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On cycle-skipping and misfit functions modification for full-wave inversion:

comparison of five recent approaches

Arnaud Pladys*, Romain Brossier*, Yubing Li‡ and Ludovic Métivier†*

ABSTRACT

Full waveform inversion, a high-resolution seismic imag-

ing method, is known to require sufficiently accurate ini-

tial models to converge toward meaningful estimations of

the subsurface mechanical properties. This limitation is due

to the non-convexity of the least-squares distance with re-

spect to kinematic mismatch. We propose a comparison of

five misfit functions promoted recently to mitigate this is-

sue: adaptive waveform inversion, instantaneous envelope,

normalized integration, and two methods based on optimal

transport. We explain which principles these methods are

based on and illustrate how they are designed to better han-

dle kinematic mismatch than a least-squares misfit function.

By doing so, we can exhibit specific limitations of these

methods in canonical cases. We further assess the interest of

these five approaches for application to field data based on a

synthetic Marmousi case study. We illustrate how adaptive

waveform inversion and the two methods based on optimal

transport possess interesting properties, making them ap-

pealing strategies applicable to field data. Another outcome

is the definition of generic tools to compare misfit functions

for full-waveform inversion.

1

INTRODUCTION

Full waveform inversion (FWI) is a high-resolution seismic2

imaging method dedicated to reconstructing the mechanical3

properties of the subsurface (Devaney, 1984; Pratt and Shipp,4

1999; Plessix and Perkins, 2010; Raknes et al., 2015; Górszczyk5

et al., 2017). It is formulated as an iterative process based on6

minimizing a function measuring the misfit between observed7

and calculated data over a space of model parameters describ-8
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ing the subsurface. The resolution improvement FWI can pro-9

cure, compared with standard tomography methods, is used to10

significantly improve depth-migration images or even produce11

directly interpretable quantitative estimates of the subsurface12

mechanical properties (Shen et al., 2018). FWI is applied at13

multiple scales, from global and regional scales in seismology14

to exploration scale for the oil & gas industry, and even, more15

recently, at near-surface scale for geotechnical applications. A16

thorough review of FWI and its applications can be found in17

Virieux et al. (2017).18

FWI suffers from a significant shortcoming in its classical19

formulation: the non-convexity of the least-squares (L2 ) misfit20

function on which it is conventionally based.21

This non-convexity of the misfit function is an issue because22

the iterative process on which is based FWI is a local optimiza-23

tion algorithm. Standard size for realistic applications makes24

global optimization strategies beyond modern high-performance25

computing platforms current and predictable capabilities. There-26

fore, if the initial model used is too far away from the global27

minimum, FWI converges toward a potentially non geologi-28

cally informative local minimum. This constraint leads to the29

need for an accurate enough initial model to ensure conver-30

gence toward the global minimum of the misfit function.31

In a physical sense, the non-convexity of the L2 misfit func-32

tion is associated with a phenomenon known as cycle-skipping.33

It appears when the calculated data are shifted (in time) from34

more than half a period (corresponding to the signal dominant35

frequency) compared to the observed data. If the time-shift be-36

tween observed and calculated data is larger than half a period,37

the minimization of the L2 norm between the two signals will38

“skip” a phase and align the two signals on the closest phase39

(hence the name, cycle-skipping). This ambiguity translates40

into an erroneous reconstruction of the velocity model (Virieux41

and Operto, 2009).42

This limitation of FWI has been documented since its origin43

(Gauthier et al., 1986). To address this limitation in practical44

cases, the workflow generally relies on data hierarchy (Bunks45

et al., 1995; Pratt, 1999; Shipp and Singh, 2002; Wang and46
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Rao, 2009; Brossier et al., 2009). The historical approach con-47

sists in interpreting first the lowest frequency available (around48

2 to 4 Hz for seismic exploration targets), then progressively49

introducing higher frequency data, following a multi-scale ap-50

proach (Sirgue and Pratt, 2004). The lowest frequencies are,51

by definition, less subject to cycle-skipping. The second level52

of data hierarchy can then be defined by playing on tempo-53

ral and/or offset selection of the data. The idea is to reduce the54

number of propagated wavelengths that are interpreted simulta-55

neously, hence reducing the risk of cycle-skipping. In practice,56

this second level corresponds to first reconstructing the near-57

surface and progressively introducing deeper updates referred58

to as layer stripping approach.59

Successful practical applications at the exploration scale of-60

ten rely on the conjunction of these approaches as well as the61

design of an accurate initial starting model, obtained, for in-62

stance, through reflection tomography or stereotomography (Lam-63

baré, 2008). Nonetheless, the conditions detailed previously to64

obtain a satisfactory FWI result are not always gathered. For65

instance, low-frequency data around 2 to 4 Hz are not always66

available or of sufficient quality. Moreover, obtaining low-67

frequency can increase the cost of acquisition, or can some-68

times not be physically possible, or can even compromise the69

quality of the high frequency needed to obtain a very high res-70

olution. Accurate initial model building can also be a time-71

consuming and challenging task requiring strong human ex-72

pertise as it generally relies on tomography methods based on73

travel-time or reflected event picking. It also relies on prior74

information coming from geology or well logs; all of these re-75

quire human expertise. This makes FWI less robust and re-76

duces its range in terms of applications.77

Mitigating the sensitivity to initial model quality has been78

the motivation for a large number of studies in the past decades.79

Two main lines of investigations can be identified, both lead-80

ing to the reformulation of the conventional least-squares FWI81

problem.82

Considering the first line, we regroup methods that can be83

cast under the frame of “extension strategies”. It is not our84

purpose to give an extensive overview of these methods here,85

but we try to sketch their main ingredients. The philosophy86

of extension strategies consists in introducing supplementary87

degrees of freedom to the FWI problem, which can match the88

data in the early iterations of the FWI process to avoid cycle-89

skipping. Relaxing iteratively the use of these artificial degrees90

of freedom should lead to a correct subsurface model estima-91

tion.92

Historically, these methods derive from migration velocity93

analysis (MVA) (Symes, 2008). MVA relies on the scale sep-94

aration assumption. The subsurface parameters to recover are95

decomposed as a smooth macro-velocity model and a high wavenum-96

ber content reflectivity model. Artificial degrees of freedom are97

introduced at the reflectivity level by introducing an extra di-98

mension on offset, subsurface offset, or time-lag. The MVA99

problem is formulated as the iterative update of the macro-100

velocity model to focus the energy of the “extended” reflec-101

tivity model at zero in the artificial dimension. These meth-102

ods have benefited from in-depth mathematical research work,103

leading to a clear understanding of their foundations, thanks104

to the theory of pseudo-differential operators. However, their105

application to field data is still limited, mainly because of two106

issues. First, the repeated construction of high-dimensional re-107

flectivity cubes is computationally demanding. Second, the108

macro-velocity model construction through MVA is compli-109

cated as soon as complex data with multi-pathing and multiple110

reflections are considered.111

More recently, another class of extension strategies has emerged.112

As opposed to model space extension, the artificial degrees of113

freedom are introduced at the source level, following a source114

extension strategy (Huang et al., 2018; van Leeuwen and Her-115

rmann, 2013). These methods have shown interesting promises116

in 2D synthetic case studies. However, their application to 3D117

field data seems still limited, mainly because of the difficulty of118

applying these methods in the time-domain. Current solutions119

either rely on relatively crude approximations (Wang et al.,120

2016) or on a sophisticated iterative solution, which increases121

the computational cost of the approach significantly (Aghamiry122

et al., 2020).123

The second investigation line relies on reformulating the FWI124

problem using an alternative measure of the distance between125

observed and calculated data, namely a different misfit func-126

tion. A large variety of approaches have been proposed on this127

framework. The first proposed along this line is to use cross-128

correlation measurements (Luo and Schuster, 1991), a strategy129

later revisited by van Leeuwen and Mulder (2010). The idea130

behind this is that cross-correlation should give access to the131

time-shifts between synthetic and observed traces. A misfit132

function based on the minimization of these time-shifts, resem-133

bling a tomography misfit function, should thus be less prone134

to cycle-skipping. The original approach of Luo and Schuster135

(1991) was labeled as “wave equation tomography” strategy.136

However, when seismic traces contain multiple seismic events,137

the cross-correlation measurement might fail to give a correct138

estimation of a potential time-shift. This is why deconvolu-139

tion based approaches have been later promoted, first by Luo140

and Sava (2011), then improved by Warner and Guasch (2016).141

The latter approach has been labeled as “adaptive waveform in-142

version” (AWI) and is based on a normalized deconvolution of143

the synthetic and observed seismic traces. It has shown very144

interesting properties both on synthetic and field data. The de-145

convolution of the traces yields a Wiener filter, which is then146

normalized and serves as an input for the misfit function. The147

misfit function penalizes the energy of the filter away from a148

bandpass Dirac filter, which would have been obtained in the149

correct subsurface model. Note that AWI shares some similari-150

ties with the extended source approach and can indeed be recast151

in the frame of these methods (Huang et al., 2018). This indi-152

cates that the separation between extended methods and mis-153

fit function reformulation methods is not as watertight as one154

could think. Nevertheless, it is useful to draw a landscape of155

the investigations around the cycle-skipping issue in FWI.156

Another family of misfit function modifications relies on157

transforming the signal itself prior to comparison through a158

least-squares distance. Extracting the instantaneous phase and159

envelope (Fichtner et al., 2008; Bozdağ et al., 2011) has been160
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successfully used in seismology. The goal of the instantaneous161

phase is to avoid amplitude prediction issues, as earthquake162

source and receiver calibration are significant challenges in seis-163

mology. The use of the envelope to mitigate the cycle-skipping164

issue has also been developed in the framework of seismic ex-165

ploration (Wu et al., 2014). An interesting alternative consists166

of using a normalized integration of the signal, namely the cu-167

mulative distribution of the traces. This approach has been pro-168

moted by Donno et al. (2013).169

Finally, optimal transport distances have also been promoted170

to derive alternative misfit functions for FWI. The motivation is171

to benefit from the convexity of the optimal transport distance172

with respect to translation and dilation, which provides a misfit173

function convex with respect to time-shifts, this being a good174

proxy for convexity with respect to seismic velocities (Engquist175

and Froese, 2014; Métivier et al., 2018). The main difficulty in176

applying optimal transport in the framework of FWI is that the177

optimal transport theory is developed to compare probability178

distributions, therefore positive functions with the same total179

integral. Seismic data do not fulfill this assumption.180

To overcome this difficulty, different options have been pro-181

moted. For instance, one can rely on a prior transformation182

of the signal, such as extraction of positive and negative parts,183

squaring the data, affine scaling, exponential transform, soft-184

max transform (Engquist and Froese, 2014; Qiu et al., 2017;185

Yang et al., 2018b; Yang and Engquist, 2018). This has been186

shown effective in some synthetic cases. However, relevant187

seismic information might be lost in the process of these trans-188

formations.189

One solution is to rely on a specific optimal transport dis-190

tance, which can be extended to comparing non-positive data.191

This is the Kantorovich-Rubinstein optimal transport (KROT)192

approach, which has been promoted in Métivier et al. (2016c,a,b),193

and which has been successfully applied to 3D synthetic elas-194

tic data (He et al., 2019b) as well as to field data (Poncet et al.,195

2018; Messud and Sedova, 2019; Sedova et al., 2019). One196

interest of this approach is its ability to account for lateral co-197

herency in 2D or 3D shot gathers. One shortcoming is that,198

even if the valley of attraction is wider, compared with the L2
199

approach, the convexity property of the optimal transport dis-200

tance with respect to time-shifts is lost.201

Another option has been promoted more recently. Consider-202

ing each discrete seismic traces as point clouds and computing203

the optimal transport distance between synthetic and observed204

points clouds provide a new distance measurement. This spe-205

cific optimal transport problem can be cast as a linear assign-206

ment problem, for which efficient solvers exist, for point clouds207

containing a few hundred to thousands of points, a situation we208

encounter for realistic scale exploration case studies (Métivier209

et al., 2018, 2019). The benefit of this graph-space optimal210

transport (GSOT) strategy is its ability to recover the convex-211

ity with respect to time-shifts. Compared with the KROT ap-212

proach, GSOT is a trace-by-trace strategy that does not make213

it possible to account for lateral coherency. GSOT has been214

successfully applied to 3D synthetic and field data (He et al.,215

2019a; Pladys et al., 2019; Li et al., 2019; Górszczyk et al.,216

2019).217

As can be seen, numerous investigations motivated by the218

inherent ill-posedness of the FWI problem have been lead in219

parallel. To our knowledge, no cross-comparison has been pro-220

posed so far, which is undoubtedly a lack. The first motivation221

of this study is to start developing tools that could be used to222

benchmark different FWI strategies. However, beyond a sim-223

ple comparison of FWI strategies, we would like to highlight224

specific characteristics that an ideal misfit function should sat-225

isfy to render the FWI problem less ill-posed. Cycle-skipping226

is certainly an issue, but we also show that other criteria than227

robustness with respect to cycle-skipping should be considered,228

such as:229

• sensitivity to the signal polarity;230

• applicability in the framework of complex/multi-arrival231

data;232

• number of tuning parameters and sensitivity to these pa-233

rameters;234

• sensitivity to wrong amplitude prediction and inaccurate235

wavelet estimation.236

To illustrate these properties, we select a series of synthetic237

case studies of increasing complexity, from time-shifted Ricker238

traces to a realistic Marmousi II case study (not in inverse239

crime settings). We restrict our attention to five misfit func-240

tions, which have been promoted recently and have shown promis-241

ing results: adaptive waveform inversion (AWI), instantaneous242

envelope (IE), normalized integration method (NIM), KROT,243

and GSOT. We consider extended space strategies out of the244

scope of this study to keep it reasonably simple, and also be-245

cause, as stated before, we consider that alternative misfit strate-246

gies have shown more promising results than extended space247

strategies so far in terms of practical applications. The tests248

that we develop here could, however, be used to benchmark249

extended space strategies also.250

GENERAL FWI FRAMEWORK AND MISFIT

FUNCTION FORMULATION

The comparison between misfit functions is made simple by251

the FWI formalism (reviewed in the following section), more252

precisely by the adjoint state strategy used to compute the gra-253

dient at each iteration of the minimization loop. However, let254

us recall the main result: a modification of the misfit function255

results only in modifying the adjoint source. Therefore, imple-256

menting different misfit functions in the same FWI code can be257

done directly by isolating misfit function evaluation and adjoint258

source computation in different subroutines.259

General framework260

The FWI problem can be written as261

min
m

f [m] = F (dcal[m], dobs) , (1)

where the subsurface parameters are denoted by m, dobs is the262

observed data, dcal[m] is the synthetic data, and F is a generic263
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function measuring the misfit between dobs and dcal. Under264

general notation, dcal[m] is obtained through the extraction of265

the values of wavefield at the receivers location such that266

dcal[m] = Ru[m] , (2)

where R is an extraction operator and u[m] is the solution of267

the wave propagation problem268

A[m]u = b , (3)

with A[m] a generic wave propagation operator (from acoustic269

to visco-elastic).270

The solution of the minimization problem 1 is computed271

through local optimization following the iteration272

mk+1 = mk + αk∆mk (4)

starting from an initial guess m0. In eq. 4, αk is the steplength,273

which should satisfy the Wolfe criterion (Nocedal and Wright,274

2006), and ∆mk is the descent direction, given by275

∆mk = −P [mk]∇f [mk] , (5)

where ∇f(mk) is the gradient of the misfit function f [m] and276

P [mk] a preconditioner approximating the inverse Hessian op-277

erator278

P [mk] ≃ H[mk]
−1, H[mk] = ∇2f [mk]. (6)

Following the adjoint state strategy (Plessix, 2006), the gra-279

dient is given by280

∇f [m] =

(
∂A

∂m
u, λ

)
, (7)

where (., .) is the Euclidean scalar product in the wavefield281

space, and λ is the adjoint field, solution of the adjoint equation282

A(m)Tλ = s , (8)

where s is the generic adjoint source, given by283

s = −RT

(
∂F

∂dcal

)
. (9)

Note that in the case of the L2 norm, we recover immediately284

that285

s = −RT (Ru[m]− dobs) , (10)

i.e. the adjoint source is equal to the residual (difference be-286

tween observed and calculated data).287

Next, we review the formulas for the five misfit functions288

selected in this study, as well as their corresponding adjoint289

sources. For convenience, we will introduce the distance mea-290

surement function associated with each strategy for a single291

source/receiver couple, except for the KROT strategy. The292

calculated and observed data will be denoted by dcal(t) and293

dobs(t) unless stated otherwise. Except for KROT, the final294

misfit function is built as a sum over each source/receiver cou-295

ple of this distance measurement function, and by linearity, the296

resulting adjoint source is also obtained by summation.297

AWI298

We give here the AWI formalism. We have299

FAWI(dcal, dobs) =

∫ T

0

|P(τ)w(τ)|
2
dτ

∫ T

0

|w(τ)|
2
dτ

, (11)

where w(t) is the Wiener filter which either transforms the cal-300

culated dcal(t) into the observed data dobs(t) (forward AWI) or301

the opposite way around (reverse AWI). Both implementations302

are discussed in Warner and Guasch (2016). Also, the compu-303

tation of w(t) can be implemented either in the time-domain or304

the frequency-domain. In both cases, a water level ε is required305

to stabilize the deconvolution operation.306

The role of the function P(τ) is to penalize energy at non-307

zero time lag. There are several possibilities to define this308

penalty function. Here we focus only on a Gaussian formu-309

lation defined as310

P(τ) = e−τ2/σ2

, (12)

where σ is a tuning parameter controlling the width of the311

Gaussian function away from 0 time-lag. This σ tuning pa-312

rameter is defined in seconds and corresponds to the maximum313

expected time-shift between the observed and calculated data.314

In the case of a frequency-domain reverse AWI implementa-315

tion, the adjoint source for a single-trace reads316

∂FAWI

∂dcal
=

∫
(P(τ)− 2F (dcal, dobs))w(τ)p(t+ τ)dτ∫

w2(τ)dτ
,

(13)

where317

p(t) ≈

∫
d̂obs(ω)e

iωt

d̂∗obs(ω)d̂obs(ω) + ε
dω , (14)

with ε defined as318

ε = (max
ω

|dobs(ω)|)ζ . (15)

In eq. 15, ζ is a user-defined damping ratio, ranging from 10−2
319

to 10−5 in our experiment. A large ζ will help when trying to320

tackle large time-shift, with a “smoothing/regularizing” effect.321

Large ζ is also required if there is noise on the data. A smaller ζ322

will help preserve small features present in the signal. In terms323

of computational cost, the overhead associated with the com-324

putation of the Wiener filter is negligible, and the AWI strategy325

can be easily implemented.326

IE327

The separation of the phase and envelope information of the328

signal relies on the use of the analytical function defined as329

follows. For a given time signal d(t), the analytical signal d̃(t)330

is defined as331

d̃(t) = d(t) + iH[d(t)] , (16)

where H is the Hilbert function which can be defined in the332

time domain as333

H[d(t)] =
1

π
P

+∞∫

−∞

d(τ)

t− τ
dτ , (17)
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where P stands for the Cauchy principal value. Practically,334

we do not use the time formulation of the Hilbert function, but335

rather a frequency domain formulation that gives us the analyt-336

ical signal in a three-step approach (Marple, 1999):337

• Compute the Fourier transform of d(t) using an FFT338

• Change the negative frequency to zeros339

• Compute the inverse Fourier transform340

This directly gives us access to the analytical signal and, by341

extension, to the Hilbert transform by taking its imaginary part342

H[d(t)] = I[d̃(t)] . (18)

The analytical signal allows to separate the signal as the343

combinaison of the instantaneous phase φ(t) and the instan-344

taneous envelope E(t):345

d̃(t) = E(t)eiφ(t) . (19)

Thus, the intantaneous enveloppe E(t) can be simply defined346

as:347

E(t) =

√
R[d̃(t)]2 + I[d̃(t)]2 . (20)

We can define a new distance-measurement function using in-348

stantaneous envelope as349

FIE(dcal, dobs) =
1

2

T∫

0

|Ecal(t)− Eobs(t)|
2dt , (21)

where Ecal and Eobs are instantaneous envelopes of the calcu-350

lated and observed data respectively. Following Bozdağ et al.351

(2011), the adjoint source is defined as:352

∂FIE

∂dcal
=
(Ecal(t)− Eobs)dcal(t)

Ecal(t) + ε

−H

(
(Ecal(t)− Eobs)H(dcal(t))

Ecal(t) + ε

)
,

(22)

with ε a water level defined as353

ε = (max
t

Eobs(t))ζ. (23)

Contrary to AWI, in the following experiments, ζ is fixed and354

taken at ζ = 10−5 for IE. We have verified that the results with355

IE are not sensitive to this choice.356

The instantaneous envelope misfit formulation is straight-357

forward to implement thanks to the algorithm from Marple358

(1999). No tuning parameter is required, and the computation359

cost overhead is negligible.360

NIM361

Donno et al. (2013) consider the least-squares difference be-362

tween the cumulative distributions Qobs and Qcal. For a given363

time signal d(t), its normalized cumulative distribution Q(t) is364

defined by365

Q(t) =

∫ t

0

d(τ)2dτ

∫ T

0

d(τ)2dτ

. (24)

The NIM misfit function thus relies on the distance measure-366

ment367

FNIM (dcal, dobs) =
1

2

∫ T

0

|Qcal(τ)−Qobs(τ)|
2dτ , (25)

where Qcal(t) and Qobs(t) are the cumulative distributions as-368

sociated with dcal(t) and dobs(t) respectively.369

The corresponding adjoint source is370

∂FNIM

∂dcal
=

2dcal(t)∫ T

0
Qcal(t)

(∫ T

t

(Qcal(τ)−Qobs(τ))dτ

−

∫ T

0

Qcal(τ)(Qcal(τ)−Qobs(τ))dτ

)
.

(26)

The NIM implementation is straightforward and does not re-371

quire any tuning parameters.372

KROT373

In the frame of the KROT approach, we consider the data as a374

function of both time and receiver position, such that we denote375

the calculated and observed data as dcal(xr, t) and dobs(xr, t)376

respectively.377

The KROT is based on a particular instance of optimal trans-378

port distance, namely the 1-Wasserstein distance. It can be ap-379

plied to non-positive data, provided mass conservation is satis-380

fied i.e.381

∫

xr

∫ T

0

dcal(xr, t)dxrdt =

∫

xr

∫ T

0

dobs(xr, t)dxrdt . (27)

For a given shot in seismic data, this corresponds to the sum-382

mation over each trace of the mean value in time of the trace.383

We consider this mean value is equal to 0 (this is the zero-384

frequency noise, which is usually removed from the data prior385

to inversion). Therefore the mass conservation assumption is386

satisfied for seismic data.387

On this basis, the KROT distance can be written as388

FKROT (dcal, dobs) = max
ϕ∈Lip

1

∫

xr

∫ T

0

ϕ(xr, t)
(

dcal(xr, t)−dobs(xr, t)
)

dxrdt ,

(28)

where Lip1 is the set of 1-Lipschitz functions for the ℓ1 dis-389

tance390

Lip1 = {ϕ(xr, t), |ϕ(xr, t)− ϕ(x′

r, t
′)| < |xr − x′

r|+ |t− t′|} .

(29)

The adjoint source is then given by391

∂FKROT

∂dcal
= ϕ(xr, t), (30)

where392

ϕ(xr, t) = argmax
ϕ∈Lip

1

∫

xr

∫ T

0

ϕ(xr, t) (dcal(xr, t)− dobs(xr, t)) dxrdt .

(31)

Compared with previous misfit functions, the final misfit is ob-393

tained here by summation over shot gather, and not a sum-394

mation over source/receiver couples (not a trace-by-trace ap-395

proach).396
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From the above equations, we see that the computation of397

the KROT misfit function and its corresponding adjoint source398

requires solving a constrained maximization problem per shot399

gather. Details on how to solve this problem are given in Métivier400

et al. (2016c). The proximal splitting algorithm ADMM is used401

(Combettes and Pesquet, 2011) and the resulting algorithm has402

complexity in O(N logN), where N = Nr ×Nt with Nr the403

number of receivers and Nt the number of time samples. Com-404

pared with the previous misfit functions, the computational cost405

overhead is non-negligible. Tuning parameters will be asso-406

ciated with a prior scaling of the data to make its maximum407

amplitude close to 1, and the number of iterations required to408

solve the constrained maximization problem.409

GSOT410

Let (ti, d(ti), i = 1, . . . , N) be the discrete graph of the time411

function d(t). This discrete graph is a point cloud containing412

N points. The GSOT distance measurement is formulated as413

FGSOT (dcal, dobs) = min
σ∈S(N)

N∑

i=1

ciσ(i), (32)

where cij is the L2 distance between the points of the discrete414

graph of dcal and dobs, namely415

cij = |ti − tj |
2 + η2|dcal(ti)− dobs(tj)|

2, (33)

and S(N) is the ensemble of permutations of (1 . . . N). The416

function FGSOT corresponds to the 2-Wasserstein distance be-417

tween the discrete graph of the calculated trace dcal(t) and the418

observed trace dobs(t).419

The scaling parameter η in eq. 33 controls the convexity of420

the misfit function fGSOT with respect to time-shifts. In prac-421

tice, we define it as422

η =
τ

A
, (34)

where τ is a user-defined parameter corresponding to the maxi-423

mum expected time-shift between observed and calculated data424

in the initial model, and A is the maximum amplitude discrep-425

ancy between observed and calculated data.426

The adjoint source of the misfit function fGSOT [m] is com-427

puted from ∂fGSOT

∂cal
using the adjoint-state strategy. It is proven428

in Métivier et al. (2019) the following equality: denoting σ∗ the429

minimizer in eq. 32, we have430

∂FGSOT

∂cal
= 2

(
dcal − dσ

∗

obs

)
, (35)

where431

dσ
∗

obs(ti) = dobs(tσ∗(i)) . (36)

In this sense, the GSOT approach can be viewed as a gener-432

alization of the L2 distance: the adjoint source is equal to the433

difference between calculated and observed data at time sam-434

ples connected by the optimal assignment σ∗. As the KROT435

approach, the solution of the problem 32 provides the informa-436

tion to compute both the misfit function and the adjoint source.437

The numerical algorithm used to solve the linear assignment438

problem 32 is the auction algorithm (Bertsekas and Castanon,439

1989). For problems involving less than 1000 points, the auc-440

tion algorithm is very efficient. In seismic exploration, Nyquist441

sampling yields traces containing a number of points within442

this order of magnitude. Consequently, Métivier et al. (2019)443

have designed an efficient numerical strategy, yielding lower444

computational overhead than the KROT approach. On 3D field445

data application, we observe 15 to 20% computation time in-446

crease for gradient computation on the lowest frequency bands447

compared with classical L2 . This computational cost overhead448

decreases when the frequency band increases as the total com-449

plexity of the GSOT problem is O(ω3), while the complexity450

of the wave propagation solver is in O(ω4). For more details,451

the reader can refer to Métivier et al. (2019).452

Compared with previous approaches, the computational cost453

overhead is comparable with AWI, IE, and NIM while being454

lower than KROT. In terms of implementation, as for KROT,455

the solution of the assignment problem requires specific solvers,456

which makes the GSOT implementation less trivial than for457

AWI, IE, or NIM. In terms of tuning parameters, the more im-458

portant parameter is the parameter τ , which controls the con-459

vexity of GSOT misfit function with respect to time-shifts.460

A SIMPLE CONVEXITY ANALYSIS BASED ON

TIME-SHIFTED RICKER WAVELETS

We start by investigating the convexity of the proposed misfit461

functions with respect to time-shifts. We fix a reference signal462

composed of one Ricker wavelet in the center, seen as the ob-463

served data. The calculated data is the same Ricker wavelet,464

shifted in time with a time-shift going from −1.5 s to 1.5 s. We465

compute the distance between the reference signal and the cal-466

culated signal using the five selected misfit functions, depend-467

ing on the input time-shift. Results are presented in Figure 1.468

The results obtained here with alternative misfit functions469

might not reflect the performance of the algorithms with total470

accuracy, both in terms of computational efficiency and inver-471

sion results. Algorithms might not have been implemented in472

the most optimal way or in the way the original authors in-473

tended. Subtle choices of tuning parameters might improve the474

inversion results in some cases. However, the primary purpose475

of this comparison is to seek to understand how the data is in-476

terpreted within each of these strategies and how this affects477

the inversion results in each case. We intend to provide the478

reader with sufficient material to infer the main properties and479

philosophy behind the compared methods.480

Let us first analyze the results obtained with L2 waveform481

misfit, the reference for FWI. As expected, L2 misfit displays a482

narrow basin of attraction, with local minima and a flat part for483

time-shift superior to 0.4 s. The local minimum appears when484

the time-shift is larger than 0.12 s, which corresponds to half485

the Ricker wavelet period. This validates that the L2 misfit486

function presents low robustness for shifted-patterns, leading487

to cycle-skipping when signals are shifted by more than half488

a period. In such cases, L2 misfit function does not guarantee489

convergence toward the global minimum.490

We can now compare the selected alternative misfit functions491

to the L2 misfit. From the obtained results, we can define two492

groups. The first one contains GSOT, AWI, and NIM, charac-493
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terized by a large basin of attraction. The second group con-494

tains IE and KROT, characterized by a “slightly” larger basin of495

attraction than L2 , but not as wide as the first group members.496

Understanding why the first group members exhibit the con-497

vexity property is essential. Starting with GSOT, if the input498

parameters τ is correctly set to the maximum expected time-499

shift of 1.5 s, the convexity to shifted-patterns is expected as500

there is a direct link between the τ parameters and the width of501

the basin of attraction as shown in Métivier et al. (2019).502

The same convexity property is observed with AWI. With503

σ set to 1.5 s, the results are satisfying with a large basin of504

attraction. Similarly as the τ parameter from GSOT, σ directly505

controls the convexity to shifted-patterns. Note that we use506

ζ = 10−5 in this analysis as we predict signal with machine507

precision.508

Finally, to understand the robustness of the NIM approach,509

we display in Figure 2 the quantities Qobs and Qcal (for three510

time-shifts, −1.5 s, −0.1 s and in-phase). This makes visible511

the drastic modification of the signal shape induced by NIM.512

The NIM cost function boils down to be the area under the513

curve delimited by Qobs − Qcal. We see clearly that this area514

increases with time-shifts, illustrating the convexity to shifted515

patterns observed with NIM.516

Moving to the second group, to understand why the IE misfit517

only slightly increases the width of the valley of attraction com-518

pared with L2 , we display in Figure 3 the quantities Eobs and519

Ecal. Here we can observe the increase of temporal support of520

the signal induced by the envelope. This “broader” temporal521

support of the instantaneous envelope directly translates into522

the increase of the width of the valley of attraction as IE relies523

on a L2 norm between Eobs and Ecal.524

Finally, we present in Figure 4 the function ϕ(t) solution of525

the maximization problem defined in eq. 31, which defines the526

KROT distance, together with the residuals dobs(t) − dcal(t).527

We can observe that when Ricker wavelets start to overlap at528

−0.3 s, we obtain a convexity that classical L2 cannot achieve.529

This can be understood by looking at the function ϕ(t) [dobs(t)− dcal(t)].530

The area below the curve defined by this function corresponds531

to the KROT misfit function. This area remains constant as532

long as the two signals do not overlap and monotonically de-533

crease as soon as the two signals overlap, reaching 0 at 0 time-534

shift.535

On a second test, presented in Figure 5, we introduce a sec-536

ond Ricker wavelet that remains in phase. This test aims at537

validating the robustness to cycle-skipping when multiple ar-538

rivals are considered. From the results obtained, we observe539

that all misfit functions behave similarly as on the previous test540

except for AWI. In this case, the shape of the misfit function541

seems affected by oscillations near 0 time-shift, reducing the542

effective convexity to the one of classical L2 formulation. This543

seems to be related to one of the potential issues of deconvo-544

lution based misfit function: the sensitivity to cross-talks be-545

tween multiple events. To analyze this sensitivity of AWI to546

multi-arrivals, we display the Wiener filters together with the547

penalty function and the combination of both (Figure 6). In548

test B (where one wavelet is always in-phase), the Wiener filter549

presents a strong peak at 0 time-lag due to the in-phase arrivals.550
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Figure 1: Comparison of several misfit functions in a simple

1D case for one shifted arrival. The arrival is set to be a Ricker

wavelet with a central frequency of 4 Hz. (a) represents the

signal used for the test (with only one arrival at the center). The

fixed reference signal is displayed in continuous black. The

shifted signal is displayed in dotted black (here for +1.5 s). (b)

represents the normalized misfit function values with respect to

the time-shift (from −1.5 s to 1.5 s).
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Figure 2: (a) quantities Qobs and Qcal for three time-shifts

(−1.5 s in green, −0.1 s in blue and “in phase” in dashed red).

(b) the area under the curve for Qobs −Qcal for the three time-

shifts.
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Figure 3: Eobs and Ecal for three time-shifts (−0.5 s, −0.2 s

and in phase).
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black) and dcal for two time-shifts (−0.3 s in red and −0.15 s in

blue). (b) shape of L2 and KROT misfit function with respect

to time-shifts, red and blue cross represent the positions of the

two time-shifts selected. (c) and (d) respectively display ϕ(t)
and dobs − dcal for the two time-shifts of −0.3 s and −0.15 s.

(e) the area under the curve for ϕ(t)(dobs − dcal) quantity for

the two time-shifts. This last quantity is used to get the misfit

function value after time integration.
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Figure 5: Same as Figure 1 but with two Ricker wavelets with

one shifted (left) and one in phase (right).

Because of finite frequency effect, it is not a Dirac delta func-551

tion but a bandpass Dirac delta function. The oscillations of the552

bandpass delta function combine in a destructive/constructive553

manner when the two time-shift peaks (one for each Ricker554

wavelet) get closer to each other. These interferences are at the555

origin of the local minima observed.556

FWI TESTS ON TWO CANONICAL EXAMPLES

This section attempts to assess the pros and cons of the se-557

lected alternative misfit functions on two schematic FWI tests,558

focusing on a different aspect of the information contained in a559

dataset. The first test focuses only on transmission with a cross-560

hole acquisition. The second test focuses mainly on reflection561

information. These two tests can be seen as a way of assessing562

if the proposed misfit function can improve the FWI robust-563

ness (cycle-skipping in transmission in the first test) while pre-564

serving the ability to correctly interpret reflection information565

(reflector positioning and imaging in the second test)566

Both tests are performed in 2D using our 2D/3D time-domain567

acoustic modeling and inversion code in inverse crime settings568

(observed and calculated data are computed on the same grid,569

without noise introduced in the data). Besides, we use a con-570

stant density model and invert only for the P-wave velocity571

model. In both cases, the l-BFGS algorithm is used to mini-572

mize the misfit function, with FWI stopping criterion being a573

line search failure. The source wavelet is a Ricker wavelet with574

a central frequency fref = 3 Hz. The gradient is smoothed us-575

ing a Gaussian filter with horizontal and vertical correlation576

lengths equal to 0.3 times the local wavelength577

λloc(x, z) = 0.3
vP (x, z)

fref
. (37)

FWI Test 1: transmission configuration578

Case study presentation579

This first case study focuses on transmitted energy. The ex-580

act model is defined as a square of 1000 m sides with homo-581

geneous VP = 1300 m/s containing a spherical inclusion of582
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Figure 6: AWI analysis with two setups: test A and test B.

(a) test A both wavelets shift, (b) test B only the left wavelet

is shifted, the right one being always in phase (similarly to

Figure 5). (c) shape of AWI misfit function with respect to

time-shift in both cases. The Wiener filters presented under are

shown for a time-shift of −0.5 s (black cross on the misfit). (d)

Wiener filters (w(t)) and the Gaussian penalty function P(t).
(e) the Wiener filters multiplied by the penalty function.
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Figure 7: FWI Test 1: (a) true model, (b) initial model 1 with

VP = 1300 m/s , (c) initial model 2 with VP = 1700 m/s and

(d) initial model 3 with VP = 1900 m/s .

100 m radius in the center with VP = 1700 m/s (Figure 7).583

The acquisition mimics a crosshole setting, with 96 sources584

on the left side of the model and 256 receivers on the right585

side. The spacing is 10 m between sources and 3.8 m be-586

tween receivers. The boundaries are all set to absorbing layers587

(Bérenger, 1994) to avoid reflections and only focus on trans-588

mitted events. The relatively strong contrast between the back-589

ground and the anomaly generates an identifiable diffraction590

pattern in the data. In this experiment, no preconditioning is591

applied to the gradient. The lower and upper VP bound con-592

straints are respectively set to 1000 and 2500 m/s .593

We introduce three starting homogeneous models (Figure 7).594

The first is at the true model background velocity (1300 m/s ).595

The second is at VP = 1700 m/s , setting a challenging FWI596

problem as the starting model is as fast as the inclusion. The597

third case is even more challenging, with a starting homoge-598

neous VP model at 1900 m/s .599

FWI results are presented in Figure 8 with reconstructed600

VP at the final iteration. Figure 9 presents traces for a single601

source-receiver couple representing the shortest path through602

the spherical inclusion (straight horizontal path at 500 m depth).603

Traces are extracted from data generated in the true model, ini-604

tial model, and final reconstructed model for all misfit func-605

tions.606

Results from initial model 1607

We start the analysis with the “reference” initial model. As608

shown in Figure 9, this model does not generate cycle-skipping609

(arrivals in the true model are less than half a period away610

from the arrivals in the initial model). The objective is to re-611

trieve the high-velocity spherical inclusion in the center of the612

model. As expected, the L2 misfit function produces a correct613

result: the inclusion is retrieved correctly, and the final data are614

in phase with the true data. The vertical resolution is higher615

than the horizontal resolution as expected from the cross-hole616
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configuration. This has a lateral smoothing effect on the re-617

constructed anomaly, which explains why its peak amplitude618

(around 1500 m/s ) is lower than the amplitude of the true619

anomaly. The five selected misfit functions produce equiva-620

lently good results in this configuration. In all cases, the spher-621

ical anomaly is reconstructed with a similar resolution, and the622

data fit is equivalent. In terms of parameter settings, we choose623

here τ = 0.2 s for GSOT and σ = 0.2 s for AWI, a choice624

motivated by the absence of cycle-skipping. For AWI, we use625

ζ = 10−2 in this transmission test (for all three models) to626

maximize the kinematic effects of AWI that work better when627

ζ is relatively high, which acts as a regularization effect.628

Results from initial model 2629

As can be observed in Figure 9, the second initial model gener-630

ates clear cycle-skipping in the data. In this case, we expect the631

L2 misfit function to fail in reconstructing the anomaly. Indeed,632

the L2 fails to converge and reaches the boundary set for the in-633

version. The final synthetic trace does not match the observed634

trace. It is interesting to observe that four of the five selected635

misfit functions succeed in reconstructing the background and636

the anomaly and produce final synthetic traces in phase with637

the observed trace in this already quite challenging test. The638

only alternative misfit function that fails is KROT, which could639

be expected from the previous section (weak increase of ro-640

bustness to cycle-skipping). AWI, IE, NIM and GSOT show641

that the increase in convexity procured by these formulations642

is enough here to make convergence achievable. The data-fit643

obtained with these methods is good in this case. In terms of644

tuning parameters, τ and σ are increased to 0.35 s for GSOT645

and AWI, according to the time-shift between the reference and646

the initial traces in the initial model.647

Results from initial model 3648

Finally, the initial model 3 generates an even more substantial649

cycle-skipping effect than model 2 (Figure 9). L2 and KROT650

still fail to converge to the correct model, as it was already the651

case starting from model 2.652

IE starts to exhibit diagonal cycle-skipping artifacts associ-653

ated with the longest source/receiver paths in this more chal-654

lenging setting. This is expected from the time-shift convex-655

ity analysis performed before: IE robustness to cycle-skipping656

is limited. AWI also starts to exhibit artifacts close from the657

acquisition, while central anomaly is correctly reconstructed658

(with σ = 0.6 s). NIM and GSOT (with τ increased to 0.6 s)659

achieve a relatively satisfactory reconstruction of the background660

and anomaly, similar to the results obtained from the previous661

background models.662

FWI Test 2: reflection configuration663

Case study presentation664

This second case study focuses on reflected energy. We con-665

sider two different true models, composed of a homogeneous666

background at 1500 m/s and a velocity layer 100 m thick at667

300 m depth (Figure 10). In the first case, the velocity of the668

layer is set to 1600 m/s , while in the second case, the velocity669

of the layer is set to 1400 m/s . The starting model is homoge-670

neous at the correct background velocity of 1500 m.s−1 (Fig-671

ure 10). The surface acquisition comprises 96 sources and 512672

receivers located close to the surface at 42 m depth. The spac-673

ing is 20 m between sources and 3.8 m between receivers. We674

implement PML absorbing conditions on the bottom and lateral675

sides of the medium to mimic a medium of infinite extension in676

these directions and a free surface condition on the top of the677

model. A simple linear in-depth preconditioner is also applied678

to compensate for geometrical spreading effects and accelerate679

the convergence. The lower and upper VP boundaries for the680

inversion are respectively set to 1200 m/s and 1800 m/s .681

This test analyzes how the reflected data is interpreted by682

FWI depending on the choice of misfit function. The difference683

between the two exact models is only the sign of the velocity684

change at the layer level: in one case, velocity increases; in the685

second case, it decreases. This induces a change of polarity of686

the reflected wave, as clearly visible in Figure 11. We want to687

identify how the different misfit functions are sensitive to this688

change of polarity.689

Results analysis690

The reconstructed models are presented in Figure 12. Traces691

from the observed and synthetic data in the initial and final692

models for zero offset couple (source and receiver at the same693

position) located in the middle of the acquisition are presented694

in Figure 13. For visualization purposes, we cropped over the695

reflection after the first arrival.696

The L2 results are coherent with the expectation, with a cor-697

rect reconstruction of the layer in both cases. The L2 norm is698

sensitive to amplitude variation and polarity and is expected to699

interpret reflected events correctly. As the background velocity700

is known, there is no cycle-skipping in the initial model for the701

two target models. The data fit in both cases is perfect.702

Together with L2 misfit function, results obtained with IE,703

KROT, and GSOT are equivalently correct. This is expected704

from KROT and GSOT, which should behave similarly as L2
705

when cycle-skipping does not occur. GSOT relies on τ = 0.2 s706

in this experiment. This is somehow more surprising from IE,707

as one could think that the polarity of reflected events might708

be lost in the envelope extraction process. However, this is not709

true in this case but might be due to the inverse crime settings710

we are using. There is indeed a subtle change in the envelope of711

the observed data between model 1 (positive layer) and model712

2 (negative layer) (Figure 14), which is enough to guide the713

inversion in the right direction. However, this is probably pos-714

sible only because the first arrival is correctly predicted. Small715

inaccuracies in predicting the first arrival might be enough to716

impede a correct reconstruction using IE.717

The results obtained with NIM are less satisfactory. In par-718

ticular, the reconstruction of the negative layer is altered by719

strong positive artifacts beneath the layer. In the opposite case,720

negative artifacts also pollute the reconstruction of the positive721

layer, although the strength of these artifacts seems weaker.722

Analyzing the data fit shows that NIM has difficulties repro-723



Cycle-skipping and FWI misfit functions 11

(c)

0.2 0.4 0.6 0.8

x (km)

0.2

0.4

0.6

0.8in
it
ia

l 
m

o
d
e
l 
3

z
 (

k
m

)

(b)
0.2

0.4

0.6

0.8in
it
ia

l 
m

o
d
e
l 
2

z
 (

k
m

)
L
2

(a)
0.2

0.4

0.6

0.8in
it
ia

l 
m

o
d
e
l 
1

z
 (

k
m

)

(f)

0.2 0.4 0.6 0.8

x (km)

(e)

AWI

(d)

(i)

0.2 0.4 0.6 0.8

x (km)

(h)

IE

(g)

(l)

0.2 0.4 0.6 0.8

x (km)

(k)

NIM

(j)

(o)

0.2 0.4 0.6 0.8

x (km)

(n)

KROT

(m)

(r)

0.2 0.4 0.6 0.8

x (km)

(q)

GSOT

(p)

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

m
/s
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ducing the reflection pattern in both cases (Figure 13). Spuri-724

ous oscillations appear, which can be associated with the pos-725

itive artifacts observed on the model reconstruction. This lack726

of sensitivity to the polarity is somehow expected. From NIM727

formulation, Qobs should be more or less the same indepen-728

dently of model 1 or model 2 being used. This is illustrated729

in Figure 14, where Qobs(t) is presented for both models (pos-730

itive and negative layers). We can observe that the difference731

between the two true models leads to a very marginal modifica-732

tion of Qobs compared to Qcal. This is likely the explanation of733

the difficulties faced by NIM in interpreting the reflected waves734

correctly.735

Finally, the results obtained with AWI are incorrect for both736

the negative and positive VP anomaly. From observing the737

data, we can see that the direct waves exhibit a clear dominance738

in amplitude over the reflected events. Therefore, we expect739

the Wiener filter to be dominated by the direct waves and only740

show a small imprint of the reflected waves that are of small741

amplitude (≈ 1% of peak amplitude). This is illustrated by the742

Wiener filter shown in Figure 15 for both positive and negative743

layer models. They indeed present a main event around 0 lag,744

corresponding to the in-phase direct wave. Around 0.3 s, the745

imprint of reflected events is very weak but still visible in the746

Wiener filters. This motivates us to use a large σ = 1 s to max-747

imize the information coming from the small reflected waves,748

together with a small ζ = 10−5. However, these settings do749

not make it possible to obtain satisfactory results with AWI.750

To have a deeper understanding of why AWI fails to recon-751

struct a proper VP model in this case, we perform a sensitivity752

analysis of the misfit function with respect to the value of VP753

in the layer. We compute the AWI misfit value (and L2 mis-754

fit value for reference) between dobs and dcal(VP ). Here dobs755

corresponds to a shot gather in the center of the acquisition gen-756

erated in the true model. dcal(VP ) corresponds to data gener-757

ated in different models similar to the true model, with as only758

varying parameter the layer velocity (ranging from ±100 m/s759

around the layer velocity of the true model). The results of this760

analysis are presented in Figure 16. The L2 results are coherent761

with the expectation: the misfit function is convex with respect762

to the variation of the layer velocity and presents a minimum763

when the velocity of the layer used to generated dcal(VP ) is764

similar to the one of the true model used to generate dobs, so765

respectively 1400 and 1600 m/s . For AWI, we observed that766

the minimum is not aligned with the correct velocity (1440 m/s767

in the first case, 1610 m/s in the second). This exhibits the768

loss of sensitivity of AWI in this case, explaining the failure769

of convergence of the FWI. Only reducing the σ below 0.04 s770

would make AWI behaves more like L2 and converge to a result771

similar to the one of NIM. We do not think such a parameter-772

ization is interesting as it prevents the advantages introduced773

by AWI, which is improved convexity, and still introduces ar-774

tifacts in the reconstructed model and computational overhead775

compared to L2 .776

This second FWI test is a good illustration of the potential777

limitation that an alternative misfit function mainly focused on778

resolving time-shift could introduce. Here AWI and NIM have779

difficulties providing satisfactory results when the main arrival780
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is correctly predicted. The point to point approaches that clas-781

sical L2 procures is here the “reference”, making possible to782

fit the small perturbation properly following the main arrivals.783

AWI and NIM being more kinematic oriented, it is not surpris-784

ing that this setup is challenging for such formulations.785

MARMOUSI CASE STUDY: TOWARD A MORE

REALISTIC CASE STUDY

Common framework786

We design a synthetic case study using the Marmousi II P-wave787

velocity model (Figure 17) (Martin et al., 2006) to continue788

our analysis on a more realistic FWI configuration. We use a789

fixed spread surface acquisition model with 128 sources and790

169 receivers. The source spacing is 132 m, and the receiver791

spacing is 100 m. The data is generated with a 4 Hz centered792

Ricker wavelet high-pass filtered to remove energy below 2 Hz793

(wavelet is visible in Figure 24). The recording time is set to794

7 s. PML absorbing layers are used on the bottom and lateral795

sides of the model to mimic a medium of infinite extension in796

these directions, while a free surface condition is applied on797

top.798

In the first case, referred to as “inverse crime inversion”, we799

model the data in the constant density acoustic approximation800

and use the same grid for modeling and inversion to remain in801

the inverse crime settings. The mesh spacing is 25 m in this802

case.803

In the second case, referred to as “more realistic inversion”,804

we use the variable density Marmousi II model and a refined805

10 m grid to generate the data. White noise bandpassed be-806

tween 2 Hz and 10 Hz is added to the data to reach a signal to807

noise ratio of 15%. The inversion is done on a 25 m grid, us-808

ing a density model derived from the initial VP model through809

Gardner’s law (Gardner et al., 1974) (Figure 18). A wavelet810

estimation is done before inversion. Performing the inversion811

in this more realistic framework, away from the usual inverse812

crime settings, makes it possible to assess the effects of incor-813

rect amplitude prediction on the different misfit functions and814

better judge their usability toward field data applications.815

The optimization is performed using the l-BFGS algorithm.816

The regularization of the gradient is defined as 0.3 of the lo-817

cal wavelength. Pseudo-hessian preconditioning is used (Choi818

and Shin, 2008; Yang et al., 2018a). The lower and upper VP819

boundaries for the inversion are respectively set to 1000 m/s820

and 5200 m/s . Inversion is performed without any frequency821

continuation approaches or other multi-scale strategies for all822

the misfit functions considered (including L2 ).823

Inverse crime inversion824

Case study description825

We rely here on two starting models. The first one, called826

S500 (Figure 17 c), is derived from the true VP model using a827

Gaussian smoothing with a correlation length of 500 m. This828

starting model preserves the long wavenumber content of the829

true model. The second one is a linearly increasing vertical830

1D (Figure 17 d) model, ramping from 1500 m/s at seabed to831

4500 m/s at depth. This initial model does not contain long-832

wavelength structures inherited from the true model. The data-833

fit obtained through this initial model (Figure 19 b) is affected834

by cycle-skipping. In comparison, the data-fit obtained with835

S500 is globally better (Figure 19 a), with more in-phase ar-836

rivals (especially on 0 to 3 km offset diving waves).837

Results starting from S500 initial model838

Reconstructed VP results for all the selected misfit functions839

are presented in the left column of Figure 20. The associated840

data-fit obtained after FWI are presented in Figure 21 (for a841

common shot gather in the middle of the acquisition).842

In this model, the L2 results give, at first order, a good re-843

construction of the Marmousi model. However, we can ob-844

serve on the left part that the horizontal layers are not correctly845

reconstructed and present an up-shift (0 < x < 3 km), asso-846

ciated with a low-velocity anomaly on the shallow left part of847

the model (around x = 1 and z = 0.8 km). This corresponds848

to the part where strong reflections are generated. Because the849

background velocity is incorrectly predicted in the early itera-850

tions, the arrivals corresponding to these reflections are cycle-851

skipped. As we illustrated earlier, L2 misfit function being un-852

able to tackle cycle-skipping effects, FWI cannot update the853

medium correctly to fit these arrivals.854

AWI provides a clear improvement over classical L2 : the855

horizontal layers are correctly positioned on the left part. The856

central part at depth (8 < x < 13 km, (z > 2 km) is im-857

proved compared to L2 , with better contrast and more lateral858

coherency in the layers structure. Moreover, the low-velocity859

anomaly on the shallow left part of the model is removed. These860

results are obtained with σ = 0.25 s and ζ = 10−5.861

IE also improves the reconstructed model. The relatively862

small improvement in cycle-skipping robustness introduced by863

the envelope is enough to mitigate the artifacts on the left part864

of the model (0 < x < 3 km) and flattens the layers compared865

to the L2 result. One drawback is the slight degradation in the866

reconstruction of the central part at depth (9 < x < 13 km, z >867

2 km). Still, such a simple formulation is enough to improve868

the FWI workflow over the classical L2 in this case.869

The case of NIM misfit is interesting. Here, we can see that it870

fails to converge, producing an erroneous reconstructed model.871

This illustrates the limitation of NIM when applied to more872

realistic cases where the data contains multiple arrivals, multi-873

ple phases, and potentially mixed phases. Integrating all these874

pieces of information into a single observable (the cumulative875

distribution) does not make it possible to reconstruct the sub-876

surface velocity. As we can see in the data-fit, NIM can also877

not fit the vast majority of the signal.878

The KROT misfit function, as AWI and IE, can prevent the879

appearance of the left side artifacts observed with the L2 re-880

construction (0 < x < 3 km). As for IE, the relatively small881

improvement in terms of attraction valley width provided by882

KROT is sufficient to improve the results significantly. Be-883

sides, KROT can account for the lateral coherency of the data,884

which might also help stabilize the inversion.885

Finally, GSOT also produces a significant improvement over886
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Figure 12: FWI Test 2: FWI layer benchmark results. Left column corresponds to a negative VP anomaly while the right column to

positive VP . The subfigures under respectively correspond to final reconstructed VP model obtained with FWI using L2 (a,b), AWI

(c,d), IE (e,f), NIM (g,h), KROT (i,j) and GSOT (k,l).
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Figure 19: Inverse crime inversion: CSG for field data over-

lapped by synthetic data in (a) S500 initial model, and (b) 1D

initial model. Field data in black and white, overlapped by red

to blue synthetic data with transparency. Red and white visible

mean out of phase, black and blue mean in phase.

the L2 result, with almost no artifacts on the reconstructed887

model. We use τ = 0.25 s, similarly to AWI parameterization.888

This illustrates that GSOT, as AWI, while being able to sig-889

nificantly enlarge the valley of attraction of the misfit function890

on simple convexity cases, can also be used in a more realis-891

tic framework that mixes transmitted and reflected energy with892

relatively complex multi-arrival data.893

Regarding the data-fit, excepted for NIM, all the misfit func-894

tions can provide a good data-fit in this case.895

Results starting from 1D initial model896

Reconstructed models from the 1D initial model are presented897

in the right column of Figure 20. The associated data-fit ob-898

tained after FWI are presented in Figure 22.899

Starting from this initial model, strong artifacts appear on the900

L2 results. We observe long-wavelength low-velocity anoma-901

lies on both left and right parts of the models typical of cycle-902

skipping induced artifacts. The data-fit analysis confirms this903

observation: only early arrivals in the near offset are correctly904

fitted. Diving waves arriving at larger offsets on the left (5 s905

and −7.5 km offset) and right parts (4 s and 6 km offset) of the906

gather are cycle-skipped.907

Without any surprise, NIM cannot provide a meaningful es-908

timate of the VP model, as it is already the case starting from909

the S500 initial model.910

As the 1D initial model generates large time-shifts, and since911

both IE and KROT are only marginally improving cycle-skipping912

robustness, it is not surprising to observe artifacts on the asso-913

ciated reconstructed VP models. IE results present strong ar-914

tifacts, mainly on the left part of the model (0 < x < 7 km),915

while the shallow right part (11 < x < 16 km, x <= 2 km)916

presents an improved reconstruction compared to L2 . This is917

confirmed by the data-fit, where all the arrivals on the right part918

(offset between 1 and 8 km) are correctly predicted, whereas919

data-fit on the left part (offset between −8 and 0 km) is degra-920

dated compared to L2 data-fit. Conversely, KROT provides921

a more accurate reconstruction in the left part of the model.922

The strong low-velocity anomalies observed in the left part923

(0 < x < 7 km) of the L2 and IE reconstructions are reduced924

and appear only in the deep part of the model (z > 2 km). This925

is consistent with the data-fit, where we see that using KROT,926

the long offset diving waves for negative offsets of the shot927

gather are correctly fitted.928

AWI manages to provide a clear improvement over classical929

L2 , mainly on the center part of the model (5 < x < 14 km),930

while some artifacts on both sides of the reconstructed model931

are still present. These parts are more difficult to reconstruct932

as they are illuminated by waves traveling along the longest933

paths of the medium, increasing cycle-skipping risk. We set934

σ = 0.6 s to try to capture as large as possible time-shifts. To935

get the best results possible, we used ζ = 10−2 to obtain the936

helping smoothing effect required to tackle large time-shifts in-937

troduced by this initial model. The data-fit obtained with AWI938

is good, with only some out-of-phase arrivals for late diving939

waves (around −8 to −6 km offset).940

Using GSOT, the reconstructed VP model also presents a941

clear improvement over classical L2 . We use τ = 0.6 s in942

this case. At the first order, most of the artifacts are removed.943

Still, some artifacts are present close to the edges (0 < x < 1944

and 15 < x < 17 km), which is expected from the lack of945

illumination in these parts. Some other artifacts are visible in946

the center part of the structure at depth (10 < x < 12 km and947

2 < z < 3.5 km). The data-fit appears to be good, with no out948

of phase arrivals for all offsets.949

Error reduction analysis950

Besides this qualitative analysis of the results, we can provide951

quantitative comparisons by analyzing the data error and model952

error evolution along with iterations. We use here the following953

relative L1 model error definition954

Err(VP ) =
100

M

M∑

i=1

|VP,i − V true
P,i |

V true
P,i

(38)

where V true
P is the true model, M the number of points in the955

model and i denotes one pixel of the grid used to describe the956

models at the discrete level.957

For the second experiment only (1D initial model), we present958

the evolution of959

• the convergence rate (misfit error with respect to the iter-960

ations);961

• the L2 convergence rate (L2 error with respect to the it-962

erations);963
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Figure 20: Inverse crime inversion: inverse crime FWI final reconstructed VP model for Marmousi. Left column corresponds to

S500 initial model, right column to 1D initial model. The lines respectively correspond to the final reconstructed VP model using

L2 (a,b), AWI (c,d), IE (e,f), NIM (g,h), KROT (i,j) and GSOT (k,l).
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Figure 21: Inverse crime inversion: Overlapped common shot gathers for synthetic data in the final reconstructed VP model starting

from S500 initial model vs field data. Each subfigure corresponds to misfit function, with L2 (a), AWI (b), IE (c), NIM (d), KROT

(e), and GSOT (f).
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Figure 22: Inverse crime inversion: the same as Figure 21 but starting from 1D initial model.
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• the model convergence rate (model error with respect to964

the iterations);965

• the model vs. data convergence rate (model error with966

respect to the misfit error).967

For model error, we truncate the model by 1 km on the left and968

right sides and 625 m at depth to remove the model areas that969

are not well illuminated.970

For alternative misfit function definition, the L2-based con-971

vergence rate is interesting as moving away from L2 local min-972

ima should be made visible by an increase of the L2 error with973

respect to the iterations. Also, the fourth item is interesting, as,974

ideally, we look for a monotonic decrease of the model error975

with respect to the misfit error. Besides, to improve the read-976

ability, we have excluded from these figures the results corre-977

sponding to NIM. The method does not produce reliable results978

in both cases.979

The error reduction analysis is shown in Figure 23. First, we980

observe that KROT and AWI present a relatively slow conver-981

gence rate on the cost evolution, while IE and GSOT have a982

faster convergence rate. L2 convergence is in between. KROT983

follows more or less the same as the L2 misfit function. This is984

somehow expected, as the valley of attraction of KROT is ex-985

pected to be similar to the one of the L2 misfit function. Note,986

however, that in the early iterations, KROT displays a small987

increase of the L2 error, which clearly states that the two mis-988

fit functions follow a different minimization path. IE, AWI,989

and GSOT display another trend: the L2 error is increased in990

the first iterations before being strongly decreased in a second991

stage. The substantial decrease of the L2 error appears the lat-992

est for AWI (after 100 iterations) and the earliest for GSOT993

(after 30 iterations). GSOT achieves the smallest L2 misfit,994

followed by AWI and KROT. The model convergence rate clas-995

sifies the misfit functions into two groups: one that does not re-996

duce model error compared to the starting point, with L2 , IE,997

and KROT; and a second group that decreases the model error998

with AWI and GSOT. In the second group, only GSOT provides999

a constant decrease with respect to the iterations, while AWI1000

start to increases the model error until 100 iterations, followed1001

by a decrease. The final reduction of model error obtained with1002

KROT and IE are smaller than the one attained by the L2 , still,1003

this does not explicitly compared to better interpretable results1004

overall. AWI and GSOT obtain the best reduction of model er-1005

ror. Finally, looking at the model vs. data convergence, only1006

GSOT provides a quasi-monotonic decrease. For all the others,1007

the model error starts by increasing with the reduction of the1008

misfit.1009

A more realistic inversion1010

Case study description1011

Similar to the previous inverse crime inversion, we perform1012

FWI starting from two different initial models. The first one1013

is derived from the true Marmousi model using a lighter Gaus-1014

sian smoothing, referred to as the S250 model with a correla-1015

tion length of 250 m (Figure 17 b). The second one is the S5001016

model already used in the inverse crime settings (Figure 17 c).1017
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(d) model error vs. the data error reduction.
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and the inverted wavelet.

We did not re-use the 1D initial model as it proves to be too1018

difficult for any alternative misfit functions to provide conver-1019

gence in this more realistic case. Not predicting the data to1020

machine precision generates a more challenging benchmark.1021

The wavelet used for FWI is obtained through a source esti-1022

mation in the initial model based on short offset (100 m) only1023

to decouple the influence of the initial VP model as much as1024

possible. The obtained inverted wavelet is presented in Fig-1025

ure 24. We can observe that the inverted wavelet is close to1026

the true wavelet, but some noticeable amplitude and waveform1027

differences are visible. These amplitude effects are induced by1028

the use of a “true” density model for the data generation com-1029

pared to Gardner’s one (Figure 18) used for wavelet estimation1030

and to the white noise added to the data.1031

The data-fits for these two initial models is presented in (a)1032

of Figures 26 and 27. As expected, the data-fit is better us-1033

ing S250 initial model, while the data-fit generated with S5001034

initial model displays more out of phase arrivals.1035

We compare the results obtained using L2 , AWI, IE, KROT,1036

and GSOT misfit functions. We do not include NIM results1037

here, as we have already shown how the method fails to pro-1038

duce meaningful results in the previous inverse crime settings.1039

A maximum of 500 FWI iterations is performed for both initial1040

models.1041

Results starting from S250 initial model1042

Starting from the S250 initial model (Figure 25 left column),1043

the main expected difference with the previous “inverse crime”1044

setup is an inaccurate amplitude prediction (which would be1045

the case if considering field data). Data-fit are presented in1046

Figure 27. Classical L2 can provide an acceptable result. Good1047

reconstruction in the well-illuminated area is achieved, with no1048

visible artifacts in the center part and only a small low-velocity1049

artifact visible at x = 2 km z = 0.8 km and a high-velocity1050

artifact at x = 16 km z = 1 km. The data-fit obtained with L2
1051

is quite satisfying with most of the arrivals in phase.1052

This time, IE results are clearly degraded compared to the1053

classical L2 one. The reconstructed VP model is tainted with1054

high wavenumber oscillation and strong artifacts. This is an1055

indication that the IE approach is sensitive to a correct ampli-1056

tude prediction. This validates the interest of a more realistic1057

framework, making us able to detect this kind of limitation.1058

The data-fit presents many out-of-phase arrivals, coherent with1059

the small artifacts present everywhere in the reconstructed VP1060

.1061

Again, AWI improves over the L2 results. We use a rela-1062

tively small σ = 0.2 s here as the maximum time-shifts ex-1063

pected are relatively small with this good initial model. We1064

used ζ = 10−2 as noise requires a relatively large amount1065

of damping, moreover as illustrated before, a larger damping1066

value helps when facing challenging FWI setups. The deep1067

center part is improved with a more coherent deep-layer struc-1068

ture. The left (x = 2 km and z = 0.8 km) and right (x = 16 km1069

z = 1 km) side artifacts present in L2 results are also partially1070

mitigated. Surprisingly, the data-fit obtained with AWI is poor1071

for large offset arrivals (from −8 km to −3 km and 3 to 8 km).1072

This degradation of the data-fit is slightly counter-intuitive and1073

does not correlate with the improvement of the reconstructed1074

VP model observed.1075

Finally, KROT and GSOT reconstructed models both present1076

similar improvement compared to the L2 one. We can observe1077

an increase in terms of high wavenumber content. Interest-1078

ingly, the deep center part (9 < x < 13 km, z > 2 km),1079

which is the main target of interest of the Marmousi model (an1080

anticlinal structure) is more resolved using KROT and GSOT1081

compared to L2 . For GSOT, we use τ = 0.2 s in this case.1082

The data-fit obtained with both methods is good, with almost1083

all arrivals in phase. Only some first arrivals between −4 to1084

−2 km offset are still not well explained. The GSOT data-fit1085

appears to be slightly better than the KROT one.1086

Results starting from S500 initial model1087

Starting from the S500 model, reconstructed VP results are1088

presented in Figure 25 right column, while data-fit are pre-1089

sented in Figure 27.1090

Here, the classical L2 fails to reconstruct a meaningful VP1091

model. Many artifacts are present on the model that may come1092

in part from cycle-skipping. This would prevent any interpre-1093

tation of the reconstructed model. The data-fit present out-of-1094

phase arrivals, even if the majority would appear to be in-phase.1095

This again illustrates potential convergence toward a local min-1096

imum that makes possible to fit the data with non-meaningful1097

VP updates.1098

With no surprise, IE fails to reconstruct a meaningful VP1099

estimate. The reconstructed VP model suffers from many arti-1100

facts. The data-fit is clearly degraded compared to L2 , which is1101

likely explained by the difficulty faced by IE in tackling wrong1102

amplitude predictions compared to classical L2 .1103

AWI reconstructed model produces here an improvement1104

over L2 or IE, with the central part and right part of the Mar-1105

mousi model more or less retrieved. However, significant arti-1106

facts are present in the left part of the model (1 < x < 6 km)1107
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Figure 25: Non inverse crime inversion: More realistic FWI final reconstructed VP model for Marmousi. Left column corresponds

to S250 initial model, right column to S500 initial model. The lines respectively correspond to the final reconstructed VP model

using L2 (a,b), AWI (c,d), IE (e,f), KROT (g,h) and GSOT (i,j).

associated with an erroneous reconstruction of the central part1108

at depth (9 < x < 13 km, z > 2 km). Here we increase σ to1109

0.4 s, and keep ζ = 10−2. The data-fit is degraded with out1110

of phase arrivals for offsets between −8 to −3 km as well as1111

between 2 to 8 km.1112

KROT produces satisfactory results here. This is interest-1113

ing as KROT only marginally improves cycle-skipping robust-1114

ness. Here, it manages to perform well in this complexified1115

case. This is a good indication that the difficulties induced1116

in this more realistic inversion are not only cycle-skipping but1117

also amplitude mismatch (due to density) and noise. As KROT1118

introduces lateral coherency and has a regularizing effect on1119

noise, it is not surprising to observe a better behavior in this1120

case. The data-fit obtained with KROT is good with almost all1121

arrivals in phase, except for some transmitted waves from −31122

to −1 km offset and some long offset arrivals around −8 to1123

−7 km.1124

Finally, GSOT provides a good reconstructed VP model. The1125

central part (9 < x < 13 km, z > 2 km) is well recon-1126

structed. The layers show more lateral coherency compared1127

with KROT. Furthermore, left side artifacts are reduced com-1128

pared to KROT. Again and similarly to AWI, τ is increased1129

to 0.4 s to account for the larger time-shifts introduced by the1130

degraded initial model. The data-fit is also good, with improve-1131

ment over the KROT for the long offset arrivals around −8 to1132

−7 km.1133

Error reduction analysis1134

A similar analysis for the different misfit functions is presented1135

for this inverse crime inversion of Marmousi. The model error1136

is calculated in a similar zone as in the previous experiment.1137

Starting from the S500 initial model (Figure 28), we observe1138

that KROT and AWI present again a relatively slow conver-1139

gence rate (AWI being the slower), while L2 , IE and GSOT1140

have a faster convergence rate. The L2 data-error is again in-1141

teresting, with GSOT and KROT performing the most substan-1142

tial reduction of L2 data error (with an initial jump to pass a1143

L2 local minimum for GSOT at the first iteration). While IE1144

increases the cost drastically for the first two iterations, it then1145

fails to reduce the data error. We can note that KROT is not fol-1146

lowing L2 misfit function behavior anymore compared to the1147

inverse crime Marmousi case. Regarding AWI, we can observe1148

that it starts to increase the L2 data error until 20 iterations,1149

then rapidly reduce for 10 iterations, to finish with a constant1150

increase afterward. This time, the model error displays a strong1151

increase for L2 and IE misfit functions, which is coherent with1152

the artifacts present in the reconstructed VP models. AWI is1153

also increasing the model error as it is also affected by arti-1154

facts, but less drastically than L2 and IE, which is visible on1155

the reconstructed VP model. KROT and GSOT manage to de-1156

crease the model error continuously. Looking at the model vs.1157

data convergence, only KROT and GSOT present monotonic1158

behavior, while L2 , IE, and AWI are increasing the model er-1159

ror.1160
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Figure 26: Non inverse crime inversion: Overlapped common shot gathers for synthetic data in the final reconstructed VP model

starting from S250 initial model vs field data. (a) corresponds to the data-fit in the S250 initial model. Then, each subfigure

corresponds to misift function, with L2 (b), AWI (c), IE (d), KROT (e), and GSOT (f).
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Figure 27: Non inverse crime inversion: Same as Figure 26 but starting from S500 initial model.
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more realistic Marmousi for S500 initial model. (a) evolution

of cost functions over iterations, (b) true L2 cost evolution over

iterations, (c) model error reduction over iterations and finaly

(d) model error vs. the data error reduction.

Computational cost1161

The computational overhead induced by the alternative misfit1162

function selected in this review varies from +2 to +30% com-1163

pared to L2 misfit. These values are coherent with the values1164

documented in the literature. The key feature here is that even1165

a +30% computational overhead is not a blocking feature and1166

is affordable with modern computing facilities. For us, the key1167

feature is the “physical” performance of the misfit function that1168

translates into an improvement of FWI robustness.1169

DISCUSSION

Among the five misfit functions compared here, namely NIM,1170

IE, AWI, KROT, GSOT, three of them show a significant im-1171

provement in convexity with respect to a time-shift: NIM, AWI,1172

and GSOT. However, when applied to a realistic case (Mar-1173

mousi), NIM fails to produce a meaningful VP estimate. Con-1174

versely, for AWI, while difficulties are identified on schematic1175

examples, including multiple arrivals (a situation known to be1176

problematic for correlation and deconvolution approaches), sat-1177

isfactory results are obtained when applied to the Marmousi1178

case, both within and without the inverse crime settings. GSOT1179

also appears as an interesting strategy, providing satisfactory1180

results in all the tests performed here.1181

Interestingly, while IE and KROT show less robustness to1182

strong cycle-skipping, the small increase in the valley of at-1183

traction they provide is sufficient to enhance the velocity recon-1184

struction in the Marmousi test in inverse crime settings. How-1185

ever, IE fails when it comes to non-inverse crime settings, that1186

is when noise corrupts the data, and amplitude prediction can-1187

not be guaranteed anymore. On the contrary, KROT reveals1188

relatively robust to these settings, probably benefiting from its1189

ability to account for the lateral continuity of events in shot-1190

gather representation and for the robustness of optimal trans-1191

port based distances with respect to the presence of noise (En-1192

gquist et al., 2016).1193

From the experiment performed in this article, KROT, AWI,1194

and GSOT appear as an interesting alternative to the least-squares1195

distance from the perspective of field data application. In cases1196

where no strong cycle-skipping is expected, KROT should per-1197

form well, and this is supported by several field data applica-1198

tions already performed on exploration data (Messud and Se-1199

dova, 2019; Sedova et al., 2019; Carotti et al., 2020). The com-1200

putational cost of KROT is relatively higher than that of AWI1201

and GSOT; however, its ability to account for the lateral co-1202

herency of the data in shot-gather panels makes it an appealing1203

strategy. For 3D data cubes, cutting it into 2D slices and sum-1204

ming over the slices is a good compromise. To deal with larger1205

kinematics inaccuracy, AWI and GSOT should be preferred op-1206

tions. AWI has already been successfully applied to field data1207

(Warner and Guasch, 2015; Ravaut et al., 2017; Debens et al.,1208

2017; Roth et al., 2018; Guasch et al., 2019; Warner et al.,1209

2019). We, however, show here that it could suffer from some1210

limitations in the case of complex data containing multiple ar-1211

rivals. GSOT has been mostly applied to synthetic data by now1212

(He et al., 2019a; Provenzano et al., 2020). Nevertheless, field1213

data applications are ongoing (Pladys et al., 2020; Górszczyk1214
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et al., 2020).1215

CONCLUSION

This article is dedicated to comparing misfit function reformu-1216

lation for FWI, which aims at mitigating cycle-skipping. The1217

first result drawn is that the link between cycle-skipping and the1218

non-convexity with respect to time-shifts of the least-squares1219

distance is evident from the different tests we provide. How-1220

ever, when no such cycle-skipping occurs (sufficiently accurate1221

initial model), least-squares FWI performs well, even for com-1222

plex data including multiple phases, mixed phases, noise, and1223

when amplitude prediction cannot be performed accurately (as1224

is the case for field data). Therefore, efficient reformulation of1225

the FWI misfit function should not rely only on a better con-1226

vexity to time-shifts to replace the least-squares norm advanta-1227

geously but should also exhibit robustness with respect to these1228

settings, which are always met on field data applications.1229
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