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1. Introduction. Let M be a Riemannian manifold with metric g.
Let F, Vx and R be the Riemannian connection, the covariant differentiation
with respect to a vector X or a vector field X and the Riemannian
curvature tensor respectively, λ -th covariant differential of a tensor
field T is denoted by VkT and F°T = T by definition. For each x,yeM,
a linear isomorphism A of the tangent space Mx onto My is naturally
extended to a linear isomorphism of the tensor algebra T(MX) onto T(My),
which is also denoted by A.

Now, we assume that M is (Riemannian) homogeneous i.e. that M
admits a transitive group of isometries. Then, for every integer m ^ 0,
the following condition P(m) is satisfied. P(m): "For each x, y e M,
there exists a linear isometry A of Mx onto My such that

A(FkB)9 = (PkR)y for k = 0, 1, 2, . ., m ."

In fact, A is given by putting A = dfx, where / is an isometry which
maps x to y. Of course, the condition P(m^ implies P(m2) if mι ^ m2.

1. M. Singer [4] dealt with a converse problem and he proved that
if M is a complete simply connected Riemannian manifold which satisfies
the condition P(m) for a certain m, then M is homogeneous. In this
theorem, the minimum of such integers m depends on M, though it is
smaller than n(n — l)/2 + 1, where n is the dimension of M. And so, he
put a question among others that "do there exist curvature homogeneous
spaces which are not homogeneous?". A. curvature homogeneous space
is, by definition, a Riemannian manifold satisfying the condition P(0).
The answer to his question is trivial, unless we assume that the space
in consideration is complete, simply connected.

The purpose of the present paper is to give an example of curvature
homogeneous space which is not homogeneous.

2. Curvature homogeneous spaces. First, we recall the following three
types of curvature homogeneous spaces which may be not homogeneous.

1. Let M be an ^-dimensional Riemannian manifold which is immersed
isometrically into an (n + l)-dimensional space form. If the n principal
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curvatures are constant on M, then M is curvature homogeneous.
2. Let M be a 3-dimensional Riemannian manifold. If three charac-

teristic roots of the Ricci tensor are constant on M, then M is curvature
homogeneous.

3. Let M be an ^-dimensional conformally flat Riemannian manifold.
If n characteristic roots of the Ricci tensor are constant on M, then M
is curvature homogeneous.

K. Sekigawa [3] gave an example of 3-dimensional complete simply
connected Riemannian manifold M° with the following properties:

(1) The homogeneous holonomy group of V is irreducible,
(2) The scalar curvature S is negative constant on M°,
(3) M° has two distributions Do and A such that

(a) dim Do = 1 and dim D1 = 2,
(b) Do and A are mutually orthogonal,
(c) for each xeM°, if X, YeD,{x) and ZeD0(x), then

where X AY maps We M°x to g(Y, W)X - g(X, W)Y.
M° is a curvature homogeneous space of type 2. We shall show

that M° admits no transitive group of isometries. For this purpose, we
use the following theorem of W. Ambrose and I. M. Singer.

THEOREM. ([1]) Let M be a simply connected, complete Riemannian
manifold. A necessary and sufficient condition for M to admit a transi-
tive group of isometries is that there exists a metric linear connection

V satisfying the following two conditions:

(A)' VR = 0

(B)' FT=0,

where T is a tensor field of type (1, 2) defined by T(X) — Vx — Vx.

The conditions (A)' and (B)' are equivalent to

(A) VXR= T(X) R

and

(B) VXT = T{X) T for all X ,

respectively, where T(X) operates on R and T as a derivation of tensor
algebra at each point of M. And so, we show that M° can not admit
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such a T.
Now, we take a local field of orthonormal basis {Xlf X2, X3} on some

neighborhood Ux of each xeM° and put

3

Then, we have BiS

h = -BJ for i, j , k = l,2, 3. K. Sekigawa [3] showed
that as such a {Xlf X2, Xs}9 we can choose one which satisfies the following
conditions:

\Δ.Δ) JLlf Λ.2 kz JJlf .Λ3 fc UQ ,

(2.3) BJ = Bu

ι = BJ = Bn* = 0, B1S? Φ 0 on Ux

for i, i = 1, 2, 3.

Next, we assume that there exists a metric connection V satisfying
(A)' and (B)' on F . Put

3

then TV = — Tik

j since F is a metric connection. From (A), we have

(2.4) (Fx.R1)(Xjf Xk) = (T(Xt)-RJ(Xif Xk) for i, j , k = 1, 2, 3 ,

where Rx is the Ricci tensor. On the other hand, from (2.1), we have

(2.5) Ri(Xi, Xj) = λAy for i, i = 1, 2, 3 ,

where X, = λ2 = S/2 ^ 0 and λ3 = 0. Substituting (2.5) into (2.4), we
have

XJ JX V'^'ί "*~" "^k/ •*- i3 \ 3 k) I v l Ot J , IV -L« M , O ,

which show that

(2.6) Bti = Ti3\ BJ = TV for i = 1, 2, 3 .

From (B), we have

to Π\ Y Φ l -1- S? tΏ ι Φ ι\Φ *
8 = 1

Σ
8 = 1

for i, j , k, I = 1, 2, 3. Taking account of (2.3) and (2.6), (2.7) reduces to
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(2.8)

2 - (Ba

2 - Γu

2)T21

2 = 0,

y = o,

X<T21

2 - (ft,1 - Γ^JΓu1 = 0 ,

XtTu

2 = 0 for i = 1, 2, 3 .

From (2.3), (2.6) and (2.8), we have

T 2 _ Γ > 2 V Φ 2 _ V Φ 3 _ V Φ 2 _ V Φ 2 _ Λ
ίl — G i \ t -Λ-i^ll — -Λ-i-̂ 12 — •Λ-iJ-2l — -Λ i-Lzi ~ U

for i = 1, 2, 3. Summing up the above results, we get

(2.9) ft/ = Γ</, XiB^1 = 0 for i, j , k, I = 1, 2, 3.

By (2.1), (2, 3) and (2.9), we have

0 = B(Xί9 X2)X5 = Γx/z,! , - VxγXlX, - F[Xl.Xl]X,

= (BJB^X, + (B^BJ)X2 ,

which shows that

(2.10) ft,1 = Bu1 = 0 .

But, by (2.1), (2.3), (2.9) and (2.10), we have

-S/2X2 = R(XU X2)X, = VxγXlX, - F^F^X, - F^^X, = 0 ,

which is a contradiction.

Finally, we write down the example of Sekigawa:
ij3 = {(μ9 v, w): u, v, w are real} with line element

ds2 = (f(u, v, w)fdu2 + dv2 + dw2 ,

where

f(u, v, w) = cx exp (tV-S/2) + c2 exp (-t\/-S/2) ,

ί = v cos ̂  — w sin u ,

clf c2: positive constants, S: a negative constant .

This is complete, since f2 ^ c for some positive constant c. If we put

then

X2 = (cos u)djdv — (sin u)d/dw ,

X3 = (sin u)d/dv + (cos u)d/dw ,

f?3/ - ft,1 - S22

3 - S.31 = 521

2 = 0, BJ Φ 0 ,

R(XU X2) - S/2 X, A Xif R(Xlf Z3) = B{XU
= 0
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