyses are
required.

Bassani et al. (1979) and Barlat and co-workers (Barlat 1987, 1989; Barlat &
Richmond 1987) calculated a series of Bishop-Hill yield surfaces of polycrystals cor-
responding to various crystallographic textures. They obtained, in certain cases,
FLDs which are in good agreement with the corresponding experimental observa-
tions (Lege et al. 1989). However, Bassani et al. (1979) and Barlat and co-workers
have not considered the subsequent evolution of the yield surface during deformation,
nor the effect of elasticity. Zhou & Neale (1995) have directly applied a rate-sensitive
crystal plasticity model in conjunction with the M-K approach to predict FLDs for
annealed FCC sheet metals. The initial texture and its evolution were considered in
their analyses. However, elasticity was neglected and the imperfection groove was re-
stricted to be normal to the major principal stretch direction. The effect of elasticity
was considered by Qiu et al. (1995), but again, the influence of groove orientation
was not assessed in their analyses. Using their elastic—viscoplastic Taylor-type poly-
crystal model, Asaro & Needleman (1985) and later on Tvergaard & Needleman
(1993) calculated the forming limit strains only for equal-biaxial stretching (p = 1)
and in-plane plane-strain stretching (p = 0), rather than the full FLDs.

In this paper, the polycrystal plasticity model developed by Asaro & Needleman
(1985) is directly used in a nonlinear numerical solution to calculate the FLDs for
FCC polycrystals. This approach too is based on the M~-K approach; that is, sheet
necking is initiated from an initial imperfection represented in terms of a narrow
band, with the deformations inside and outside the band being homogeneous. Thus,
the rather complex polycrystal model needs only to be applied to two separate stress—
strain histories, one inside and one outside the band. The conditions of compatibility
and equilibrium are enforced across the band interfaces. Each grain is modelled as an
FCC crystal with 12 distinct slip systems. The response of an aggregate comprised
of many grains is based on the elastic—viscoplastic Taylor-type polycrystal model of
Asaro & Needleman (1985). Since the deformations are assumed to be uniform both
inside and outside the band, the computational requirements are relatively modest.
Therefore, the influence of the various model parameters on the FLD can be assessed.

The plan of this paper is as follows. In § 2, we briefly recapitulate the constitutive
model. The problem formulation and the method of solution are presented in §3. We
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begin §4 by giving a calculated FLD for a typical aluminium alloy sheet. The effects of
initial imperfection intensity and orientation, initial distribution of grain orientations,
crystal elasticity, strain rate sensitivity, single slip hardening and latent hardening
on the FLD are also discussed in §4. We complete §4 by comparing the predicted
FLD with the experimental data for an aluminium alloy sheet. The discussion and
conclusions are presented in § 5.

Tensors and vectors will be denoted by bold face letters. The tensor product is
denoted by ® and the following operation for second-order temsors applies (a =
a;je; @ e;, b = b;je; ® e;, e; being a Cartesian basis): ab = abrje; ® €, a-b =
a;;b;;5, with proper extension to high-order tensors. Superscripts T and —1 denote
the transverse and inverse of a second-order tensor, respectively. The trace is denoted
by tr. Furthermore, the range of Greek tensor indices «, 8 = 1, 2, while italic indices
run from 1 to 3.

2. Constitutive model

We start by briefly recapitulating the constitutive model employed in this paper.
For details, we refer to Asaro & Needleman (1985).

The total deformation of a crystallite is the result of two distinct physical mecha-
nisms: crystallographic slip due to dislocation motion on the active slip systems, and
elastic lattice distortion. We consider FCC crystals having the usual {111}(110) slip
systems where the slip planes are the {111} crystallographic planes with normals m,
and the (110) directions are shear directions with slip vectors s. Plastic deformation
of the crystal is envisaged to occur as a set of plastic simple shears along the var-
ious slip systems, leaving the lattice and the slip systems’ vectors (s(q), T(4)) Dot
only essentially undistorted, but also unrotated (the brackets in the subscripts («)
indicate that « is not a tensor index and ranges from one to the number of slip sys-
tems). Next, the material and lattice are considered to deform elastically and rotate
rigidly from the plastically deformed state to the current configuration. Accordingly,
we have the following decomposition for the deformation gradient tensor F':

F = F"FP, (2.1)

where FP consists solely of crystallographic slipping along specific slip systems, and
F* arises from the stretching and rotation of the crystal lattice. From (2.1), the
spatial gradient of velocity can be written as

L=FF'=L"4+LP, (2.2)

where
L*=F*F' I[P =F*(FPFr-Y)F* ! (2.3)
Taking symmetric and antisymmetric parts of the above relations leads to the elastic

and plastic strain rate D* and DP, the so-called plastic spin WP and the spin W*
associated with the rigid lattice rotation:

D=D"+DP, W=W"*+WP (2.4)

Since s(,) and m(y) are regarded as lattice vectors, they are stretched and rotated
as follows:
S’(ka) = F*S(a), m’(“a) = m(a)F*"l.
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The vectors s} , and m;_,, orthogonal since s(,) and m,) are, characterize a par-
. ) (@) = () (@) ),
ticular slip system in the current state, and their evolution is governed by

ok - * %k L 3 _ *T *
8y =L78(s), M =—L" my,.

By introducing for each slip system, «, the following symmetric and skewsymmetric
tensors:

P,y =sym(s(, @ miy)), W) =skew(s(,) ® m(y), (2.5)
respectively, the plastic strain rate and spin for the crystal can be written as
DP = Z P(a)’?(a), WP = Z W(a)")’(a), (2,6)

where 7(,) is the shear rate on the slip system a. The elastic constitutive equation
for a crystal is specified by
v

T =7 -W*r+17W"* = LD, (2.7)

v

where T* is the Jaumann rate of the Kirchhoff stress tensor 7 based on the lattice
rotations, and L is the tensor of elastic moduli. These moduli are based on the
anisotropic elastic constants of the FCC crystal and thus exhibit the appropriate
cubic symmetry.

In order to express the constitutive equation (2.7) in terms of the Jaumann rate
o of Cauchy stress o = det(F)~1r, based on the continuum spin W, we introduce
a second-order tensor R,y for each slip system as follows:

R(a) = ﬁP(a) + W(a)O’ - O'W(a). (28)

Using (2.4)—(2.6) and (2.8), the constitutive equation (2.7) can be rewritten in the
form

&=LD-6%—otrD, (2.9)
where &0 is a viscoplastic-type stress rate defined by
6= Ry (2.10)

The slip rates to be substituted into (2.10) are taken to be governed by the power-
law expression

1/m
. . T
V(@) = Yo SEN T(q) gL;— (2.11)
where 7() is the resolved shear stress on slip system a:
(@) = Pla) - 0, (2.12)

and g(a) is its hardness; m is the strain-rate sensitivity index and -, is a reference
shear rate.

The g(o) characterize the current strain hardened state of the crystal. For multiple
slip, the evolution of the hardness is taken to be governed by

G =D _ hap)l o), (2.13)
B

where g(,)(0) is the initial hardness and is taken to be a constant 7o for each slip
system, and where h(,g) are the hardening moduli. The form of the moduli is

has) = Qs s (no sum on 3), (2.14)
Proc. R. Soc. Lond. A (1997)
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where h(g) is a single slip hardening rate, and g(,g) is the matrix describing the
latent hardening behaviour of the crystallite. For FCC crystals with 12 slip systems,
we take g(op) to be given by (Asaro & Needleman 1985)

A gA qA ¢A
gA A gA ¢A
gA gA A ¢A
gA gA ¢qA A

d(aB) =

where g is the ratio of the latent hardening rate to self hardening rate, and A is a
3 x 3 matrix fully populated by ones. In the above, the numbering is taken to be
such that slip systems {1,2,3} are coplanar, as are systems {4,5,6}, {7,8,9} and
{10,11,12}. Thus the ratio of the latent hardening rate to the self hardening rate for
coplanar systems is taken as unity.

Asaro & Needleman (1985), among others, simply take each g(.) to depend on the
accumulated sum, ~,, of the slips; i.e.

t
I(o) = 9 (Ta), ’Yaz/ > el dt. (2.15)
0 [s3

Thus, h(g) is identical for each system g.
The single slip hardening law employed in this paper takes the following power-law
form of the constitutive function hg)

A ~ n—1
hig) = h0< CRLIFE 1) : (2.16)

ToN

where Ao is the system’s initial hardening rate.

The response of a polycrystal comprised of many grains is obtained by invoking the
Taylor assumption. Thus, at a material point representing a polycrystal of V grains,
the deformation in each grain is taken to be identical to the macroscopic deformation
of the continuum. Furthermore, the macroscopic values of all quantities, such as
stresses, stress rates and elastic moduli, are obtained by averaging their respective
values over the total number of grains at the particular material point.

3. Problem formulation and method of solution

The FLD analysis is applied to polycrystalline sheets having orthotropic textures.
The axes x; and x5 define the directions of orthotropy in the plane of the sheet,
while x5 represents the direction normal to the sheet. In the numerical simulations,
textures satisfying these conditions of orthotropy will be employed.

We consider a sheet having a non-uniformity in the form of a groove or band
which is initially inclined at an angle v; with respect to the x; direction (figure 1).
Tensor components are taken with reference to the Cartesian z; coordinate system.
Quantities inside the band are denoted by ()P. The thickness along the minimum
section in the band is denoted by hP(t), with an initial value h"(0). The initial
geometric non-uniformity is defined by

f=h"(0)/h(0), (3.1)
where h(0) is the initial thickness outside the band.

Proc. R. Soc. Lond. A (1997)
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Figure 1. Thin sheet with an initial thickness imperfection initially inclined at an angle /1.

The loading imposed on the edges of the sheet is assumed to be such that

Do _ %2 _ ) const, Dip=0, Wag =0, (3.2)
Dy, €11
where €99 and €;; are the (principal) logarithmic strain rates. We take 0 < p < 1
so that in all cases €17 is the major principal strain. We further assume that Dy3 =
Doz = Wiz = Was = 0, while D33 is specified by the condition &35 = 0. For the
orthotropic textures considered, these boundary conditions imply that the average
stress components 013 = 033 = 0.
For the above deformation conditions, the current groove orientation ¢ is given

by

tan1) = exp[(1 — p)e11] tan . (3.3)

Since uniform deformations are assumed both inside and outside the band, equi-

librium and compatibility inside and outside the band are automatically satisfied,

apart from the necessary conditions at the band interface. Following Hutchinson &

Neale (1978), the compatibility condition at the band interface is given in terms of
the differences in the velocity gradients inside and outside the band

L};ﬁ = Lag + éang, (34)
or

Here, n1 = cosy and ny, = sin are the components of the unit normal to the band
in the current configuration, and ¢, are parameters to be determined. Equilibrium

requires balance on each side of the interface so that
Naoozh® = naoash, (3.6)

in the current configuration. Now, a set of incremental equations for ¢, are obtained
by substituting the incremental constitutive relations (2.9) into the incremental form
of (3.6), using (3.5) to eliminate the strain increments Df,;. Together with the con-
dition 65, = 0, this furnishes three algebraic equations for solving ¢;, ¢ and the
unknown D2..

The solution is obtained numerically by a linear incremental procedure. At any
given stage of the prescribed strain path, the moduli £ and 6° in (2.9) are calculated
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for all grains inside and outside the band, by updating from the previous increment.
The corresponding moduli and the visco-plastic type stress rates for the polycrystals
representing materials inside and outside the band, are obtained by averaging over
all grains inside and outside the band, respectively. Therefore, the rates ¢,, or D2 8
and Db, inside the band are directly calculated by solving the three above-mentioned
algebraic equations. The sheet thickness outside the band h and inside the band AP
are updated based on the rates

h = Dssh, h> = DE.hP. (3.7)

For numerical stability, the polycrystal constitutive equations are implemented via
the one-step explicit rate-tangent method described by (Peirce et al. 1983). Moreover,
an adaptive time-stepping method developed by Van der Giessen & Neale (1993) is
used. Finally, an equilibrium correction procedure is applied to prevent drifting of
the solution from the true equilibrium path.

The onset of sheet necking is defined by the occurrence of a much higher maximum
principal logarithmic strain rate inside the band than outside, in this case we employ
the condition €°/D;; > 10%. The corresponding principal logarithmic strains &%,
and €3, outside the band are the limit strains. For a real sheet material, numerous
initial imperfections exist with different orientations, resulting from surface roughness
(Barlat 1989) or from microvoids in the materials (Wilson et al. 1981). The most
conservative estimate of a forming limit strain is obtained by calculating the limit
strain for various values of the chosen initial groove orientation and selecting the
minimum limit strain as the predicted forming limiting strain. The entire FLD of a
sheet is determined by repeating the procedure for different strain paths outside the
band as prescribed by the value of p.

4. Results

Since most sheet forming operations are carried out on rolled materials, it is im-
portant for a numerical tool to be able to accurately predict FLDs for sheet metals
with strong initial rolling textures. Consequently, we consider a typical rolled alu-
minium alloy sheet with its initial texture represented by the {111} stereographic
pole figure shown in figure 2a. For the purpose of comparison, we also include re-
sults for a sheet with initially random texture shown in figure 2b. For the initially
textured sheet 408 grains are used to represent the texture, while for the initially
random sheet 300 grains are employed. Furthermore, we assume that, throughout
this paper, the rolling direction (RD) is aligned to the major strain direction (z;).

(a) A typical FLD

Figure 3 shows the predicted FLD for the rolled sheet with the initial texture shown
in figure 2a. The simulation is carried out for an initial imperfection intensity f =
0.99. The crystal elastic constants are taken to be Cq; = 206 GPa, C1, = 118 GPa
and Cyq = 54 GPa. The slip system reference plastic shearing rate is assumed to be
49 = 0.001s~!, while the slip rate sensitivity parameter m = 0.002. The values of
the hardening parameters are 7o = 22 MPa, ho/7o = 181.82, n = 0.16 and ¢ = 1.0.
These values of material parameters are in the range of those for rolled aluminium
sheets, and will be used in all simulations reported in this paper except where noted
otherwise. It is seen from figure 3 that the predicted major limit strain €3, decreases
with p to reach its lowest point at p = 0.20, and then increases until p = 0.6. With
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Figure 2. Initial grain orientation distributions represented by {111} stereographic pole figure
for: (a) a sheet with a typical rolling texture; and (b) an initially random sheet.
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Figure 3. Typical predicted FLD for an initially textured sheet (as shown in figure 2a).

further increasing p, €}, once again decreases. It is noted that the dip, near in-
plane plane-strain tension (p < 0.2), in the predicted FLD is small but nevertheless
significant, and has been observed experimentally (e.g. Ratchev et al. 1994).

(b) Effects of initial imperfection

If there is no initial imperfection (f = 0), the equations for ¢, and D&, are ho-
mogeneous, so that localization can only occur at a bifurcation point, and the first
critical bifurcation of this type coincides with loss of ellipticity of the equations gov-
erning incremental equilibrium (Hill 1962; Rice 1977). For a rate-sensitive material
as we consider in this paper, bifurcations into a localized mode are entirely gov-
erned by elasticity, and such bifurcations are not predicted at realistic stress levels
(Tvergaard & Needleman 1993). Thus, the FLD prediction for elastic-viscoplastic
materials relies on the gradual amplification of initial inhomogeneities.

Figure 4a shows the effects of initial imperfection on the predicted FLDs for the
same initial texture and material parameters as before. As expected, the smaller the
initial imperfection f, the larger the critical strain for sheet necking. For p < 0.5
or so, the effect is smaller than for larger p, but in both regimes the effect is rather
insensitive to the precise value of p. It should be noted that in the simulations we
have scanned every 5° of a range of ¢; and then determined the critical groove angle
that gives the minimum localization strain, i.e. the limit strain. Figure 4b gives the
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Figure 4. Influence of the initial imperfection f on: (a) the predicted FLDs; and (b) the
predicted critical groove orientations for an initially textured sheet.

predicted critical groove orientations. It is seen that a groove oriented at ¢y = 0 is
favourable for necking when p < 0.5, while the critical groove orientation increases
from 0 at p = 0.5-45° at balanced biaxial tension (p = 1). This effect of groove
orientation can be also observed in figure 4a, where a case with groove orientations
restricted to 3y = 0 is also included. The critical groove orientation is not very
sensitive to the initial imperfection f in the range considered, bearing in mind that
a predicted ¢f is accurate to within 5°. It seems that one could overestimate the
predicted limit strain, at least near balanced biaxial tension, for a rolled sheet with
an initial texture as that shown in figure 2a, if one restricts the groove orientation
to 11 = 0 in the FLD analysis, as was done by Zhou & Neale (1995) and by Qiu et
al. (1995).

(c¢) Effects of initial texture

It is now well known that a slight change of the shape of the yield surface for a
sheet metal can have a rather large effect on its FLD (Neale & Chater: 1980; Lian
et al. 1989). In the crystal plasticity FLD analysis carried out here, the shape of the
‘yield surface’ for a sheet metal is specified by the initial texture and its evolution.
Consequently, the initial texture is one of the most important parameters effecting
the FLDs.

Figure 5 represents a comparison between the predicted FLDs for an initially
textured sheet (see figure 2a) and for an initially random sheet (see figure 2b), re-
spectively. It is clear that the predicted shapes of FLDs are quite different. The
predicted major limit strain €}, for the initially random sheet is above that for the
initially textured sheet when p < 0.55, while this trend is opposite when p are larger.
It is noted that the predicted limit strains for the initially random sheet are not
sensitive to the groove orientations.

(d) Effects of material properties

Previous studies with phenomenological models have indicated that FLDs are usu-
ally sensitive to effects of material properties such as strain hardening and material
rate sensitivity (e.g. Hutchinson & Neale 1978; Zhou & Neale 1995). In this section,
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Figure 5. Influence of initial texture on the predicted FLDs.
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Figure 6. (Left) Influence of the material rate sensitivity parameter m on the predicted FLDs
for an initially textured sheet.

Figure 7. (Right) Influence of the hardening parameter, n, on the predicted FLDs for an initially
textured sheet.

we will examine systematically the effects of the material parameters in the present
crystal plasticity model.

Figure 6 shows the change in the predicted FLD when the value of the material
rate sensitivity m is increased by a factor five to m = 0.01. Increasing the rate
sensitivity in (2.11) tends to enhance the hardening at large shears. Consistent with
this, we see from figure 6 that the limit strain is increased relative to that in figure 3.
The predicted critical groove orientations are found to be insensitive to m. It should
be noted though that the tendency for texture development usually diminishes with
increasing rate sensitivity. Consequently, the effect of m may vary with the strain
path as different textures develop, but apparently the difference in texture evolutions
between m = 0.002 and 0.01 remain small encugh that this does not occur with the
present parameters.

The parameters n, ¢ and hg govern the strain hardening through the power-law
expression. It is known that the effect of the parameter hy on material response
is noticeable only when the applied strains are very small, and has no significant
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Figure 8. Influence of the latent hardening parameter ¢ on: (a) the predicted FLDs; and (b)
the predicted critical groove orientations for an initially textured sheet.

influence on FLDs. In figure 7, we study the effect of hardening by first using the
same value of ¢ (¢ = 1.0) but different values of n: n = 0.16 and 0.21. It is clearly
seen that a larger value of n increases the limit strain, which can be attributed
simply to the fact that hardening increases with increasing n. Consistent with this,
the predicted critical groove orientations for the two n values are very close.

We proceed by studying the effect of the hardening characteristics by using the
same value of n (n = 0.16) but different values of ¢: ¢ = 1.0, 1.2 and 1.4. The
predicted FLDs are presented in figure 8a. It is observed that increasing q increases
the limit strain when p < 0.4 or so. The latent hardening effect (¢ > 1.0) decreases
the limit strain near balanced biaxial tension. However, the predicted limit strain
based on ¢ = 1.2 is not in between that based on respectively ¢ = 1.0 and ¢ = 1.4,
as one might tend to expect. According to figure 8b, the value of ¢ also affects the
critical groove orientations. It is found that the predicted critical groove orientations
for the latent hardening sheets (¢ > 1.0) are quite different to those for the isotropic
hardening sheet (¢ = 1.0), especially near balanced biaxial tension. The differences
in the calculated critical groove angles between ¢ = 1.2 and ¢ = 1.4 are small.

It is worthwhile to point out that the study of above cases, with different values of ¢
and same value of n, can reveal the effect of latent hardening only to some extent. The
reason for this is that these different sets of hardening parameters actually represent
different materials, because their stress responses (e.g. the predicted uniaxial stress—
strain curves) are quite different. Therefore, we now consider the following three
different combinations of n and ¢: (¢ = 1.0, n = 0.245), (¢ = 1.2, n = 0.229)
and (¢ = 1.4, n = 0.214). These three sets of hardening parameters give virtually
identical uniaxial tensile response (in the rolling direction), as shown in figure 9. The
corresponding predicted FLDs with f = 0.997 are presented in figure 10. It is found
that the differences in predicted FLDs between the latent hardening (¢ = 1.2 or
q = 1.4) and the isotropic hardening (¢ = 1.0) are much more significant than that
in figure 8a, especially near balanced biaxial tension. The predicted critical groove
orientations are found to be similar to those shown in figure 8b.

These results indicate that the activated slip systems for a given strain path (p =
const.) are different in sheets with different hardening parameters ¢, so that the final
textures should be expected to be different too. Furthermore, it appears that these
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Figure 9. (Left) Stress responses to uniaxial tension of an initially textured sheet for three
different sets of hardening parameters.

Figure 10. (Right) Predicted FLDs, based on three different sets of hardening parameters, for
an initially textured sheet.

Figure 11. Calculated textures at necking for an isotropic hardening sheet (g = 1.0, n = 0.245)
under in-plane plane-strain tension: (a) outside; and (b) inside the groove, with f = 0.997 and
an initial texture shown in figure 2a.

differences may not be the same near balanced biaxial tension and near in-plane
plane-strain tension (p = 0). Figure 11 shows the calculated textures at necking for
an isotropic hardening sheet (¢ = 1.0, n = 0.245) under in-plane plane-strain tension.
The texture outside the band at necking is a typical plane-strain tension texture
(figure 11a). As expected, the texture inside the groove (figure 11b) is stronger than
that outside the groove. For a latent hardening sheet with ¢ = 1.4 and n = 0.214,
we find from figure 12a that the predicted texture outside the groove at necking
is considerably sharper than that for the isotropic hardening sheet in figure 1la.
One may attribute this to the fact that the predicted limit strain 7, for the latent
hardening sheet is 0.243, while it is only 0.224 for the isotropic hardening sheet.
However, the difference in €}; alone cannot induce such a large difference observed
in the predicted textures; this large difference is mainly due to the latent hardening.
This point of view is supported by comparing figures 13 and 14, which present
the simulated textures for isotropic and anisotropic hardening sheets, respectively,
under balanced biaxial tension at necking. It is observed that the texture outside
the groove for the latent hardening sheet at necking (figure 14a) is much stronger
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Figure 12. Calculated textures at necking for a latent hardening sheet (¢ = 1.4, n = 0.214)
under in-plane plane-strain tension: (a) outside; and (b) inside the groove, with f = 0.997 and
an initial texture shown in figure 2a.

Figure 13. Calculated textures at the onset of necking for an isotropic hardening sheet (¢ = 1.0,
n = 0.245) under balanced biaxial tension: (a) outside; and (b} inside the groove, with f = 0.997
and an initial texture shown in figure 2a.

than that for the isotropic hardening sheet (figure 13a). Since the limit strains (¢}, =
€55 = 0.169) for the latent hardening sheet are much smaller than the limit strains
(e}; = €3y = 0.265) for the isotropic hardening sheet, the difference observed in the
predicted textures must be completely due to the effect of latent hardening. The
rolling direction of the simulated texture for isotropic hardening sheet inside the
groove (figure 13b) is found to be inclined at about 45°, since the critical groove
orientation is in this case inclined at an angle ¢; = 45°. Figure 13b also indicates
that shear strain components induced inside the groove become significant.

Although the material inside the groove tends towards a plane-strain deformation
state irrespective of the deformation imposed outside the groove, the simulated tex-
tures inside the groove (e.g. figures 13b and 14b) only show a very weak plane strain
tension texture. The reason for this is that computations were stopped at the onset of
necking (when é/Dy; > 10°), and at that instant the deformation inside the groove
has not yet become very large compared to the applied deformation. In some of the
cases, we continued the computations beyond neck initiation, and we found that as
the applied deformations concentrated in the groove, the material inside the groove
reached a plane-strain deformation state.

So far, all computations performed on the initially textured sheet have shown a
dip near in-plane plane-strain tension (p = 0) in the predicted FLDs. We noted that
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Figure 14. Calculated textures at the onset of necking for a latent hardening sheet (g = 1.4,
n = 0.214) under balanced biaxial tension: (a) outside; and (b) inside the groove, with f = 0.997
and an initial texture shown in figure 2a.

this is a feature that has also been observed experimentally, but never revealed in
numerical simulations by other researchers who also apply crystal plasticity models in
their FLD analyses (e.g. Zhou & Neale 1995; Barlat 1989). The question then arises:
where does the dip come from? One possibility is the effect of crystal elasticity, since
one of the important differences between our approach and others mentioned above
is that the elastic effect is included in our analyses but is excluded in the others.
To examine the effect of crystal elasticity on the FLD, we consider a ‘rigid’-plastic
material with very large elastic constants C},, C], and C}, that are all a factor
100 larger than the corresponding values of Ciy, Ci5 and Cyy, but with all other
parameters, such as hardening parameters, kept unchanged. The term ‘rigid’ plastic
is used here because the stress—strain curve of this material is almost identical to that
of the corresponding ideal rigid-plastic material. The predicted FLDs are presented in
figure 15a. It is clear that the dip is not observed in the simulated FLD for the ‘rigid’-
plastic sheet. Thus, it seems that it is the very large elastic stiffness that eliminates
the dip. Conversely, figure 154 indicates that increasing the elastic modulus of a sheet
metal can improve its formability. The effect of crystal elasticity on the simulated
critical groove orientations is observed in figure 156.

(e) An example for a rolled aluminium alloy sheet

At this stage, it might be of interest to compare simulated and measured FLDs.
As an example, we consider a real aluminium alloy sheet with its measured initial
texture being that already shown in figure 2a. The strain rate sensitivity m = 0.002
is suggested by the material producer, while the slip system reference plastic shearing
rate is taken as before, 49 = 0.001 s™1. Also, the crystal elastic constants are taken
identical to the values used previously. They are typical for an aluminium alloy.
We assume isotropic hardening (¢ = 1) and estimate the hardening parameters in
the crystal plasticity constitutive model by curve-fitting numerical simulations of
uniaxial tension (in the rolling direction) to corresponding experimental data. From
this procedure we find: 79 = 22 MPa, hy/79 = 181.82 and n = 0.245. Figure 16 shows
that the curve-fit is quite good.

In the simulations, the value of the initial imperfection parameter was taken as
f = 0.997, which was estimated by fitting the limit strain of in-plane plane-strain
tension (p = 0) to the test result for the same sheet. It is noted that this high value
is consistent with Barlat’s work (Barlat et al. 1984; Barlat & Jalinier 1985), where
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Figure 15. Influence of crystal elastic properties on: {a) the predicted FLDs; and (b) the the
predicted critical groove orientations for an initially textured sheet.
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Figure 16. (Left) Tensile stress response in uniaxial tension for an aluminium alloy sheet with
its initial texture given in figure 2a.
Figure 17. (Right) Predicted and measured FLDs for the aluminium alloy sheet of figure 16.

the initial imperfection was assumed to result from homogeneously distributed mi-
crocavities. Using a physical description of the cavities, they estimated imperfection
values of about 0.996 or 0.997. Figure 17 shows the simulated and measured FLDs. It
is seen that the agreement between the simulated and measured FLDs is reasonable,
and the shape of the experimental FLD is predicted quite well.

5. Conclusion

In this paper, we have analysed FLDs based on the elastic—viscoplastic Taylor-type
polycrystal plasticity model developed by Asaro & Needleman (1985). The effects of
initial imperfection intensity and orientation, initial distribution of grain orientations,
crystal elasticity, strain rate sensitivity, single slip hardening and latent hardening
on the FLD have been discussed in detail.
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The influence of some of the material properties on the FLD are easy to assess. For
example, an increasing strain-rate sensitivity value, m, shifts the FLD towards higher
values of major limit strain ef,. The effect of the single slip hardening parameter,
n, is similar. These trends are completely analogous to the well-known effects of
hardening and rate-sensitivity in phenomenological plasticity (e.g. Hutchinson &
Neale 1978). Although the value of the initial imperfection parameter, f, cannot be
directly measured by physical experiments, its influence on the FLD can be examined
numerically. As expected, the smaller the imperfection, the larger the major limit
strain €7;.

On the other hand, the effect of latent hardening on the FLD is quite complex.
In general, latent hardening has a strong effect on the currently activated slip sys-
tems, which determine texture evolution and thus affect the FLD. What renders this
phenomenon even more complicated is that the effect of the latent or anisotropic
hardening is dependent on the strain path. Therefore, changing the latent harden-
ing parameter, q, results in changes of the shape of the FLD. It should be noted,
however, that all results reported here were based on the simple power-law single-
slip hardening model. In order to further assess the influence of latent hardening,
it may be necessary to consider other hardening models, such as the recently pro-
posed Bassani-Wu (Bassani & Wu 1993) model. The Bassani-Wu model is a more
physically motivated hardening model, and is capable of predicting a number of ex-
perimentally observed phenomena that other models, such as the hardening model
adopted here, cannot represent. For example, it has been found that only the Bassani-
Wu hardening-based Taylor-type polycrystal plasticity model qualitatively predicts
the experimental shapes of the normal stress curve in fixed-end torsion and the axial-
strain curve in free-end torsion (Wu et al. 1996). However, the Bassani-Wu model
involves many material parameters to be specified experimentally, so that more ex-
perimental data on sheet materials would be required.

Unexpectedly, the effect of crystal elasticity on the FLD was revealed to be im-
portant. Previous works based on phenomenological plasticity models suggested that
the predicted FLDs are not sensitive to elastic properties of the materials. Conse-
quently, elasticity has been neglected in most FLD analyses, for instance, in Barlat
(1987), Van Houtte & Téth (1993), Ratchev et al. (1994) and in Zhou & Neale (1995).
Our numerical results, however, have clearly shown the importance of elasticity on
FLDs. Details aside, ‘rigid’ plasticity eliminates the dip in the FLD near in-plane
plane-strain tension, observed in the corresponding more realistic elastic—plastic FLD
analyses. For a given initial texture, it is the elastic effect which determines the shape
of the FLD near in-plane plane-strain tension. It is apparently impossible for an FLD
analysis neglecting elasticity to reproduce the dip observed in the experimental de-
termined FLDs. To our knowledge, the present result is the first which predicts this
dip. Our analyses also indicated that increasing the elastic modulus of a sheet metal
improves its formability.

The importance of the effect of the shape of the yield surface on the FLD has
been recognized for a long time. As pointed out before, in the crystal plasticity
FLD analysis carried out here, the shape of the yield surface for a sheet metal is
determined by the initial texture and its evolution. Consequently, the initial texture
is one of the most important effects on the FLD. Our numerical study on the effect
of initial texture on the FLD, shown in figure 5, suggests the possibility of designing
forming processes that led to textures that enhance the resistance to localization for
specified strain paths.
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The predicted FLDs have been compared with experimental data for an aluminium
alloy sheet. The predictions were based on an experimentally measured initial tex-
ture, while the values of the hardening parameters in the constitutive model were
estimated by curve-fitting numerical simulation of uniaxial tension to corresponding
experimental data. In general, the agreement is reasonable, and the shape of the
experimental FLD is predicted reasonably well. The differences between the calcu-
lated and experimental FLDs could be due to the fact that we simulated in-plane
stretching deformation processes, while the experimental data were obtained from
hemispherical punch stretching tests. In punch tests, there are compressive stresses
normal to the sheet, frictional shear stresses, and sheet curvature. Furthermore, the
strain paths are not necessary proportional. These complicating factors have not
been accounted for in our analyses. Furthermore, it has been found that the mea-
sured FLDs from in-plane stretching lie below the corresponding punch-stretching
FLDs (Ghosh & Hecker 1974). Based on this observation, the agreement between
the calculated and experimental FLDs can be considered to be quite good. However,
it was found that the predicted FLDs are not very smooth. The reason for this is
that the measured initial texture was represented by only 408 grains. For an initially
anisotropic FCC polycrystal, using only around 400 grains is probably not sufficient
to accurately discretize the initial texture. However, our predictions with 408 grains
do appear to capture the key features of the FLD for the aluminium alloy sheet
studied.

An important point that has not been addressed is the effect of changing strain
paths on FLDs. During an actual forming operation, a material element may un-
dergo considerably large changes in strain path, and these changes may significantly
alter the forming limits. The ability to include path changes in FLD calculations is
important because the number of potentially significant changes is too great to be
thoroughly covered by experiments and because calculations allow general trends to
be explored over a large range of variables. Investigations of the effect of changing-
strain paths on the FLD by means of the numerical tool presented here will be
reported elsewhere.
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