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Abstract

In this paper we study cycles in the coprime graph of integers. We denote by f(n, k)
the number of positive integers m ≤ n with a prime factor among the first k primes.
We show that there exists a constant c such that if A ⊂ {1, 2, . . . , n} with |A| > f(n, 2)
(if 6|n then f(n, 2) = 2

3
n), then the coprime graph induced by A not only contains a

triangle, but also a cycle of length 2l + 1 for every positive integer l ≤ cn.

1 Introduction

1.1 Notations and definitions

Let (a, b) denote the greatest common divisor and [a, b] the least common multiple of integers
a, b. Consider the coprime graph on the integers. This is the graph whose vertex set is the
set of integers and two integers a, b are connected by an edge if and only if (a, b) = 1. Let
A ⊂ {1, 2, . . . , n} be a set of positive integers. The coprime graph of A, denoted by G(A), is
the induced coprime graph on A. A(m,u) denotes the integers ai ∈ A, ai ≡ u (mod m). φ(n)
denotes Euler’s function, ω(n) denotes the number of distinct prime factors of n and µ(n) is
the Moebius function.

V (G) and E(G) denote the vertex set and edge set of a graph G. Kn is the complete
graph on n vertices, Cn is the cycle on n vertices and K(m,n) denotes the complete bipartite
graph between U and V , where |U | = m, |V | = n. H is a subgraph of G, denoted by H ⊂ G,
if V (H) ⊂ V (G) and E(H) ⊂ E(G).
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1.2 The coprime graph of integers

Recently the investigation of various graphs on the integers has received significant attention
(see e.g. “Graphs on the integers” in [10]). The most popular graph seems to be the coprime
graph, altough there are many attractive problems and results concerning the divisor graph
([7], [8], [12] and [14]). Several reasearchers studied special subgraphs of the coprime graph.
Perhaps the first problem of this type was raised by the first author in 1962 ([6]): What is
largest set A ⊂ {1, 2, . . . , n} such that Kk 6⊂ G(A)? Of course, the set of m ≤ n which have
a prime factor among the first k − 1 primes is such a set (let us denote the cardinality of
this set by f (n, k − 1)), and the first author conjectured that this set gives the maximum.
For k = 2, 3 this is trivial, and for k = 4 it was recently proved by Szabó and Tóth [15].
However, the conjecture recently was disproved by Ahlswede and Khachatrian [1]. They also
gave some positive results in [2] and [3].

Another interesting question is what conditions guarantee a perfect matching in the
coprime graph. Newman conjectured more than 25 years ago, that if I1 = {1, 2, . . . , n} and
I2 is any interval of n consecutive integers, then there is a perfect coprime matching from
I1 to I2. This conjecture was proved by Pomerance and Selfridge [13] (see also [4]). Note
that the statement is not true if I1 is also an arbitrary interval of n consecutive integers.
Example: I1 = {2, 3, 4} and I2 = {8, 9, 10}, any one-to-one correspondance between I1 and
I2 must have at least one pair of even numbers in the correspondance.

In this paper we are going to investigate another natural question of this type (also
initiated by the first author), namely what can we say about cycles in G(A). The case of
even cycles is not hard from earlier results (at least for not too long cycles). In fact, if
l ≤ b 1

10
log lognc, for the largest set A ⊂ {1, 2, . . . , n} with C2l 6⊂ G(A), we have |A| =

f(n, 1) + (l − 1) = b 1
2
nc + (l − 1). This cardinality can be obtained by taking all the even

numbers and the first l − 1 odd primes, then obviously C2l 6⊂ G(A). The upper bound
follows from the following theorem in [9]: If n ≥ n0, |A(2,1)| = s > 0, |A| > f (n, 1) and
r = min{s, b 1

10
log lognc}, then K(r, r) ⊂ G(A).

The case of odd cycles is more interesting. As it was mentioned above to guarantee a
triangle we need at least f (n, 2) + 1 = bn

2
c + bn

3
c − bn

6
c + 1 (= 2

3
n + 1 if 6|n) numbers.

Somewhat surprisingly this cardinality already guarantees the existence of odd cycles of
“almost” every length. More precisely:

Theorem 1. There exist contants c, n0 such that if n ≥ n0, A ⊂ {1, 2, . . . , n} and |A| >
f(n, 2), then C2l+1 ⊂ G(A) for every positive integer l ≤ cn.

It would be interesting to determine here the best possible value of the constant c.
Perhaps it is c = 1

6
. One may obtain this trivial upper bound for 6|n by taking all the even

numbers and the first n
6

+ 1 odd numbers for A; clearly C2l+1 6⊂ G(A) for l > n
6
.

In the proof we will distinguish two cases depending on the size of |A(6,1)|+ |A(6,5)|. The
theorem will be an immediate consequence of the following two theorems:

Theorem 2. There exist constants c1, c2, n1 such that if n ≥ n1,

|A(6,1)| = s1, |A(6,5)| = s2, 1 ≤ s1 + s2 ≤ c1n,

and
|A| > f(n, 2),
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then C2l+1 ⊂ G(A) for every positive integer l ≤ c2n.

Theorem 3. For every ε > 0, there exist constants c3 = c3(ε) and n2 = n2(ε) such that if
n ≥ n2,

|A(6,1)| = s1, |A(6,5)| = s2, s1 + s2 ≥ εn,

and
|A| > f(n, 2),

then C2l+1 ⊂ G(A) for every positive integer l ≤ c3n.

2 Proofs

2.1 Proof of Theorem 2

We may assume without loss of generality that s1 = max(s1, s2). We take an arbitrary
1 ≤ l ≤ c2n positive integer. The rough outline of the construction of a C2l+1 in G(A) is the
following: First we will pick a number a ∈ A(6,1) with relatively large φ(a) and the remaining
2l numbers will be chosen alternately from A(6,2) and A(6,3).

We need the following lemma:

Lemma 1. The number of integers 1 ≤ k ≤ n satisfying φ(k)
k
< 1

t
is less than

n exp(− exp c4t)

(where exp z = ez), uniformly in t > 2.

This lemma can be found in [5]. We apply Lemma 1 with

t =
1

c4

log log
2n

s1

(1)

(t > 2 holds for small enough c1). Then the number of integers 1 ≤ k ≤ n for which φ(k)
k
< 1

t

(where t is defined by (1)) is less than s1

2
. Hence there exists an integer a ∈ A(6,1) satisfying

φ(a)
a
≥ 1

t
.

The number of those integers u, for which

0 < 6u+ 2 ≤ n and (6u+ 2, a) = 1

hold, is given by the following sieve formula∑
d|a

µ(d)g1(n, d), (2)

where g1(n, d) denotes the number of those integers v, for which

6v + 2 ≤ n and d|6v + 2.

(i.e. 6v ≡ −2 (mod d).) It is clear from (a, 6) = 1, that

|g1(n, d)−
n− 2

6d
| ≤ 1.

We also use the following lemma:
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Lemma 2 (see [11], page 394). There exists an n3 such that if n ≥ n3 then

ω(n) < 2
logn

log log n
.

This lemma implies that in (2), for large enough n, the number of terms is

2ω(a) < 22 logn
log logn .

Indeed, if a < n3 this is trivial, and if a ≥ n3, then

ω(a) < 2
log a

log log a
≤ 2

log n

log logn
,

since the function g(u) = 2 log u
log log u

is increasing if u is large enough (see [11], page 394).
Thus ∑

u : 6u+ 2 ≤ n,
(6u+ 2, a) = 1

1 ≥
n− 2

6

∑
d|a

µ(d)

d
− 22 logn

log logn =

=
n− 2

6

∏
p|a

(
1−

1

p

)
− 22 logn

log logn =

=
n− 2

6

φ(a)

a
− 22 logn

log logn ≥
n− 2

6t
− 22 logn

log logn ≥
n

7t

for sufficiently large n.
Therefore ∑

u : 6u+ 2 ≤ n,
(6u+ 2, a) = 1,
6u+ 2 ∈ A(6,2)

1 ≥
∑

u : 6u+ 2 ≤ n,
(6u+ 2, a) = 1

1−
∑

u : 6u+ 2 ≤ n,
6u+ 2 6∈ A(6,2)

1 ≥

≥
n

7t
− (s1 + s2) ≥

n

8t
.

Once again applying Lemma 1 with

t′ =
1

c4

log log
2n
n
8t

,

(so t′ < t) there are at least n
16t

integers in the form 6u+ 2 satisfying

6u+ 2 ≤ n, (6u+ 2, a) = 1, 6u+ 2 ∈ A(6,2)

and
φ(6u+ 2)

6u+ 2
≥

1

t′
>

1

t
.

We choose b1 arbitrarily from these integers.
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Applying Lemma 1 with

t′′ =
1

c4

log log
1

c1

,

the number of integers 1 ≤ k ≤ n for which φ(k)
k
< 1

t′′
is at most c1n. Therefore the number

of integers 1 ≤ k ≤ n for which

k ∈ A(6,2) and
φ(k)

k
≥

1

t′′
(3)

is at least

{1, 2, . . . , n}(6,2) − (s1 + s2)− c1n ≥ b
n− 2

6
c+ 1− 2c1n ≥

n

7
,

if c1 is small enough. We choose b2, b3, . . . , bl as arbitrary numbers from the numbers satis-
fying (3). Let bl+1 = a.

Put ei = [bi, bi+1] for all 1 ≤ i ≤ l. The number of those integers u, for which

6u+ 3 ≤ n and (6u+ 3, ei) = 1

is again clearly the following: ∑
d|ei

µ(d)g2(n, d), (4)

where g2(n, d) denotes the number of those integers v, for which

6v + 3 ≤ n and d|6v + 3

(i.e. 6v ≡ −3 (mod d)). Since (6, a) = 1, and 2|bi, but 3 6 |bi for all 1 ≤ i ≤ l, it is easy to
see that

g2(n, d) =

{
0 if 2|d
n−3
6d

+ ε otherwise,

where |ε| ≤ 1.
Furthermore, in (4) for large enough n the number of terms is

2ω(ei) < 2
2

log(n2)

log log(n2) < 24 logn
log logn ,

where we again used Lemma 2, ei ≤ n2 and the fact that g(u) = 2 log u
log log u

is increasing if u is
large enough.

Therefore ∑
u : 6u+ 3 ≤ n
(6u+ 3, ei) = 1

1 =
∑
d|ei,
2 6 |d

µ(d)g2(n, d) ≥

≥
n− 3

6

∏
p|ei
2 6 |p

(
1−

1

p

)
− 24 logn

log logn ≥
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≥
n− 3

6

∏
p|ei

(
1−

1

p

)
− 24 logn

log logn ≥

≥
n− 3

6

∏
p|bi

(
1−

1

p

) ∏
p|bi+1

(
1−

1

p

)
− 24 logn

log logn .

Hence for i = 1 we have∑
u : 6u+ 3 ≤ n,

(6u+ 3, e1) = 1,
6u+ 3 ∈ A(6,3)

1 ≥
n− 3

6t′t′′
− 24 logn

log logn − (s1 + s2) ≥
n

7tt′′
− (s1 + s2) ≥

n

8tt′′
.

For i = l we get

∑
u : 6u+ 3 ≤ n,
(6u+ 3, el) = 1,
6u+ 3 ∈ A(6,3)

1 ≥
n− 3

6t′′t
− 24 logn

log logn − (s1 + s2) ≥
n

7t′′t
− (s1 + s2) ≥

n

8t′′t
.

Finally for 1 < i < l

∑
u : 6u+ 3 ≤ n,
(6u+ 3, ei) = 1,
6u+ 3 ∈ A(6,3)

1 ≥
n− 3

6(t′′)2
− 24 logn

log logn − (s1 + s2) ≥
n

7(t′′)2
− (s1 + s2) ≥

n

8(t′′)2
.

Thus it is not hard to see that if c is small enough then we may choose a different fi for
each 1 ≤ i ≤ l such that

(bi, fi) = (bi+1, fi) = 1 and fi ∈ A(6,3).

Then
a, b1, f1, b2, f2, . . . , bl, fl, a

is a C2l+1 in G(A) completing the proof of Theorem 2.

2.2 Proof of Theorem 3

Here we assume that s2 ≥
ε
2
n, the case s1 ≥

ε
2
n is similar. Denote by Pr the product of

the primes not exceeding r. The rough outline of the proof will be the following: First we
find 3 positive integers j1, j2 and j3 such that (j1, j2) = (j1, j3) = (j2, j3) = 1 and |A(Pr,ji)| is
relatively large for each i = 1, 2, 3. Then if 1 ≤ l ≤ c3n, to construct a C2l+1 in G(A) first
we pick a number a ∈ A(Pr,j1) and then the remaining 2l numbers will be chosen alternately
from A(Pr,j2) and A(Pr,j3).

We will need the following lemma
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Lemma 3 . For every σ > 0 and δ > 0, there exists an r0 = r0(σ, δ) such that if r ≥ r0, n ≥
n4(σ, δ, r) and u = 1, 2, . . . , Pr, then for all but σ n

Pr
integers k satisfying

1 ≤ k ≤ n, k ≡ u (mod Pr),

we have

α(k) =
∏
p|k
p > r

(
1−

1

p

)
> 1− δ.

This lemma can be found in [9].
Now we prove Theorem 3. Let r denote a positive integer for which r ≥ r0( ε

8
, ε

8
). We

evidently have
1
6
Pr∑
i=1

(
|A(Pr,6i−1)|+ |A(Pr,6i)|+ . . . + |A(Pr ,6i+5)|

)
=

= |A(6,0)|+ |A(6,1)|+ . . . + |A(6,4)|+ 2|A(6,5)| = |A|+ |A(6,5)| > f (n, 2) + s2 >
2

3
n− 2 +

ε

2
n.

Hence there exists an i0 for which

|A(Pr ,6i0−1)|+ |A(Pr,6i0)|+ . . . + |A(Pr ,6i0+5)| >
2
3
n + ε

2
n− 2

Pr
6

=
4n

Pr
+ 3ε

n

Pr
−

12

Pr
. (5)

Clearly for every u

|A(Pr,u)| <
n

Pr
+ 1. (6)

We claim that (5) and (6) imply that there exist three integers j1, j2 and j3 such that

6i0 − 1 ≤ j1 < j2 < j3 ≤ 6i0 + 5, (j1, j2) = (j1, j3) = (j2, j3) = 1, (7)

and

|A(Pr ,ji)| >
ε

2

n

Pr
for all i = 1, 2, 3. (8)

Indeed, if |A(Pr ,6i0−1)| ≤
ε
2
n
Pr

, then

|A(Pr ,6i0)|+ . . .+ |A(Pr,6i0+5)| >
4n

Pr
+

5ε

2

n

Pr
−

12

Pr
. (9)

But then (6) and (9) imply that there exist integers u1, . . . , u5 such that

0 ≤ u1 < . . . < u5 ≤ 5, (10)

and
|A(Pr,6i0+ui)| >

ε

2

n

Pr
for all i = 1, . . . , 5,
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since otherwise

|A(Pr ,6i0)|+ . . . + |A(Pr,6i0+5)| ≤ 4
(
n

Pr
+ 1

)
+ 2

ε

2

n

Pr
= 4

n

Pr
+ ε

n

Pr
+ 4

would hold in contradiction with (9).
From (10) it follows that the sequence {6i0 + u1, . . . , 6i0 + u5} contains a subsequence

{j1, j2, j3} of 3 terms which are pairwise relatively prime, proving our claim in this case.
The case when |A(Pr,6i0+5)| ≤

ε
2
n
Pr

is similar. Thus now we may assume that

|A(Pr,6i0−1)| >
ε

2

n

Pr
and |A(Pr,6i0+5)| >

ε

2

n

Pr
.

In this case we choose j1 = 6i0 − 1 and j3 = 6i0 + 5. For j2 we choose one from the integers
6i0 + 1, 6i0 + 2 and 6i0 + 3 for which

|A(Pr,j2)| >
ε

2

n

Pr
.

(there must be one such a j2) and then (7) and (8) clearly hold.
Thus the claim is proved, we have j1, j2 and j3 satisfying (7) and (8). Let a denote a

positive integer for which

a ∈ A(Pr,j1) and
∏
p|a
p > r

(
1−

1

p

)
> 1−

ε

8
. (11)

Lemma 2 and the choice of r guarantee that such an a exists.
We are going to estimate from below the number of solutions of

(a, bx) = 1, bx ∈ A(Pr ,j2). (12)

Assume that p|(a, d) for some d ≡ j2(mod Pr). Since (j1, j2) = 1 we clearly have p > r.
Denote by h(Pr, j, z) the number of those integers d for which d ≤ n, d ≡ j(mod Pr) and
(z, d) = 1. It is not hard to see that∣∣∣∣∣∣∣∣∣∣∣∣∣

h(Pr, j2, a)−
n

Pr

∏
p|a
p > r

(
1−

1

p

)
∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 2ω(a) < 22 logn

log logn .

From this and (11) we get for large n

h(Pr, j2, a) >
n

Pr

∏
p|a
p > r

(
1−

1

p

)
− 22 logn

log logn >
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>

(
1−

ε

8

)
n

Pr
− 22 logn

log logn >

(
1−

ε

4

)
n

Pr
. (13)

Denoting the number of solutions of (12) by X, we have by (6), (8) and (13)

X ≥ |A(Pr ,j2)| −
∑
d ≤ n

d ≡ j2(mod Pr)
(a, d) > 1

1 =

= |A(Pr ,j2)| −


∑
d ≤ n

d ≡ j2(mod Pr)

1− h(Pr, j2, a)

 >

>
ε

2

n

Pr
−
(
n

Pr
+ 1

)
+
(

1−
ε

4

)
n

Pr
=
ε

4

n

Pr
− 1 >

ε

5

n

Pr
. (14)

Therefore using Lemma 2 and (14), if c3 is small enough, then we can choose integers
b1, b2, . . . bl satisfying

(a, bi) = 1, bi ∈ A(Pr ,j2),

and ∏
p|bi
p > r

(
1−

1

p

)
>
(

1−
ε

8

)
for all 1 ≤ i ≤ l. (15)

Put ei = [bi, bi+1] for all 1 ≤ i ≤ l where bl+1 is defined to be a.
Let us denote the number of solutions of

(ei, fy) = 1, fy ∈ A(Pr ,j3)

by Yi. From (7), if g ≡ j3(mod Pr) and p|(ei, g), then p > r. Again we have∣∣∣∣∣∣∣∣∣∣∣∣∣
h(Pr, j3, ei)−

n

Pr

∏
p|ei
p > r

(
1−

1

p

)
∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 2ω(ei) < 2

2
log(n2)

log log(n2) <

< 24 logn
log logn .

We obtain from this and (15) for large enough n that

h(Pr, j3, ei) >
n

Pr

∏
p|ei
p > r

(
1−

1

p

)
− 24 logn

log logn ≥
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≥
n

Pr

∏
p|bi
p > r

(
1−

1

p

) ∏
p|bi+1

p > r

(
1−

1

p

)
− 24 logn

log logn >

>
(

1−
ε

8

)2 n

Pr
− 24 logn

log logn >
(

1−
ε

4

)
n

Pr
. (16)

(6), (8) and (16) yield that

Yi ≥ |A(Pr ,j3)| −


∑
g ≤ n

g ≡ j3(mod Pr)

1− h(Pr, j3, ei)

 >

>
ε

2

n

Pr
−
(
n

Pr
+ 1

)
+
(

1−
ε

4

)
n

Pr
=
ε

4

n

Pr
− 1 >

ε

5

n

Pr
.

Hence we can choose an integer hi satisfying

(bi, hi) = (bi+1, hi) = 1 and hi ∈ A(Pr,j3)

for all 1 ≤ i ≤ l. Then
a, b1, h1, b2, h2, . . . , bl, hl, a

form a C2l+1 in G(A) and this completes the proof of Theorem 3.
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