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Abstract— This letter provides a comparison between the current and

power injection models for angle and voltage stability analysis of power

systems. Traditionally, it is believed that the current injection model is

computationally more efficient and, for this reason, this is the model that

is implemented in most commercial software tools for dynamic studies

and transient analysis of power systems. On the other hand, the power

injection model requires computing the products of currents and voltages

and, hence, is expected to be computationally more demanding than the

current injection one. This letter compares the two approaches using

a unique framework. The two formulations are compared through a

dynamic 1479-bus model of the all-island Irish transmission system.

Index Terms— Current injection model, power injection model, tran-

sient stability analysis, power system dynamics.

I. INTRODUCTION

T
HE conventional power system model used for angle and volt-

age stability analysis is a set of nonlinear differential algebraic

equations (DAE) with inclusion of discrete variables:

ẋ = f(x,y,p,u, t) (1)

0 = g(x,y,p,u, t) ,

where x (x ∈ R
nx ) indicates the vector state variables, y (y ∈

R
ny ) are the algebraic variables, p (p ∈ R

np ) are input variables,

u (u ∈ R
nu ) the vector of discrete variables, t (t ∈ R

+) the time,

f (f : Rnx
×R

ny
×R

np
×R

nu
×R

+
7→ R

nx ) are the differential

equations, and g (g : Rnx
×R

ny
×R

np
×R

nu
×R

+
7→ R

ny ) are the

algebraic equations. If discrete variables u are substituted for if-then

rules, (1) becomes an hybrid dynamical system, i.e., a collection of

continuous DAE, one per each discrete variable change [1].

Differential equations f depends on machine, regulator and load

dynamic models. While the formulation of differential equations f

is not unique, the structure of f and, in particular, its nonlinearity

is unequivocally defined. On the other hand, the subset of algebraic

equations g that describes the flows in transmission lines can be

written in terms of currents or complex powers. The two approaches

lead to different structures, i.e., nonlinearity, and hence computa-

tional complexity of the overall set of DAEs.

The main purpose of the letter is to show that the power injection

model is not necessarily more computationally expensive than the

current injection one. With this aim, the letter provides a fair

comparison of the two models through the simulation of a large

power system. This comparison cannot be found in the literature, as

common power system software tools provide either the current or

the power injection model, but not both. Hence, the discussion and

the case study provided in the letter can be useful to the power system

community and, in particular, to power system model developers.

The two models, namely, the current and power injection ones,

are briefly recalled below to allow a clear comparison in Section II.

A. Current Injection Model

The classical formulation of algebraic equations for transient

stability analysis is the current injection model [2]. According to

this model, the algebraic variables are exclusively the bus voltage

phasors v̄. The algebraic equations express the current injections at

network buses:

ẋ = f(x, v̄,p,u, t) (2)

0 = ī(x, v̄,p,u, t)− Ȳ (u)v̄ .
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where ī are the current injections at network buses, v̄ are the bus

voltage phasors, and Ȳ is the system admittance matrix. Note that,

in this classical formulation, Ȳ depends on system events u (e.g.,

transmission line outages) but not on other system variables.

Equation (2) can be simplified if loads are modelled as constant

admittances. In fact, for a constant admittance, load currents are

given by īL = ȳLv̄L and ȳL can be added to the diagonal element

of the admittance matrix Ȳ corresponding to load bus L. Similarly,

pure transit nodes are special loads for which ȳL = 0. By defining

the reduced generator admittance matrix Ȳ G as:

Ȳ G = Ȳ GG − Ȳ GL[Ȳ LL + Ȳ L]
−1

Ȳ LG , (3)

where Ȳ GG, Ȳ GL, Ȳ LG and Ȳ LL are the partitions of Ȳ cor-

responding to generator (G) and load (L) buses, and Ȳ L is the

diagonal matrix of load admittances, one can rewrite (2) as:

ẋ = f(x, v̄G,p,u, t) (4)

0 = īG(x, v̄G,p,u, t)− Ȳ G(u)v̄G .

The model above is the most commonly used in transient stability

analysis, especially in proprietary software packages.

B. Power Injection Model

The power injection model can be obtained from (2) by multiply-

ing the conjugate of algebraic equations by bus voltages phasors:

ẋ = f(x, v̄,p,u, t) (5)

0 = s̄(x, v̄,p,u, t)− V̄ Ȳ
∗

(u)v̄∗

,

where V̄ = diag(v̄1, v̄2, . . . , v̄nb
), where nb is the number of buses.

The term V̄ Ȳ
∗

v̄∗ are the power flow equations, and s̄ = V̄ ī
∗

are

the complex powers injected at network buses. Equations (5) are

equivalent to (2) but are intrinsically nonlinear and, as discussed in

[3], are expected to be computationally more demanding than (2).

The latter statement is further discussed and partially contradicted by

simulation results presented in Section III. Note also that in (5) there

is no need to assume a constant admittance matrix as the nonlinearity

of algebraic equations prevent removing load buses as in (2).

C. Augmented Power System Models

The sets of equations (2) and (5) assume that the only algebraic

variables are bus voltage phasors. These formulations cannot include

causal constraints or auxiliary variables that are often needed to

simplify the modelling and simulation of complex systems. Recent

studies have identified alternative formulations that offer numerical

and/or computational advantages. For the sake of example, see [4] for

a formulation based on modified augmented nodal analysis approach

and [5] for a formulation that accounts for zero-time constants of

differential equations. The augmented version of the power injection

model (2) with inclusion of additional algebraic variables ŷ and

constraints ĝ:

ẋ = f(x, ŷ, v̄,p,u, t) (6)

0 = ĝ(x, ŷ, v̄,p,u, t)

0 = ī(x, ŷ, v̄,p,u, t)− Ȳ (u)v̄ .

The augmented formulation of (5) can be defined in a similar way:

ẋ = f(x, ỹ, v̄,p,u, t) (7)

0 = g̃(x, ỹ, v̄,p,u, t)

0 = s̄(x, ỹ, v̄,p,u, t)− V̄ Ȳ
∗

(u)v̄∗

.
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Note that the algebraic variables and constraints in (6) and (7) are

not necessarily the same. This point is further discussed in the case

study presented in Section III.

II. REMARKS ON CURRENT AND POWER INJECTION MODELS

The current and power injection models are expected to be

mathematically equivalent and to give same results. Arguably, the

nonlinearity of the power injections introduce extraneous solutions,

but, in practice, only the physically meaningful solution is found.

On the other hand, due to the reduced size and linearity with respect

to bus voltages of the second equation of (4), the current injection

model is commonly considered better performing than the power

injection one [3]. While it is true that the power injection model is not

common in commercial software, there are some methodological and

practical reasons why the current injection model is not necessarily to

be preferred even if considering only performance and computational

speed, as discussed below.

The two major assumptions in (4) are that loads can be considered

constant admittances and the admittance matrix is constant except

for few discrete events. These assumptions are correct only for

short-term transient stability analysis (i.e., loss of synchronism of

synchronous machines following a short-circuit). However, these

simplifications are not acceptable for medium- and long-term angle

and voltage stability analyses. For longer time scales, in fact, the

actions of ULTC transformers and load dynamics cannot be ignored

[6]. Moreover, power systems are evolving towards a situation in

which the high penetration of distributed generation, FACTS devices,

HVDC connections and advanced control schemes, consistently

reduces the number of pure load buses. The inadequacy of (4) is

also methodological. In fact, in (4), the formulation of algebraic

constraints relies on a strong modelling assumption. If the hypothesis

on load models is removed, (4) cannot be defined. Hence, in the

remainder of this letter, only extended versions of the current and

power injection models, (6) and (7), respectively, are considered.

It remains the fact that the current injection model is more linear

than the power injection one. This is certainly an advantage as the

number of constant elements of the Jacobian matrix are higher for

(6) than for (7). However, both (6) and (7) are nonlinear. In fact,

(6) is nonlinear at least in the differential equations of synchronous

machines (e.g., mechanical equations, saturations, etc.).

For the reasons above, it is not obvious that the current injection

model provides a better performance than the power injection one.

Moreover, since software packages implement only one model, a di-

rect and fair comparison of the performance of the two formulations

is not a simple task to solve. The following case study provides a

quantitative evaluation of these two formulations based on the same

software tool.

III. CASE STUDY

In this case study, the augmented current and power injection

models (6) and (7) are compared through a dynamic model of the

all-island Irish transmission system developed at the UCD Electricity

Research Center. The model includes 1479 buses, 1851 transmission

lines and transformers, 245 loads, 22 conventional synchronous

power plants with AVRs and turbine governors, 6 PSSs and 176 wind

power plants. All loads are modelled as ZIP, i.e., a mix of constant

impedance, constant current and constant power. The topology and

the data of the transmission system are based on the actual real-world

system, but dynamic data are guessed based on the knowledge of the

technology of power plants. Simulations are solved using Dome [7],

which provides the ability to define dynamic models using either the

current or the power injection formulations. Both models are solved

using a simultaneous implicit trapezoidal scheme.

The all-island Irish system has been simulated for 30 seconds

considering a three-phase fault on a 275 kV bus and stochastic

variations of wind speeds. The fault is cleared after 80 ms by opening

TABLE I

STATISTICS FOR THE ALL-ISLAND IRISH TRANSMISSION SYSTEM

Model Current Injection Power Injection

CPU time 2.49 s 2.25 s

State Variables x 1436 1436

Algeb. Variables y 6594 5470

# of elements of AC 64.5 · 106 47.7 · 106

NNZ of AC 0.055% 0.068%

Constant NNZ of AC 0.042% 0.016%

NNZ: number of non-zero elements
AC : complete Jacobian matrix of the DAE

a transmission line connected to the faulted bus. For the current injec-

tion model (6), currents and voltages are represented in rectangular

coordinates, whereas for the power injection model (7) voltages are

represented in polar coordinates. While other combinations can be

used, this choice has been driven by the following considerations: (i)

the power injection model is also used for power flow analysis for

which the polar representation is more common; and (ii) rectangular

coordinates allow simplifying the definition of current injections

and increasing the linearity of the equations. Finally, the integration

scheme used for both models is an implicit trapezoidal method with

a constant time step (0.1 s) and dishonest Newton-Raphson, i.e., the

system Jacobian matrix is updated only if structural changes occur

or the number of iterations required to solve a time step is above a

given threshold.

Statistics for the two models are shown in Table I. Despite the

higher nonlinearity, the power injection model is slightly faster than

the current injection one. This result is not surprising if one considers

that the number of algebraic variables required by (6) is much higher

than that of (7). The fact that the number of algebraic variables of

the current injection model is bigger than that of the power injection

one is due to the following reasons.

• Active and reactive powers, required for synchronous machine

and wind power plant controllers, have to be computed on

purpose when using the current injection model, as it does not

require such variables to solve network equations.

• Since a rectangular coordinate representation of bus voltage

phasors has been used for the current injection model, bus volt-

age magnitudes required for voltage regulators of synchronous

machines and variable speed wind power plants as well as for

ZIP load models have to be computed apart.

• ZIP load models also require to compute power and current

injections into network nodes. This currents are defined as

algebraic variables in the current injection model.

The increase of the number of algebraic variables in the current

injection model is relevant. This fact balances the higher sparsity and

higher number constant elements of the matrix AC of the current

injection model with respect to the power injection one.
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