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Abstract—The use of Wi-Fi signals for human sensing has
gained significant interest over the past decade. Such techniques
provide affordable and reliable solutions for healthcare-focused
events such as vital sign detection, prevention of falls and long-
term monitoring of chronic diseases, among others. Currently,
there are two major approaches for Wi-Fi sensing: (1) passive
Wi-Fi radar (PWR) which uses well established techniques from
bistatic radar, and channel state information (CSI) based wireless
sensing (SENS) which exploits human-induced variations in
the communication channel between a pair of transmitter and
receiver. However, there has not been a comprehensive study to
understand and compare the differences in terms of effectiveness
and limitations in real-world deployment. In this paper, we
present the fundamentals of the two systems with associated
methodologies and signal processing. A thorough measurement
campaign was carried out to evaluate the human activity detec-
tion performance of both systems. Experimental results show that
SENS system provides better detection performance in a line-of-
sight (LoS) condition, whereas PWR system performs better in
a non-LoS (NLoS) setting. Furthermore, based on our findings,
we recommend that future Wi-Fi sensing applications should
leverage the advantages from both PWR and SENS systems.

Index Terms—Passive Wi-Fi Radar, Channel State Informa-
tion, Doppler, Wireless Sensing

I. INTRODUCTION

With the fast growing ageing population, there are increas-
ing concerns that health conditions such as cardiovascular
diseases, mental health issues and diabetes will become more
prevalent and increase the burden on national healthcare
services. Hence there is a greater need than ever to provide
efficient technology solutions for ambient assisted living and
e-healthcare services [1]. Such systems are extremely helpful
for improving quality of life and preventing health risks where
early interventions are critical. Compared to other technologies
used in healthcare monitoring such as cameras and wearable
sensors, Wi-Fi based sensing technology is considered as an
ideal solution because it does not produce images or identify
people being monitored, which alleviates privacy concerns.
Furthermore, it performs uncooperative sensing to overcome
the limitations of wearable technology, such as low compliance
rate, especially amongst the elderly, and discomfort for some
users (e.g., those with skin conditions). Nowadays, Wi-Fi
devices are readily available in almost all indoor environments,
whether residential or commercial. Wi-Fi sensing systems
have been studied for activity and gait recognition [2], fall
detection [3], gesture recognition [4], and intrusion detection

[5]. The main concept behind Wi-Fi sensing is that a moving
person affects the wireless signal in terms of frequency shift,
propagation paths and signal attenuation. Consequently, the
communication channel becomes time-varying and this can
be exploited for a number of sensing applications.

Wi-Fi sensing may be categorized into three types of
systems: received signal strength (RSS) based, radar based and
channel state information (CSI) based. Multiple parameters
can be computed from received signals such as angle of
arrival (AoA), time of flight (ToF), time difference of arrival
(TDoA) and Doppler frequency shift (DFS). The purposes
of these parameters are varied. For example, the coarse-
grained RSS has been used for device-free indoor localization
with fingerprinting (FP) method [6]. However, it suffers from
temporal fluctuations in complex indoor environments because
of multipath induced fading even in a static background. Also,
RSS approaches require a substantial radio-map survey in the
offline training phase and labour-intensive updates for changes
in the background [7]. AoA is a useful parameter that is
obtained by calculating the phase difference of the signals
arriving at multiple antennas [8], where a large antenna array
is normally required. ToF gives the relative distance between
the transmitter and receiver by calculating the arrival time
of the direct wave [9]. In a Wi-Fi system, using only the
ToF parameter for localization is quite challenging since it is
limited by the signal bandwidth. For instance, due to the low
sampling rates of the 20 and 40 MHz channel bandwidths
(50 ns and 25 ns time resolutions, respectively), the signal
may arrive between sampled intervals, giving rise to distance
estimation errors in the order of several meters.

Our previous work [10] has shown the potential of PWR
system to detect small movements of the chest wall in signs-
of-life detection with DFS parameter. This prototype has been
further extended for micro-DFS based activity event classifica-
tion [11]. On the other hand, Wi-Fi CSI which represents how
wireless signals propagate from the transmitter to the receiver
across multiple paths [5], has been used in many sensing
applications like activity recognition [12] (DFS), device-free
tracking [13] (ToF/AoA) and fall detection [3] (DFS).

In this paper, we focus on two major approaches for
activity recognition; PWR system which generates the target’s
ToF/DFS parameters and SENS system which provides CSI
data that can be converted into ToF/DFS parameters. However,
due to the 20 MHz bandwidth in the 2.4 GHz band, ToF

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.
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TABLE I: Overview of Some Recent Wi-Fi Sensing Works

Reference System Signal Processing Machine Learning Application Performance
[6] Distributed

Wi-Fi AP
FP, compressive sensing, clus-
ter

N/A indoor localization 90% error of 2.7 mover 26
APs

[14] SENS Wavelet-based denoising, mul-
tipath mitigation

PCI, subcarrier selec-
tion, DTW

finger gesture recog-
nition

93% accuracy over 8 fin-
ger gestures

[15] SENS PCA, thresholding DWT, HMM activity recognition 96.5% accuracy over 9 ac-
tivities

[2] SENS STFT, spectrogram superim-
position

SVM (radial basis
function (RBF)
kernel)

activity recognition average false acceptance
rate and false rejection
rate of 8.05% and 9.54%

[3] SENS interpolation, segmentation 8 empirical features,
SVM

fall detection 91% of sensitivity and
92% of specificity

[16] SENS chest motion modeled as Fres-
nel zone

N/A breathing detection show ability in 1 m from
different orientations

[17] PWR CAF, CLEAN N/A long distance detec-
tion

detect a moving person at
17 m away and TTW

[18] PWR ECA, CAF N/A outdoor detection detect a running person
and a moving car

[19] PWR CAF, CLEAN N/A finger gesture and ac-
tivity recognition

feasibility demonstration

[10] PWR CAF, CLEAN, micro Doppler
extraction

N/A breathing detection detection range up to 1 m
at different orientations

[11] PWR CAF, CLEAN HMM, K-means clus-
tering

activity recognition 80% accuracy with unsu-
pervised learning over 6
activities

does not provide sufficient resolution for this work, and thus
only the DFS parameter is used. Two prototypes have been
implemented to demonstrate the feasibility of each approach.
Experimental data from these prototypes was collected and
timestamped using a network time protocol (NTP) server for
synchronization purposes. Detection performance was verified
by six activities from five people with different setups. Al-
though both SENS and PWR systems can provide meaningful
results for human activity recognition, there are still many
challenges that need to be solved for real-world deployment.
Compared to previous SENS [4], [5], [20] and PWR [10], [18],
[19] studies, this work makes the following contributions:

• To the best of the authors’ knowledge, this is the first
work to demonstrate the difference between SENS and
PWR systems with experimental data collected from real-
world.

• We have implemented two systems for SENS and PWR
to facilitate a direct comparison. Thorough experiments
are performed to investigate the difference between the
two systems for human activity recognition, and identify
their sensitivities in terms of system layout, coverage and
accuracy.

• Based on our observation, we provide a discussion on
SENS and PWR systems in terms of their advantages
and limitations in future development and deployment.
We also assess potential improvements for Wi-Fi based
sensing.

This paper is organized as follows: Related works are
presented in Section II. An overview of Wi-Fi sensing is
given in Section III. Signal processing for the SENS system is
described in Section IV. Signal processing for the PWR system
is explained in Section V. System design and evaluation are
presented in Section VI. Section VII discusses the feasibility
and limitations of the two approaches. Finally, conclusions are
drawn in Section VIII.

II. RELATED WORK

In this section, we compare previous works for SENS and
PWR systems. Generally, DFS parameter can be obtained from
either raw Wi-Fi signal or CSI data. However, the way that
the two systems extract this parameter is vastly different. A
comparison of these works is shown in Table I.

A. Wi-Fi SENS System

For a Wi-Fi system with multiple-input multiple-output
orthogonal frequency division multiplexing (MIMO OFDM)
capability, the CSI is obtained as a 3D matrix, consisting of
complex values which can be broken down into amplitude
and phase [5]. CSI measurements, in time domain, capture
the changes in wireless signal due to the latter’s interaction
with surrounding objects or human activities and the observed
patterns can be used for various purposes. Different Wi-Fi
sensing applications have specific requirements in terms of
their signal processing techniques and classification/estimation
algorithms.

For example, [6] presents a compressive sensing based
FP method for indoor localization by using RSS parameter.
However, the radio map is very time consuming to build and
needs calibration when the environment changes, which limits
its potential application in a residential environment. Authors
of WiFinger [14] extract fine-grained features from CSI data
by using principal component analysis (PCA) and employ
dynamic time warping (DTW) as the classifier for finger
gesture recognition. They claim to achieve an accuracy of 95%
for 8 finger gestures compared to 76% using RSS. The idea
of WiFinger is that subcarriers in an OFDM signal are highly
sensitive to small movements in the physical environment
and result in fluctuations in the CSI. This phenomenon has
also been used in device-free activity recognition [2], [15].
For example, CARM [15] proposes a CSI-speed model to
quantify the relationship between CSI variation and human



3

movement speed. The frequency component is extracted from
CSI measurements using discrete wavelet transform (DWT),
and a hidden Markov model (HMM) is used to build the
CSI-activity model to classify human activities. Another work
WifiU [2] uses the short-time Fourier transform (STFT) tech-
nique to transform the CSI measurements into spectrograms.
The torso speed and cycle time of each gait are calculated
as features and support vector machine (SVM) is used as the
classifier. This work claims to achieve an accuracy of 92%
for a human walking at a distance of 14 m. Fall detection is
another important area in Wi-Fi sensing. RT-fall [3] proposed
a system that is able to detect human falls automatically and
segment these falls from other activities. CSI has also been
used in breathing detection [16] with the understanding of the
Fresnel Zone between transmitter and receiver.

One of the major challenge for a SENS systems is that
changes in the surrounding environment can significantly af-
fect the communication channel. Several approaches have been
used to eliminate the training phase in each new environment.
For example, [20] computes different metrics from the CSI
measurements such as mean, standard deviation, etc., for
people counting applications that only require training within
that specific environment. Wigest [4] uses the RSS parameter
for gesture recognition by extracting the frequency compo-
nent with wavelet transform, and no calibration is required.
Similarly, [15] converts CSI into Doppler spectrograms using
STFT, thus avoiding any calibration. A common approach in
studies mentioned above is that they convert the RSS/CSI into
the form of DFS parameter to avoid calibration in the dynamic
environment.

B. Passive Wi-Fi Radar

Aside from SENS system, passive radar can be also used
for Wi-Fi sensing which exploits Wi-Fi access points as
illuminators of opportunity. Passive radar has a long history in
airborne tracking and detection, but only over the last decade
has it been used for personnel detection [17]. The underlying
concept of passive radar is to exploit the signals from third-
party transmitters, to measure the time difference between the
signal arriving directly to a reference receiver and the signal
arriving via reflection from the object through a synchronized
surveillance channel.

Signal processing for PWR system is more straightforward
than the SENS system. It uses a cross ambiguity function
(CAF) to generate ToF (bistatic distance) and DFS (bistatic
velocity) parameters. However, due to the limited bandwidth
of Wi-Fi APs (20 or 40 MHz), only DFS parameter is mainly
used for indoor scenario. The advantage of DFS parameter, as
discussed above, is that no calibration for the surrounding envi-
ronment is required. An early attempt of the PWR [17] shows
the feasibility of using Wi-Fi signal to detect personnel at
a stand-off distance under through-the-wall (TTW) condition.
[18] investigates a PWR system for outdoor scenarios, and
successfully detects both ToF and DFS parameter for a moving
car and a running human. [19] built a prototype based on the
software defined radio (SDR) platform with real-time ability,
and showed potential for several applications such as activity

and finger gesture recognition. PWR has also been used for
breathing detection. For instance, in [10] we demonstrate that
micro-DFS parameter can be obtained from the chest motion.
PWR for indoor localization can be achieved by examining
the DFS parameter from a moving object with at least two
separated channels [21]. However, accumulated error in the
DFS parameter affects the localization accuracy [21].

The strong direct signal from a Wi-Fi AP is a major
source of interference for a PWR system. Both physical
(e.g. angular antenna nulling), and post-processing techniques
such as adaptive filtering can be used to remove the direct
signal interference (DSI). Work [18] proposed an extensive
cancellation algorithm (ECA) that subtracts the direct signal
from reflected signals based on the least square technique.
However, ECA has a high computational load making real-
time processing infeasible. Another work [17] uses a modified
’CLEAN’ algorithm to suppress the dominant peak due to the
direct signal with a self-ambiguity function which is calculated
by the reference channel only and shares a similar structure
with CAF.

III. OVERVIEW OF WI-FI SENSING

A. Signal Model

OFDM waveform has been widely used in many Wi-
Fi standards such as IEEE 802.11 a/g/n/ac. In an OFDM
system, the bandwidth is shared among multiple overlapping
but orthogonal subcarriers and due to the small bandwidth,
each subcarrier experiences only flat fading in a frequency-
selective fading wireless channel. Let the transmitted OFDM
signal be defined as:

x(t) =
1√
N

N−1∑
n=0

ane
j 2π
T nt, (1)

where T is the OFDM symbol period, N is the number of
subcarriers and an is the nth symbol in the constellation
symbol sequence such as QPSK or QAM. The received signal
y(t) consists of both the direct signal and multipath reflections.
The reflections from a stationary object or a moving person
can be represented as a summation of the delayed and phase
shifted transmitted signal. The received signal can be written
as:

y(t) =
∑
p

Ape
j2πfdtx(t− τ) + n(t), (2)

where p is the number of reflected paths, Ap, τ , fd are the
attenuation factor, delay and Doppler shift for the p-th path
respectively, and n(t) is the additive white Gaussian noise
(AWGN).

In the frequency domain, the transmitted signal X(fc, t) and
received signal Y (fc, t), with carrier frequency fc are related
through the expression Y (fc, t) = H(fc, t)×X(fc, t), where
H(fc, t) represents the channel frequency response (CFR) at
carrier frequency fc, measured at time t. H(fc, t) can be
expressed as:

H(fc, t) = ej2π∆fct
∑
p

Ap(fc, t)e
j2πfd(t−τ), (3)
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Fig. 1: Block diagram overview of SENS (top) and PWR systems (bottom)

where ej2πfd(t−τ) is the phase shift with fd being the
Doppler frequency and τ the propagation delay. ej2π∆fct is
the phase difference between transmitter and receiver due
to the sampling frequency offset (SFO) and sampling time
offset (STO). Although the mechanism of SENS and PWR
system is different, however, the key idea of both systems is
to detect the changes in the communication channel caused by
moving targets and at the same time remove interference from
surrounding objects as well as the geometry of transmitter and
target reflection.

B. System Model

Here we present an overview of the signal processing used
in the PWR and SENS systems for human activity sensing.
This is also summarized by the block diagram in Fig. 1. The
SENS system is based around communication techniques with
a commercial off-the-shelf (COTS) Intel 5300 [22] NIC as the
RF front-end, which generates CSI measurements and is stored
for off-line processing. The PWR system is based on the radar
technique with a universal software radio peripheral (USRP)
platform as the RF front-end, which samples the raw wireless
signal and digitizes it for real-time processing on a desktop.

In order for a Wi-Fi receiver to decode correctly the
transmitted signals in a wireless medium, the propagation
characteristics of the channel must be known. In this regard,
a training sequence that is known by both the transmitter and
receiver is sent in each packet to obtain the channel estimate.
This process is often referred to as channel sounding. The
channel estimate is known as CSI and for a MIMO-OFDM
system, it is a matrix consisting of complex values for each
subcarrier. The equalizer uses the CSI to reverse the effects
of the channel on the transmitted signal such as multipath
propagation, attenuation, phase shift, etc. In the IEEE 802.11n
standard, the training sequences are known as high throughput
long training fields (HT-LTF) and they are sent as part of
the preamble for the receiver to obtain the CSI [23]. On the
other hand, PWR system (with radar technique) correlates the
transmitted signal x(t) and received signal y(t) [24] to detect
the Doppler shift (DFS) fd and propagation delay (ToF) τ .
PWR follows the structure of passive radar system, that is, it
has a ’reference channel’ to recover the transmitted signal and
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Fig. 2: Demonstration of SENS and PWR mechanisms in time
and frequency domains.

several ’surveillance channels’ to capture the reflected signals
from different angles to provide spatial information.

As discussed before, only the DFS parameter will be used in
this work. Thus we output the Doppler spectrogram from the
two systems as it can present meaningful information about
the activity and it is also insensitive to static objects in the
background. There are three major stages in the SENS system:
(1) DWT denoising & median filter to filter out in-band noise
and preserve the high frequency components; (2) CSI data size
reduction by using PCA and just keep meaningful PCA values
and (3) convert these values into Doppler spectrogram using
the STFT method. There are also three major stages in the
PWR system: (1) a Cross Ambiguity Function (CAF) is used
to generate a range-Doppler surface based on the transmitted
and reflected signals; (2) a CLEAN algorithm [17] is needed
to suppress the direct signal from signal source which is the
major interference for a PWR system and (3) noise reduction
is done by applying a Constant False Alarm Rate (CFAR).

Afterwards, these Doppler spectrograms will be used to train
a deep neural network and calculate accuracy for each system.
More details on the signal processing of each system are given
in sections IV and V.
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Fig. 3: Layout: (a) SENS system and (b) PWR system

C. Mechanism

The mechanisms of the SENS and PWR systems in time and
frequency domains are illustrated in Fig. 2. CSI measurement
characterizes how wireless signals propagate from the trans-
mitter to receiver based on the preamble in a Wi-Fi packet. The
pre-defined sequence is used to generate the corresponding
CSI measurement. However, SENS system ignores the data
signal and hence does not take full advantage of a whole Wi-
Fi packet. In comparison, the PWR system does not require
details of the preamble or data in a Wi-Fi packet. To ensure
Doppler sensitivity and signal content, PWR records signals
for a longer duration than CSI. The advantage of the PWR
system is that it can use both the preamble and data signal,
whereas it considers the time gap between two packets to be
redundant noise. The activity detection performance of both
the SENS and PWR systems depends on the frequency of the
received Wi-Fi packets, where the typical default setting of a
commercial Wi-Fi AP (10 beacon frames per second) is not
sufficient for sensing.

SENS systems make estimates about the communication
channel at each subcarrier (in frequency domain). These
measurements provide fine-grained features but they normally
result in a considerable size for sensing applications. On the
other hand, PWR system does not process the OFDM signal on
subcarrier basis but treats each OFDM symbol as one signal.
For this reason, PWR system cannot access the information
within each subcarrier. The bandwidth of the PWR system is
adjustable from the full Wi-Fi spectrum to a single tone. It is
true that the channel information from each subcarrier provides
better resolution than the PWR system which processes the
Doppler shift from the whole signal instead of individual
subcarriers. However, the variations across all subcarriers may
not be vastly different.

SENS and PWR have different configurations as shown in
Figure 3. The major difference is that PWR system has two
channels (surveillance and reference channels) compared to a
single channel (communication channel) in the SENS system.
The reference channel aims to recreate the originally trans-
mitted signal as needed in a passive radar system to compute
the range/Doppler information with the surveillance channel
[25]. Usually the reference channel is set up by pointing a
directional antenna towards the signal source to capture the
transmitted signal. However, the reference channel is unstable
in reality since it may not perfectly recreate the signal due
to multiple environmental factors. Some minor interference in
the reference channel will not significantly affect the PWR’s
performance. In comparison, the predefined preamble signal

in the SENS system is more reliable to generate the CSI
measurements. Additionally, this also simplifies SENS to a
single channel system (No reference or surveillance channels
required).

SENS system captures the variations in the communication
channel between the transmitter and receiver due to motion.
It works best, i.e., it is most sensitive to the variations caused
by human activity when there is a LoS path between the
transmitter and receiver. This geometry is also known as the
forward scatter, where the angle between transmitter-target
and target-receiver is around 180 degrees [25]. However,
forward scatter is not ideal for PWR systems since the Doppler
information is lost in a LoS setting [26], which therefore
reduces the system’s sensitivity. As a passive radar system,
PWR performs better in a monostatic geometry, where the
angle between transmitter-target and target-receiver is smaller
than 90 degrees [25]. Since the two systems work best in
different physical geometries, they have different coverage
sensitivities and their Doppler spectrograms will differ for the
same geometry.

IV. SIGNAL PROCESSING FOR SENS SYSTEM

A. SFO and STO Removal (Phase Calibration)
In a practical Wi-Fi system, raw CSI measurements are

affected by phase offsets as the hardware and software are not
ideal. STO and SFO are caused by non-synchronized sampling
clocks and frequencies between the transmitter and receiver,
respectively. Since in this work we focus on human activity
sensing, the time-domain CSI amplitude variations are enough
for this purpose as they exhibit different patterns for different
activities. Nonetheless, the phase is calibrated as in [27] where
a linear transformation is applied to the raw phase data to
eliminate the phase offset. The measured phase φ̂i of the ith
subcarrier be expressed as:

φ̂i = φi − 2π
ki
N
δt+ β + Z, (4)

where φ is the true phase, β is the phase offset due to carrier
frequency offset, δt is the timing offset between the transmitter
and receiver, ki is the index of the ith subcarrier and Z is the
measured noise. In the Intel 5300 CSI tool [28], i ∈ {1, 30}
and N is the fast Fourier transform (FFT) size. For example,
N = 64 for a 20 MHz Wi-Fi channel in IEEE 802.11 a/g/n.
The terms δt, β and Z make it difficult to obtain the true
phase from Wi-Fi NICs. The phase obtained from the raw
CSI measurements is corrected by first unwinding it and then
applying a linear transformation. The main idea is to remove
the terms δt and β by considering the phase across the whole
frequency band [27].

B. Noise Reduction
Since raw CSI data is noisy in nature, we adopt the DWT

technique to filter out in-band noise and preserve the high
frequency components, thereby introducing less distortion to
the signal. DWT-based noise filtering consists of transforming
the signal into the wavelet domain whereby the signal is
divided into several frequency levels called wavelets that
consist of the detail and approximation coefficients [29]. These
can be mathematically represented as [5]:
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y1,low[n] =↓ Q

[ ∞∑
k=−∞

x[k]g[n− k]

]
, (5)

y1,high[n] =↓ Q

[ ∞∑
k=−∞

x[k]h[n− k]

]
, (6)

where y1,low[n] and y1,high[n] are the approximation and detail
coefficients, respectively, k denotes the frequency index, x[k]
is the input signal, ↓ Q[·] represents a downsampling filter,
g[n] is a low-pass filter and h[n] is a high-pass filter. The
highest wavelet level is considered as noise. For each level, the
noise and threshold for that level are estimated. The threshold
is adapted for lower wavelets and the noise is removed in
all levels without introducing significant distortion to the
signal. In addition to DWT denoising, 1-D median filtering is
also applied to the signal to remove any unwanted transients
or spikes in the signal, especially when no activities were
performed and the signal should be stable in this case.

C. Data Reduction

The raw CSI measurements were collected on a device
equipped with the Intel 5300 NIC with three receiving an-
tennas. For each pair of transmitting antenna and receiving
antenna, we obtain CSI values from 30 OFDM subcarriers
using the Linux CSI tool [28]. Therefore, if we have one
transmit and three receive antennas, we obtain 1×3×30 = 90
complex CSI values for each packet. The packet sampling rate
was set at 1 kHz and hence in one second, we obtain 1000
packets each of size 90. This results in a large amount of data
that needs to be processed and fed to a learning algorithm for
classification. Therefore, dimension reduction is necessary for
a SENS system. In this work, the popular PCA method has
been used to identify the time-varying correlations between
CSI streams which are then optimally combined to extract
components that represent the variations caused by human
activities. The number of principal components is empirically
selected to achieve a good trade-off between classification
performance and computational complexity [12]. Following
DWT denoising, the first two or three principal components
are sufficient to capture most of the variance in the CSI data
stream [29]. Similar to [12], in the SENS system, we extract
the first six principal components. However, the first one is
safely discarded since it contains a lot of noise and will not
result in any loss of information [2], [12], [30]. Therefore,
only the next five principal components are retained for further
processing.

D. Doppler Spectrogram Generation

CSI measurement is highly sensitive to the surrounding
environment and RF reflections from the human body ex-
hibit different frequencies when performing different activities.
These frequencies can be distinguished in the time-frequency
domain (spectrogram) by applying STFT to the PCA-denoised
signal. Basically, the STFT applies a sliding window to obtain
equally-sized segments of the signal and then performs FFT
on the samples in each segment. The STFT of a time-domain
input signal, x[n], is given as:

X(t, k) =

∞∑
n=−∞

x[n]w[n− t]e−jkn, (7)

where t and k denote time and frequency indices, respectively,
and w[n] represents a window function (e.g., Hamming win-
dow). The spectrogram has three dimensions, namely time,
frequency, and FFT amplitude. The Doppler spectrogram from
STFT identifies the change of frequencies over time. The win-
dow size for FFT determines the trade-offs between frequency
and time resolutions. For instance, a larger window size results
in a higher frequency resolution but lower time resolution. The
spectrograms are generated from the five principal components
which are then averaged to obtain the final spectrogram.
Unlike Doppler radar, the CSI spectrogram does not associate
negative frequencies and hence the direction information is not
available.

V. SIGNAL PROCESSING FOR PWR SYSTEM

A. Cross Ambiguity Function

A PWR system consists of two synchronized receiver chan-
nels; a surveillance channel x(t) which measures the target
signals from the monitoring area, and a reference channel y(t)
which records the signal from the Wi-Fi access point. CAF
processing has been used to obtain the range τ and Doppler
fd parameters by taking the FFT of the cross-correlated signals
from the surveillance and reference channels. Doppler resolu-
tion is defined by the integration of time Ti as: ∆fd = 1/Ti.
This allows the Doppler resolution to be adjusted for detecting
human activities. The CAF equation can be written as:

CAF (τ, fd) =

∫ Ti

0

x(t)y∗(t− τ)ej2πfdtdt, (8)

where ∗ denotes a complex conjugate operation. Equation (8)
requires a high computational load due to the long FFT which
is not suitable for real-time processing in our system. Thus, the
batch processing [19] has been used for complexity reduction.
This is achieved by dividing a long sequence into several short
batches so that the cross-correlation and FFT processes are
faster. The CAF with batch processing can be expressed as:

CAF (τ, fd) =

Nb−1∑
n=0

∫ Tb

0

xn(t)y∗n(t− τ)ej2πfdtdt, (9)

where Nb is the number of batches, Tb is the batch length
and n is the index of the beacon. In order to obtain better
performance, the reference channel was pointing towards the
Wi-Fi AP in our experiments to make it free from interference
due to human activities.

B. Direct Signal Cancellation

Note that the PWR system does not need to remove the
SFO/STO as in the SENS system since both the surveillance
and reference channels are synchronized through the USRP
platform and hence they share the same clock source. A
major drawback associated with PWR arises from the DSI
component which undergoes perfect correlation with the ref-
erence signal, producing large range and Doppler sidelobes
that can mask the weaker target echoes. Furthermore, the
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TABLE II: System Implementation

System SENS PWR
Wi-Fi Signal 2.4 GHz (channel 1) 2.4 GHz (channel 6)
Hardware Intel 5300 Wi-Fi [28] NI USRP-2921 [31]
Subcarrier/bandwidth 30 (out of 56) subcar-

riers
1 MHz (out of 20
MHz)

Antenna Omni-directional (6
dBi)

Directional (13 dBi)

Frame Rate 1000 per second 1000 per second
Measurement Rate 1000 Hz (same as

frame rate)
10 Hz

Real-time Processing No Yes
Output Data Size per
Second

90k: 1(tx) × 3(rx)
× 30(sub carriers) ×
1000(packets)

30k: 100(Doppler
bin)×30(range bin)
× 10(sliding window)

DSI increases the dynamic range requirement of the system.
However, angular nulling with the antenna and interference
cancellation techniques in the receiver can be used to suppress
the unwanted effects and improve system performance. A
modified version of the CLEAN algorithm proposed in [17] is
therefore adopted to suppress the DSI in our CAF processing.
This CLEAN algorithm shares a similar structure to the CAF
process but generates the self-ambiguity surface from the
reference channel. This self-ambiguity surface is then used
as an estimation of the direct signal, which is calculated as:

CAF k(τ̂ , f̂d) = CAF k(τ, fd)− αkCAFself (τ − Tk, fd),
(10)

where CAF k(τ̂ , f̂d) is the cleaned surface at the kth iteration,
CAFself is the self ambiguity surface, αk and Tk are the
amplitude and phase shift of maximum peak in the kth CAF
surface. The CLEAN algorithm is implemented in the same
way as the CAF process due to their similar structure.

C. Noise Reduction

After the CLEAN algorithm, we can still observe some
noise in the CAF surface. One of the main reasons is that
the CAF process over time gaps between Wi-Fi frames may
introduce some noise. Furthermore, the CAF may be incor-
rectly processed due to strong interfering Wi-Fi signals from
other APs or weak received signals from the desired AP. One
common solution is to apply CFAR to estimate the background
noise distributions as follows:

Λ =
1

Nτ ·Nfd

Rτ∑
i=1

Rfd∑
j=1

CAF (τi, fdj), (11)

where Λ is the threshold mapping for CAF. i and j are the
indices for range and Doppler bins, respectively, Nτ and Nfd
are the training length in range and Doppler bins, respectively.
This threshold mapping is then used for normalizing the
power and removing the noise as P (i, j) = |CAF (i, j)|2/Λ.
P (i, j) < 1 implies no motion and the corresponding point in
CAF is replaced with zeros. Otherwise, it is inferred that an
activity has occurred.
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Fig. 4: Experiment layout

VI. SYSTEM IMPLEMENTATION & EXPERIMENT

A. System Implementation

To enable a fair comparison between the SENS and PWR
systems, we implemented both systems with almost the same
system settings and Wi-Fi firmware configurations. Details of
both systems are provided in Table II.

The Intel 5300 [28] NIC has been selected to implement
the SENS system in this work. By default, CSI measurements
from 30 out of 56 subcarriers can be extracted from each
transmit-receive antenna pair and stored on the computing unit
(a laptop) for off-line processing. The PWR system was built
based on our previous work [11] with two synchronized NI
USRP-2921 [31] as RF front-end by sharing one clock source.
Then sampled data is transferred to the computing unit. It
is not necessary to consider the entire bandwidth as we use
the Doppler information. Therefore, a bandwidth of 1 MHz
was found to be the trade-off between system performance
and stability for our PWR system. Outputs from the two
systems were timestamped from an external NTP time server
for synchronization purposes.

Both systems were running in the 2.4 GHz Wi-Fi frequency
band but on different channels to avoid cross-interference.
This is because the SENS system continuously pinged the
transmitter (Wi-Fi AP) to obtain the CSI packets. This two-
way communication will introduce interference to the PWR
system unless they operate on different channels. The frame
rate was set at 1k per second in both systems to capture
noticeable changes or patterns in the time domain signal which
are caused by human motion. Measurement rate represents the
number of system outputs per second. For the SENS system,
measurement rate is defined as the number of received packets
per second, which is 1 kHz. However, for the PWR system,
the measurement rate is limited by the amount of baseband
signals that can be processed by the computing unit. Based
on empirical experience, the measurement rate of the PWR
system was set at 10 Hz.

B. Experiment Layout

All measurements were carried out within an office area
and the experiment layouts are illustrated in Fig 4. The mon-
itoring area was approximately 8m x 6m with computers and
office furniture in the surroundings. To compare the detection
performance of the two systems with different geometries, the
location of the receive antenna remained the same throughout,
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TABLE III: Activity Description

Activity Description
(1) walking walking in the direction of 1-3-5, 2-3-4; this

represents a long, high-level body movement
(2) sitting sitting to a chair at position, 1,2,3,4,5; this rep-

resents a short, medium-level body movement
(3) standing standing from a chair at position, 1,2,3,4,5; this

represents a short medium-level body movement
(4) laying laying down to floor at position, 1,2,3,4,5; this

represents a long low-level body movement
(5) standing

from
floor

standing from floor at position, 1,2,3,4,5; this
represents a long, low-level body movement

(6) picking picking up small items at position, 1,2,3,4,5; this
represents a short, medium-level body move-
ment

whereas the Wi-Fi transmitter (AP) was moved in each layout
as per Fig. 4. Layout 1 refers to the scenario whereby the
transmitter-object-receiver alignment is around 180 degrees.
This forms a forward scatter geometry which is also known
as the line-of-sight (LoS). Layout 2 is when the transmitter-
object-receiver is around 90 degrees and this forms a bistatic
geometry. Layout 3 is when the transmitter-object-receiver
is less than 45 degrees and this is known as a monostatic
geometry. Five testing positions were used during the experi-
ments and they were separated by 1.5m from each other. These
positions are used to evaluate the effect of the system geometry
on the activity classification accuracy.

C. Dataset

In this pilot study, we conducted six day-to-day activities;
namely, walking, standing from a chair, sitting on a chair,
laying down on the ground, standing from the ground and
picking up a small object from the ground. The walking
activity covered 3 positions while this activity was performed
whereas the other activities were performed at one specific po-
sition before moving to the next. Furthermore, we considered
different transmitter-receiver layouts to cover both LoS and
non LoS (NLoS) conditions, as would be the case in a real-
world environment. The descriptions of the above activities
are given in Table III. We applied a sliding window to the
Doppler spectrograms and extract 4 seconds of Doppler data
for each measurement, no matter the difference in the activity
duration. Five volunteers (four males and one female) of
different age groups (ranging from 22 to 30) were involved
in the experiments. In this work, we have collected a total
of 1,122 data samples from the six activities. Among these,
layout 1 has 138 samples, layout 2 has 826 samples and layout
3 has 158 samples.

VII. EXPERIMENTAL RESULTS

In this section, the activity recognition performance of both
the SENS and PWR systems is presented. A simple 2D
convolutional neural network (CNN) has been used as the
classifier. The CNN includes one convolutional layer, one max-
pooling layer and two fully connected layers. Since the input
data size is different for the two systems, some parameters are
different in the two classifiers.
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Fig. 5: Walking spectrogram obtained from (a) SENS system
in layout 1, (b) PWR system in layout 1, (c) SENS system
in layout 2, (d) PWR system in layout 2, (e) SENS system in
layout 3 and (f) PWR system in layout 3

A. Spectrogram Comparison

Fig. 5 presents the difference in the walking spectrograms
obtained from the SENS and PWR systems for all three
layouts. Test subjects walked along with positions 2-5-8 re-
peatedly at a constant speed. As can be seen from Fig. 5,
the subsequent spectrograms have similar signatures in the
SENS system with a dominant high Doppler frequency which
we attribute to movement of the torso, and small frequencies
which are related to the movement of the limbs.

In comparison, Doppler signatures for walking in the PWR
system present a significantly different footprint in terms of
Doppler profile, shift and amplitude. This can be explained
by the fact that the PWR system is highly sensitive to the
geometry of the transmitter and receiver locations. The PWR
spectrogram in layout 1 (Fig. 5(b)) shows a very low Doppler
shift since the relative velocity between the transmitter-object
and object-receiver is almost zero when the PWR system
operates in LoS. The spectrogram in layout 2 (Fig. 5(d)) and
layout 3 (Fig. 5(f)) have clearer Doppler signatures and more
significant Doppler shifts.

In addition, spectrograms from SENS system do not con-
tain information regarding the walking direction, whereas
the sinusoidal wave in the PWR system clearly indicates its
velocity and direction. This is because in the SENS system
we only use CSI magnitude measurements. The direction
information could be inferred by looking at the phase changes
within the physical layer protocol data unit (PPDU) or across
PPDUs. These details can be captured if one uses specialized
equipment such as USRP. However, in inexpensive WiFi NICs,
the extracted raw CSI measurements are affected by phase
offsets as the hardware is far from ideal. Therefore, it is
extremely challenging to correct the phase information in the
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Fig. 6: Spectrogram obtained from layout 2 by SENS system: (a) sitting, (b) standing, (c) laying, (d) standing from floor, (e)
picking and from PWR system: (f) sitting, (g) standing, (h) laying, (i) standing from floor, (j) picking

raw CSI data of COTS WiFi devices.
The PWR system has an integration time of 1 second which

is sufficient to observe the direction of the object. However,
the PWR system is less sensitive to micro Doppler when
capturing a large movement, for example, the limbs’ Doppler
during walking. This is because the dominant Doppler pulse
can easily mask the micro Doppler pulses.

Fig. 6 presents spectrograms for the other five activities as
processed by the two systems. As it can be observed in Fig.
5, the frequency shifts in the CSI’s spectrograms are lower
than those in the walking spectrogram. Generally, all frequency
shifts or Doppler shifts in Fig. 6 are lower than those in Fig.
5 due to the relatively slower body motion. There are some
lower frequency shifts in the CSI spectrograms which relate
to part body movement. For example, we observe short and
weak frequency shifts from the ”standing from chair” activity
spectrogram (Fig. 6(a)), while the ”picking up” activity (Fig.
6(e)) has the lowest frequency shift.

There are more patterns that can be observed in the PWR’s
spectrograms for certain activities. For example, ”sitting on a
chair” (Fig. 6(f)) and ”laying down on the floor” (Fig. 6(h))
spectrograms both have a negative Doppler shape, since both
activities consist of a downward body movement. This trend
can also be observed from the ”standing from chair” (Fig 6(g))
and ”standing from floor” (Fig 6(i)) spectrograms, where both
contain a positive Doppler shape. The ”picking up” activity
contains two-part movements, bending over and straightening
up the body. As expected, we can see a negative Doppler shape
followed by a positive shape (Fig. 6(j)).

B. Classification Accuracy Versus Activity

We first conduct the classification results for all activities
in terms of different positions or layouts. 80% of the dataset
was chosen randomly and used for training, and the remaining
20% was used for testing. The overall accuracy for the SENS
system is 67.3% and the PWR system has almost similar
accuracy at 66.7%. These accuracies are lower than those
achieved in studies like [2], [11], [15], [32] (more than 90%
in accuracy). The reason for the low accuracy is because of
the mixture of forward scatter (LoS), bistatic and monostatic
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Fig. 7: Classification matrices for activity recognition for
combined layouts 1,2,3 in (a) SENS system and (b) PWR
system

(NLoS) layouts that result in different Doppler signatures as
presented in Fig. 5. Also, the change of measurement position
means the variation in signal reflection power at the receiver
side would cause the strength of the Doppler signal to become
unstable. Nevertheless, this accuracy is still acceptable and
can be considered to be a benchmark when different physical
layouts and positions are mixed up together.

The confusion matrices for the SENS system and PWR
system are shown in Fig. 7(a) and Fig. 7(b), respectively. As
can be seen, both systems have the best classification result
for activity 1 (walking), where the accuracy is more than 90%.
This is because the walking activity contains higher Doppler
shifts than other activities in any directions or layouts. The
second best result is observed for activity 6 (picking up), with
accuracy over 70%. The other four activities have relatively
low accuracy. The SENS system has the worst performance
for activity 3 (standing) and activity 5 (standing from floor),
whereas the PWR system has the worst performance for
activity 2 (sitting) and activity 4 (laying down). Moreover,
the wrong predictions in the SENS system mostly happen
between the pair of activities like ”sitting on a chair” and
”standing from a chair”, ”laying down” and ”standing from
floor”. The reason is that the SENS system measures Doppler
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Fig. 9: Classification versus different positions

shift in a short time and is therefore more sensitive to activities
with different time duration. In comparison, most incorrect
predictions in the PWR system occur for the walking activity.
This is because the PWR system has a longer integration time
(1s in this work), so that long duration activities are easier
to distinguish. This accuracy could easily be improved by
choosing the appropriate layout for each system.

One of the major factors that affect the recognition accuracy
is the geometry of transmission and reception. Thus, it is
interesting to evaluate the activity recognition accuracy in
different physical setups. To evaluate such performance, both
the training and testing data were used within the same layout.
The results are shown in Fig. 8. As expected, the SENS
system has the best performance in layout 1 at 91% and worst
performance in layout 3 at 62%, whereas the PWR system has
the best performance in layout 3 with an accuracy of 91.1%
and worst in layout 1 with an accuracy of 60%. Both systems
have almost similar accuracy in layout 2 around 70%, which
is more than the accuracy in Fig. 7. As mentioned previously,
the SENS and PWR systems have different mechanisms in
processing the Wi-Fi signal. The SENS system has better
performance in the forward scatter (LoS) layout while the
PWR system has better performance in the monostatic layout.
These results demonstrate the coverage sensitivities of the two
systems that can be used in real applications.

Next, we calculate the accuracy over each position shown
in Fig. 4. In this experiment, we tested the data for a specific
position and trained the data for all other positions (excluding
the walking activity which covers several positions). The
classification accuracy for each position is shown in Fig. 9.
As can be observed, the two systems differ in their position
accuracy. More specifically, the SENS system has the worst
performance at positions 2 and 5, where the accuracy is below
60%. The SENS system works best at position 3 which is close
to a LoS layout. In comparison, the PWR system has a more
balanced performance across all positions since the bistatic
angle is relatively similar. The spectrograms in positions 2
and 5 have relatively similar Doppler signatures. These results
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Fig. 10: Fusion framework for two systems

TABLE IV: Combined Accuracy

Dataset Method SENS PWR Combined
layout 2 Addition 75.7% 72.8% 79.8%
layout 2 Multiplication 75.7% 72.8% 74.0%
layout 1,2,3 Addition 67.3% 66.7% 74.2%
layout 1,2,3 Multiplication 67.3% 66.7% 70.2%

show that SENS and PWR systems have slightly different
coverage, and therefore a fusion of the two systems could
improve the performance in weaker positions.

C. Combined Classification accuracy

So far, classification results are calculated separately for
the two systems. As discussed before, there are considerable
differences in classification accuracy in terms of system layout
and position. Here, we combine the results from both systems
to further improve the accuracy of Wi-Fi sensing. Inspired by
the work in [33], a simple fusion framework has been used, as
shown in Fig 10. Here we export the probabilities, Pc and Pp,
for each activity from the Neural Networks used for the SENS
and PWR systems, respectively. We set the two systems with
same weight, and use two methods to calculate the combined
probabilities, Pf ; the addition method where Pf = 1

2 (Pc+Pp)
and the multiplication method where Pf = Pc ∗ Pp.

The combined accuracy for layout 2 and layouts 1,2,3
are given in Table IV. We followed the same procedures as
discussed in Section VII-B. As can be seen, there are some
improvements in the combined accuracy as compared to the
accuracy obtained from the SENS and PWR systems sepa-
rately. In layout 2, the combined accuracy using the addition
method is 79.8% which is 4.1% and 6.0% higher than the
accuracy of each individual system, whereas the multiplication
method results in a slightly lower combined accuracy. The
combined accuracy shows even better improvement in layout
1,2,3 which achieves 74.2%. In addition, these improvements
are generated using a simple fusion framework based on the
probabilities from the two systems. It is envisioned that a
more robust fusion process using the CSI and PWR data could
further improve the classification accuracy.

For layout 1 and layout 3, the imbalanced performance
between the two systems makes the fusion process ineffective.
In some cases, the fusion process could lower the original
accuracy since we consider equal weights in this work.

VIII. DISCUSSION

This section discusses the challenges that we faced during
the implementation and experimentation with the two systems.
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Future improvements to the hardware configurations for an in-
tegrated measurement system, signal processing and machine
learning algorithms are also discussed.

A. Resilience to Environmental Changes

Wi-Fi signals are very sensitive to various factors such as
the geometry of transmission and reception, environmental
conditions and operational parameters of the communication
network. It is crucial to build a robust Wi-Fi sensing system
that can be adapted for different environments and Wi-Fi AP
settings (e.g., bandwidth, transmit power, MIMO capability,
etc.) but this represents a challenge. For example, the direction
and orientation of the person with respect to the Wi-Fi AP
and receiver can change continuously. The distance between
the person and Wi-Fi AP could also be varied. In practical
scenarios, there may be multiple people or other moving
objects around that could block the reference channel as well
as the baseline (LoS) between the transmitter and receiver.
It is very challenging for Wi-Fi sensing systems to have the
generalization ability to automatically adapt to new and unseen
data. In other words, a Wi-Fi sensing system should also work
when the device is placed in a new environment, unknown
location and operate for new talents.

For a SENS system, it requires a process to understand the
surrounding environment during a static measurement which
may be hard to operate in real scenarios. One solution is
to convert the CSI measurement into Doppler spectrograms
to calculate the change in frequency. However, this does not
entirely solve the problem as it is extremely challenging to
correct the phase in the raw CSI data due to the imperfection
in hardware and non-synchronized sampling clocks and fre-
quencies between the transmitter and receiver. In comparison,
the PWR system directly outputs a Doppler spectrogram which
is less sensitive to the static objects and previously trained
model can be used in a new environment. However, the PWR
system needs to overcome the challenge where two channels
are required. The re-creation of the transmitted signal should
be improved through a robust algorithm instead of using a
reference channel.

B. Efficiency in Spectrum Usage

The fundamental purpose of Wi-Fi is for wireless commu-
nications. Sensing is a peripheral application that can either
be used to optimize the performance and quality of service
(QoS) of the network, or secondary applications in healthcare,
IoT, security etc. The majority of previous studies which
have investigated CSI-based sensing systems [8], [12], [14],
[34], use a high frame rate to achieve good performance.
However, high frame rate can be regarded as the exchange of
redundant information which occupies a considerable amount
of the already-limited Wi-Fi spectrum. This in turn affects the
network performance, degrading the QoS for connected users.
Moreover, sending unnecessary packets for CSI measurements
influences not only the measuring device but also the nearby
Wi-Fi devices, since the packets occupy Wi-Fi resources in
both time and frequency domains. In contrast, the passive
nature of the PWR system means that no extra packets are

transmitted for sensing purposes. This minimizes the influence
on communication systems, but the PWR’s performance is
highly dependent on the density of the Wi-Fi packages which
might be a problem when the data traffic through the AP is
low.

In addition, SENS system does not take full advantage of
a Wi-Fi packet. Recall from Fig. 2, the SENS system only
uses the preamble signal to obtain the desired CSI but does
not have information about the transmitted data signal. Despite
that the PWR system can capture the whole packets, however,
it also captures the time gaps between packets which are
redundant for sensing and this results in a high computational
processing overhead. To enhance the detection performance,
it is important to maximize the usage of the Wi-Fi package
while filtering out the time gap period. This is required for the
data signal generation in the PWR system using the reference
channel method.

C. Beamforming

The latest IEEE 802.11ac standard use the beamforming
technique which could have an adverse impact on both SENS
and PWR sensing as it changes the amplitude and phase of the
Wi-Fi signals. As a result, the CSI measurements may become
unstable and difficult to process if the beamforming matrix is
not available at the receiver side. The PWR system faces more
challenges due to the beamforming technique. Traditionally,
passive radar operates with relatively low bandwidth and uses
a single carrier signal like FM radio and analog television.
Multiple antennas in the beamforming technique means the
aquisition of the PWR’s reference channel becomes even more
complicated. Acquiring the reference channel using a single
directional antenna from a MIMO AP will be challenging
since each received signal will have a different amplitude
and phase. The variation in phase difference may generate
erroneous Doppler pulse in the CAF surface and cause similar
sidelobe problem in the PWR system. Nonetheless, beamform-
ing can be advantageous for Wi-Fi sensing by providing spatial
information in addition to the Doppler and range information.
However, current SENS and PWR systems have not used this
new technique to generate joint spatial and Doppler data.

D. Challenges in Signal Processing

Using commercial NICs, SENS systems can obtain fine-
grained CSI measurements directly without further processing.
However, the size of the CSI measurements (shown in Table II)
is proportional to the number of antennas and frame rate. This
means a significant computational power is required to process
such amount of data, although it is possible to reduce the size
of the data using techniques such as PCA, which captures
most of the variance among the subcarriers over multiple
antennas in only a few principal components. On the other
hand, the raw CSI measurement is too noisy to be used directly
for sensing purposes and hence the SENS signal processing
represents a very important engineering task. The processing
of CSI measurements to obtain meaningful information such
as Doppler, range, AoA, ToF, etc, is necessary and it is



12

worthwhile to develop algorithms that are useful for joint
activity recognition and localization applications.

From the Doppler spectrograms, we realize that the tradi-
tional CAF process (Equation 8) in the PWR system could
not deliver sufficient range resolution for human sensing
due to the limited Wi-Fi bandwidth. Also, the integration
time (one second in this work) which defines the Doppler
resolution, is too long for activities consisting of hand gestures.
It is believed that a more efficient CAF processing with
time synchronization (to extract effective Wi-Fi signal) could
further improve the PWR system in both range and Doppler
resolutions. Moreover, the SENS system has a low sensitivity
to activities performed far from the baseline while the PWR
system has a low sensitivity to activities performed close to
the baseline. Thus, information fusion from both systems could
significantly improve the coverage for Wi-Fi sensing.

E. Challenges in Machine Learning Algorithms
Machine learning algorithms in Wi-Fi sensing face several

challenges. Firstly, the training data available for some ac-
tivities such as falling down (especially in elderly people) are
difficult to collect and may be insufficient to train a model due
to under-fitting. This is a class imbalance problem [35], where
most standard classifier learning algorithms assume a relatively
balanced class distribution. Such a situation represents a
challenge in current Wi-Fi sensing works [11], [12], [15] and
thus a different approach [35] is required for the imbalanced
activity classes.

Secondly, a large dataset is required to properly train a clas-
sifier, taking into account various factors like transmit/receive
geometry, abnormal activities and different height/weight of
people which could potentially change the Doppler pattern
for a given activity. This may not be feasible since the data
collection process will be time consuming and may incur
a high cost. However, two common solutions are available,
namely, model-based algorithms such as Finite Difference
Time Domain (FDTD) [36] which studies the physical theories
or statistical model of the target, and learning-based algorithms
such as generative adversarial network (GAN) [37] which
generates new datasets based on a pre-trained network. Some
early works like [37], [38] have shown the potential of
using generated Doppler spectrum to improve the accuracy
in activity recognition. However, current works applying these
algorithms are still in the early stage and they focus on simple
activities performed mostly in a static environment (controlled
experiments).

Another challenge is the cross-device/sensor in Wi-Fi sens-
ing. Multiple Wi-Fi devices can be combined together to
achieve higher performance and efficiency. Due to the rapidly
increasing demand in wireless data, there will be more Wi-
Fi devices available in different scenarios. These devices are
location separated which could provide extra information for
cross-device sensing. In addition to Wi-Fi devices, many other
types of sensors such as cameras, mobile phones, laptops, IoT
devices, etc., can be used for cross-sensor sensing. The latter
can reduce human efforts for training machine learning algo-
rithms. For example, video cameras can be used to generate
automatic ground truth labels for the SENS and PWR systems.

IX. CONCLUSIONS

In this paper, we presented and compared methods based on
CSI (SENS) and radar (PWR) protocols for activity sensing
using Wi-Fi transmissions. We investigated the difference
between these two systems in terms of fundamental working
principles and key challenges. We report on a range of human
activity data obtained from these two systems in a realistic
indoor environment and compare the classification accuracy in
terms of system and surveillance area geometries. The SENS
and PWR systems show the best performance in the line-of-
sight and monostatic layouts, respectively. Moreover, we have
demonstrated that a fusion process on both systems could
easily improve the accuracy of activity recognition. Future
work includes the development of a more robust system that
can combine the advantages of the SENS and PWR systems.
Also, the efficiency in spectrum usage and beamforming
technique is worth considering in Wi-Fi sensing.
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“Gradient-based fingerprinting for indoor localization and tracking,”
IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2424–
2433, 2015.

[8] C. Yang and H.-R. Shao, “Wifi-based indoor positioning,” IEEE Com-
munications Magazine, vol. 53, no. 3, pp. 150–157, 2015.

[9] A. Makki, A. Siddig, M. Saad, and C. Bleakley, “Survey of wifi
positioning using time-based techniques,” Computer Networks, vol. 88,
pp. 218–233, 2015.

[10] W. Li, B. Tan, and R. J. Piechocki, “Non-contact breathing detection
using passive radar,” in 2016 IEEE International Conference on Com-
munications (ICC). IEEE, 2016, pp. 1–6.

[11] W. Li, B. Tan, Y. Xu, and R. J. Piechocki, “Log-likelihood clustering-
enabled passive rf sensing for residential activity recognition,” IEEE
Sensors Journal, vol. 18, no. 13, pp. 5413–5421, 2018.

[12] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and modeling of wifi signal based human activity recognition,” in
Proceedings of the 21st annual international conference on mobile
computing and networking. ACM, 2015, pp. 65–76.

[13] K. Joshi, D. Bharadia, M. Kotaru, and S. Katti, “Wideo: Fine-grained
device-free motion tracing using {RF} backscatter,” in 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
15), 2015, pp. 189–204.



13

[14] S. Tan and J. Yang, “Wifinger: leveraging commodity wifi for fine-
grained finger gesture recognition,” in Proceedings of the 17th ACM
international symposium on mobile ad hoc networking and computing.
ACM, 2016, pp. 201–210.

[15] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-
free human activity recognition using commercial wifi devices,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1118–
1131, 2017.

[16] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and
B. Xie, “Human respiration detection with commodity wifi devices:
do user location and body orientation matter?” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 25–36.

[17] K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-wall sensing
of personnel using passive bistatic wifi radar at standoff distances,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp.
1218–1226, 2011.

[18] F. Colone, P. Falcone, C. Bongioanni, and P. Lombardo, “Wifi-based pas-
sive bistatic radar: Data processing schemes and experimental results,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 2,
pp. 1061–1079, 2012.

[19] B. Tan, K. Woodbridge, and K. Chetty, “A real-time high resolution
passive wifi doppler-radar and its applications,” in 2014 International
Radar Conference. IEEE, 2014, pp. 1–6.

[20] S. Di Domenico, G. Pecoraro, E. Cianca, and M. De Sanctis, “Trained-
once device-free crowd counting and occupancy estimation using wifi:
A doppler spectrum based approach,” in 2016 IEEE 12th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). IEEE, 2016, pp. 1–8.

[21] W. Li, B. Tan, and R. Piechocki, “Opportunistic doppler-only in-
door localization via passive radar,” in 2018 IEEE 16th Intl Conf
on Dependable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data In-
telligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 467–473.

[22] Intel wi-fi link 5300. [Online]. Available:
https://www.intel.co.uk/content/www/uk/en/products/docs/wireless-
products/ultimate-n-wifi-link-5300-brief.html

[23] N. Tadayon, M. T. Rahman, S. Han, S. Valaee, and W. Yu, “Decimeter
ranging with channel state information,” IEEE Transactions on Wireless
Communications, vol. 18, no. 7, pp. 3453–3468, 2019.

[24] B. Tan, K. Woodbridge, and K. Chetty, “A wireless passive radar system
for real-time through-wall movement detection,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 52, no. 5, pp. 2596–2603, 2016.

[25] M. Cherniakov and D. Nezlin, Bistatic radar: principles and practice.
Wiley Online Library, 2007.

[26] N. J. Willis, Bistatic radar. SciTech Publishing, 2005, vol. 2.
[27] X. Dang, X. Tang, Z. Hao, and Y. Liu, “A device-free indoor localization

method using csi with wi-fi signals,” Sensors, vol. 19, no. 14, p. 3233,
2019.

[28] “Linux 802.11n CSI tool,” https://dhalperi.github.io/linux-80211n-
csitool/, (Accessed on 05/11/2020).

[29] S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, “Falldefi: Ubiquitous
fall detection using commodity wi-fi devices,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1,
no. 4, pp. 1–25, 2018.

[30] S. Liu, Y. Zhao, F. Xue, B. Chen, and X. Chen, “Deepcount: Crowd
counting with wifi via deep learning,” arXiv preprint arXiv:1903.05316,
2019.

[31] “Ni usrp 2921,” http://sine.ni.com/nips/cds/view/p/lang/en/nid/212995,
(Accessed on 05/11/2020).

[32] S. Duan, T. Yu, and J. He, “Widriver: Driver activity recognition
system based on wifi csi,” International Journal of Wireless Information
Networks, vol. 25, no. 2, pp. 146–156, 2018.

[33] P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster,
“Activity recognition from on-body sensors by classifier fusion: sensor
scalability and robustness,” in 2007 3rd international conference on
intelligent sensors, sensor networks and information. IEEE, 2007, pp.
281–286.

[34] K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring
motion direction using commodity wi-fi for interactive exergames,”
in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, 2017, pp. 1961–1972.

[35] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced
data: A review,” International journal of pattern recognition and artifi-
cial intelligence, vol. 23, no. 04, pp. 687–719, 2009.

[36] J. B. Schneider, “Understanding the finite-difference time-domain
method,” School of electrical engineering and computer science Wash-
ington State University, p. 181, 2010.

[37] K.-S. Zheng, J.-Z. Li, G. Wei, and J.-D. Xu, “Analysis of doppler effect
of moving conducting surfaces with lorentz-fdtd method,” Journal of
Electromagnetic Waves and Applications, vol. 27, no. 2, pp. 149–159,
2013.

[38] B. Erol, S. Z. Gurbuz, and M. G. Amin, “Gan-based synthetic radar
micro-doppler augmentations for improved human activity recognition,”
in 2019 IEEE Radar Conference (RadarConf). IEEE, 2019, pp. 1–5.

Dr. Wenda Li received the M.Eng. and Ph.D. degree
in Electrical and Electronic Engineering from the
University of Bristol in 2013 and 2017 respec-
tively. He worked at University of Birmingham as a
Research Fellow before joining University College
London. He is currently working as a Research Fel-
low in the Department of Security & Crime Science
at University College London. His research focuses
on the signal processing for passive radar and high-
speed digital system design for wireless sensing
applications in healthcare, security and positioning.

His research in passive WiFi radar has led to a number of IEEE conference
and journal publications.

Mohammud Junaid Bocus received the B.Eng. de-
gree (first-class honors) in Electronic and Communi-
cation Engineering from the University of Mauritius,
Mauritius in 2012, the M.Sc. (Distinction) degree
in Wireless Communications and Signal Processing
from the University of Bristol, Bristol, U.K, in 2015
and PhD degree in Electrical and Electronic Engi-
neering from the University of Bristol, Bristol, U.K,
in 2020. His research interests include terrestrial and
underwater wireless communications, video coding,
computer vision and machine/deep learning. He is

currently working as a research associate at the University of Bristol, focusing
on concurrent passive activity recognition and localization using commercial
off-the-shelf Wi-Fi and ultra-wideband (UWB) systems.

Chong Tang is now a PhD student in the UCL
Department of Security and Crime Science (SCS),
where he is invetigating to apply Passive WiFi
Radar (PWR) system for occupancy detection and
reconstruct human-skeletal model from Doppler-
spectrogram-only data. He has received a Bachelors
degree in Automation from Sichuan University and
Electrical & Electronic Engineering from University
of Nottingham in 2018, and a Master degree in
Robotics from UCL in 2019.



14

Robert Piechocki is a full Professor in the School
of Computer Science, Electrical and Electronic Engi-
neering and Engineering Maths, University of Bris-
tol. He is also a Fellow at The Alan Turing Institute.
His research interests span the areas of Connected
Intelligent Systems, Wireless Networks, Information
and Communication Theory, Statistics and Machine
Learning. His domain expertise is Connected and
Automated Mobility (CAM) and wireless sensing for
eHealth. In his research work he strives to develop
solutions for decision making and inference in net-

worked systems which communicate over resource constrained and unreliable
links. Rob has published over 200 papers in peer-reviewed international
journals and conferences and holds 13 patents in these areas.

Karl Woodbridge is Emeritus Professor of Elec-
tronic and Electrical Engineering at University
College London. Recent research interests include
multi-static and software-defined radar systems, pas-
sive wireless surveillance and Doppler classification
using machine learning methods. Current research
is focussed on the development of passive wireless
based sensors for activity detection and classification
with application to Healthcare, IoT and Security. He
is a Fellow of the IET, a Fellow of the UK Institute
of Physics and a Senior Member of the IEEE. He

has served on technical and organising committees for a wide range of
International conferences and published or presented over 250 journal and
conference papers in the areas of semiconductors, photonics and RF sensor
systems.

Dr. Kevin Chetty is an Associate Professor at Uni-
versity College London (UCL) where he leads the
Urban Wireless Sensing Lab. He has pioneered work
in passive WiFi sensing; an area of radar research
which is expected to facilitate advances in ubiquitous
sensing and smart environments. His work in this
area also covers new waveform designs for inte-
grated communications and sensing and developing
reference-free sensing approaches for passive radar
systems. Additionally, he has research interests in
using radar technology for behaviour classification

through the exploitation of micro-Doppler signatures and machine learning
techniques. Dr. Chetty is an author of over 70 peer reviewed publications and
has been an investigator on grants funded by both government and industry.


