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1. Introduction

The group divisible (GD) designs constitute the largest, simplest and

perhaps most important type of 2-associate partially balanced incomplete block

(PBIB) designs. A GD design is an arrangement of v (=mn) treatments in b

blocks such that each block contains k (<v) distinct treatments; each treat-

ment is replicated r times; and the set of treatments can be partitioned into

m (^2) equivalence classes of n (^2) treatments each, any two distinct treat-

ments occurring together in \ 2 blocks if they belong to the same equivalence

class, and in X2 blocks if they belong to different equivalence classes. It may

be remarked that in the literature the commonly used terminology for these

equivalence classes of treatments is "groups", but here we deliberately prefer

to use the phrase "equivalence classes" in order to avoid a notational confusion

with groups in a group-theoretic sense which we shall be considering shortly

in this paper. GD designs may again be of three types: (a) singular, if r=\1;

(b) semi-regular (SR), if r>\x and rk=X2v; (c) regular (R), if r>Xx and rk>\2v.

If the automorphism group of a GD design contains a cyclic group of

order v, then the GD design is said to be cyclic. For a cyclic GD design, with-

out loss of generality, we may represent the set of v treatments by V={0, 1,

•••, v—1} and in this case the automorphism of order v is x—>x-\-\ (mod v).

In the sequel, we shall use this notation to represent the treatments in a cyclic

GD design. The following definitions will also be helpful. For a block B

= {bOy f>i> •"> &*-i}
 anc* any i e 7 , define B+i={bo+i, bx+i, •••, bk_x-\-i}y addi-

tion being reduced mod v. The collection of blocks {B-\-i\i&V} is called

the full orbit containing B. Let i0 be the smallest positive integer such that

B+io=B. If io<v> then the collection of blocks {B+i\O^i^io~ 1} is called

a short orbit containing B.

A large number of methods of constructing GD designs are available in

the literature (cf. Clatworthy [4], Raghavarao [13]). However, most of the

designs produced by them are not cyclic. Cyclic GD designs can be con-

veniently obtained by the method of differences of Bose [1]. Their flexibility,

ease of representation and conduct of experimentation make them worthy of
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attention in their own right, as David and Wolock [6] pointed out. In cyclic

designs, no plan of experimental layout is needed since the initial block or blocks

suffice (i.e., concise representation). This is readily implemented on a com-

puter. Cyclic designs also permit an automatic two-way elimination of hetero-

geneity and a fairly straightforward and general method of analysis and come

into serious consideration as a means of augmenting the experimenter's choice

of designs.

The basic development of the constructions of GD designs was done by

Bose, Shrikhande and Bhattacharya [2]. Freeman [8] and Dey and Nigam

[7] gave some methods of constructing cyclic RGD designs. Huang, Lin and

Clatworthy [9] searched cyclic, symmetric PBIB designs systematically. But,

they do not discuss cyclic SRGD designs. Recently, Jimbo and Vanstone

[11] considered cyclic GD designs with \x=0 and X2= 1 to construct other

block designs. From a point of view of various usefulness of cyclic designs,

this paper develops certain immediately applicable conditions for the existence

of cyclic SRGD designs. The case when the block size equals 3 has been

completely explored. A case X2=Xi+l> which has strong statistical signifi-

cance in terms of optimality, is also treated. Within the scope of practical

range of parameters in Clatworthy [4], who tabulates practical plans with solu-

tions not cyclic except three, we also produce cyclic solutions for SRGD de-

signs which may be more convenient to be stored in a computer and be non-

isomorphic to the previously published solutions. As a by-product, it is shown

that a cyclic BIB(̂ &
2, k, 1) design does not contain any cyclic BIB(^, k, 1)

subdesign for k^3. The case where short orbits are allowed has also been dis-

cussed.

For definitions of other designs treated in this paper refer to Raghavarao

[13].

2. Some existence theorems

Considering a cyclic GD design, we have the following three lemmas;

the proofs of the first two lemmas are simple and hence omitted.

Lemma 2.1. / / aly a2^V are first associates of each other (i.e., belong

to the same equivalence class), then for any iEzV, ax-\-i (mod v) and a2-\-i (mod v)

are also first associates of each other.

Lemma 2.2. / / S is an equivalence class of a cyclic GD design, then for

any /G V, S-\-i= {s+i (mod v) \s^S} is also an equivalence class.

L e m m a 2.3. If So is an equivalence class of a cyclic GD design and if So

contains the identity element 0, then So is a subgroup of the cyclic group V=Zvy

i.e., SQ— {0, m, 2m, •••, (n—l)m}y and all other equivalence classes are cosets of So.
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Proof. If a^SOy then 0 and a are first associates since Oe*So. Hence

—a and 0 are first associates by Lemma 2.1, which means that the inverse ele-

ment —a is contained in So. If aly a2^S0> then ax and a2 are first associates,

hence —ax and a2 are first associates and, again by Lemma 2.1, 0 and al-\-a2

are first associates. Thus, a^a^So. Hence SQ is a subgroup of Zp and,

by Lemma 2.2, all other equivalence classes are cosets of So.

In view of Lemma 2.3, the equivalence classes of treatments in a cyclic

GD design are of the form Si={i, m-\-i, •••, (n— l)m-\-i} (O^i^m—1) and for

(2.1) iax-a2 (mod v)\

the suffix i—j in the right-hand side of (2.1) being reduced mod m.

Consider now cyclic SRGD designs in particular. It is well-known (cf.

Raghavarao [13]) that in an SRGD design k is an integral multiple of m and

each block contains exactly kjm (=c> say) treatments from each equivalence

class. The following theorem gives a characterization of cyclic SRGD de-

signs without short orbits.

Theorem 2.1. For the existence of a cyclic SRGD design, without short

orbits, it is necessary and sufficient that

(a) b is an integral multiple of v and

(b) if bjv—a, then there exist integers f
l
j (O^i^m—1, l^j^c, l^u^a)

such that defining L=(0y 1, •••, « - l } , / J
y G i for all i,j, u, and

(i) in the set if'J-fL'lO^i^m-l, l ^ j , f^c(/=#*), l^u^a}, where

the differences are reduced mod n, each non-zero member of L is repeated Xx times,

(ii) in each of the sets

f/2j fOt X3j fit . . . ftn-lj xm-Zt fOj fm-2t -| flj fm^lt 1 I
\J u J u y J u J u > > J u J u > J u J u -L > J u J u

 A |

where the differences are reduced mod n> each member of L is repeated \2 times.

Proof. The necessity of (a) follows immediately counting the number

of full orbits in a cyclic SRGD design. To prove the necessity of (b), let for

such a design, bjv=ay the number of full orbits. Then by our preceding dis-

cussion (and also the fact that in an SRGD design each block contains exactly

kjm=c, say, treatments from each equivalence class), it follows that in a cyclic

SRGD design, without short orbits, the a initial blocks must be of the form
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where 0^/i'^n—1 (O^i^tn-l, l^j^c, l^u^a). By (2.1),

among the ordered differences (mod v) arising out of the distinct elements

in the a initial blocks, each non-zero element of So is repeated Xx times and

each element of V— So is repeated X2 times. Therefore, considering in par-

ticular the occurrence of the elements of Sx among these ordered differences,

it follows that among

all reduced mod v, each element of Sx is repeated X2 times. Hence the neces-

sity of our assertion regarding the first set in ((b), (ii)) is immediate. The

necessity of our assertions regarding the other sets in ((b), (ii)) and the set in

((b), ( i ) ) follow in a similar manner. This proves the necessity part of the

theorem. The sufficiency part follows by retracing the above steps.

Although apparently Theorem 2.1 looks somewhat involved, computa-

tional experience shows that (see Section 3) in proving existence or non-exist-

ence of cyclic SRGD designs, without short orbits, using computers, applica-

tion of Theorem 2.1 can tremendously reduce the computational time. More-

over, one can obtain simpler necessary conditions starting from Theorem 2.1

as stated below.

Theorem 2.2, For the existence of a cyclic SRGD design, without short

orbits, it is necessary that b is an integral multiple of v and at least one of the fol-

lowing holds:

( i ) n odd and X2 is an integral multiple of m,

(ii) n even, \ 2 even, X2 even and \2 i
s an

 integral multiple of m,

(iii) n even, X3 even, X2 odd and m=2.

Proof. Summing (mod n) the elements in the set in Theorem 2.1 ((b),

( i ) ) in two ways, one obtains the necessary condition

(2.2) rc(rc-1)^/2=0 (mod n).

Similarly, considering the sets in Theorem 2.1 ((b), (ii)) one can derive the

necessary conditions

(2.3) n(n-\)X2\2=-i<?a (mod n), l^i^m—l .

Considering separately the cases of odd and even n and making use of the iden-

tity c
2
aln=\2l

m
> ^ ^ possible to complete the proof from (2.2) and (2.3).

The above theorem is a very powerful tool in identifying the SRGD de-
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signs for which a cyclic construction may be possible and also in proving non-

existence results concerning cyclic designs (i.e., a cyclic SRGD design cannot

be constructed unless its parameters are as stipulated by Theorem 2.2). Theo-

rem 2.3 and Example 2.1 below illustrate the ideas. In particular, Theorem

2.3 completely exhausts the situation k=3.

Theorem 2.3. An SRGD design with k=3 can be cyclic (without short

orbits) if and only if its parameters are of the form

(a) v=3n, tn=3y n, b=3n% r=3nt, k=3, Xr=0, \2=3t In odd; t^l);
or

(b) v=3n, m—3, n, b=6n
2
t> r=6nt, k=3, Xi=0, X2=6£ (n even; t^tl).

Proof. For an SRGD design with k=3, clearly m=3 and Xx=0. Now,

if such a design is cyclic, considering separately the cases of odd and even n

and applying the conditions ( i ) and (ii) in Theorem 2.2, one obtains respectively

the forms (a) and (b) stated above. This proves the "only if" part of the theo-

rem. Note that the condition (iii) in Theorem 2.2 cannot arise in this situa-

tion. To prove the "if" part, observe that for odd n> a design with parameters

as in (a) may be constructed cyclically from the initial blocks {0, 3/+1, 6/+2}

(O^jtS-n— 1), each repeated t times. Similarly, for even n, a cyclic construc-

tion of a design with parameters given by (b) is possible using the initial blocks

{0, 3/+1, 6/+2}, {0, 3/+1, 6/+5} (O^j^n— 1), each repeated t times. The

elements in these initial blocks are, of course, reduced mod v. It may be re-

marked that the choice of initial blocks as above is motivated essentially by

the idea of row difference schemes considered by Jimbo and Kuriki [10].

EXAMPLE 2.1. We examine the situations under which an SRGD design

with parameters of the form

(2.4) v=mny m, n, b=n2, r=n, k=mf Xi=0, X2=l (m> «^2)

can be cyclic (without short orbits). If the design is cyclic, then b\v and hence

n\m (=a, say) is an integer. Evidently, for such a design the conditions ( i )

or (ii) of Theorem 2.2 cannot hold. The condition (iii) holds provided m=2.

Then the parameters of the design become v=4a, m=2, n=2a, b=4a
2
, r=2a>

k=2, Xi=0, X2
==

l> a n d a cyclic construction is always possible starting from

the initial blocks {0, 1}, {0, 3}, •••, {0, 2a— 1}. Thus an application of Theo-

rem 2.2 shows that an SRGD design with parameters as in (2.4) can be cyclic

if and only if m=2 and n even.

In the situations considered in Theorem 2.3 and Example 2.1, the neces-

sary conditions stated in Theorem 2.2 turn out to be sufficient as well. In

general, however, this is not true and some examples in this regard will be

presented in the next section. Anyway, by a complete enumeration of all
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possibilities, we get the satisfying observation that at least over the practicable

range, r, &^10, considered in Clatworthy [4], the conditions stated in Theorem

2.2 are not only necessary but also sufficient. Table 2.1 presents a complete

list of cyclic SRGD designs, together with their initial blocks, over the range,

r, ^^10 . Some of these cyclic solutions may be non-isomorphic to previously

published solutions. Also, note that the complement of a cyclic SRGD design

is again a cyclic SRGD design.

The following result shows an interesting application of Theorem 2.2

in a slightly different context relating to inner structure of Steiner systems.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

V

4

4

4

4

4

6

8

8

8

9

10

12

16

20

b

4

8

12

16

20

18

16

16

32

27

50

36

64

100

Table 2.1. Cyclic SRGD

Design parameters

r

2

4

6

8

10

6

4

8

8

9

10

6

8

10

k

2

2

2

2

2

2

2

4

2

3

2

2

2

2

m

2

2

2

2

2

2

2

4

2

3

2

2

2

2

n

2

2

2

2

2

3

4

2

4

3

5

6

8

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

h

1

2

3

4

5

2

1

4

2

3

2

1

1

1

designs for r, &5S1

Serial no. in
Clatworthy's
tables

SR 1

SR 2

SR 3

SR 4

SR 5

SR 7

SR 9

SR 39

SR 10

SR 25

SR 12

SR 13

SR 15

SR 17

0

Initial blocks

{0,1}

Take two copies of
No. 1
Take three copies of
No. 1

Take four copies of
No. 1

Take five copies of
No. 1

{0, 1}, {0, 3}, {0, 5}

{0, 1}, {0, 3}

{0, 1, 2, 3}, {0, 1, 6, 3}

Take two copies of
No. 7
{0, 1, 2}, {0, 4, 8},
{0, 5, 7}

{0, 1}, {0, 3}, {0, 5},
{0, 7}, {0, 9}

{0, 1}, {0, 3}, {0, 5}

{0, 1}, {0, 3}, {0, 5},
{0,7}

{0, 1}, {0, 3}, {0, 5},
{0, 7}, {0, 9}

Corollary 2.2.1. A cyclic BIB(*/&2, k, 1) design does not contain a cyclic

«z/&, k, 1) subdesignfor k^3.

Proof. If a cyclic BTB(v'k
2
, k, 1) design contains a cyclic BIB(^'&, k, 1)

subdesign, then by deleting all orbits which contain blocks of this subdesign

we obtain a cyclic SRGD design with parameters

(2.5) v=v'k2, m=k, n=v'k, b=v'2k2, r^v'k, k, ^ = 0 , X2=l .

If this cyclic SRGD design involves short orbits, then from the facts X^O,
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X2=l it can be deduced that such short orbits must be composed of blocks

of the form {/, n-\-iy 2n-\-i, •••, (m— l)n~\-i} (Orgz^/z—1) and, consequently,

m and n must be relatively prime (cf. proof of Lemma 4.1) which is clearly

not the case. Therefore, a cyclic SRGD design with parameters as in (2.5)

cannot involve short orbits. Hence the non-existence of such a cyclic design

for k^3 follows in view of our findings in Example 2.1, completing the proof

of the result.

3. The case ^=^+1

GD designs with \ 2 =\ 1 = b l have many interesting statistical optimality

properties (see e.g., Takeuchi [15], Cheng [3]). For SRGD designs it is well-

known that X2>\v Considering, therefore, the special case of cyclic SRGD

designs with X2=X1+1, we have the following result.

Theorem 3.1. For an SRGD design with A ^ ^ i + l to be cyclic (without

short orbits), it is necessary that the parameters should be one of the following forms:

( i ) v=mu
2
, m,n=u

2
, b=mau

2
, r=mpau, k=mpu, X1=mp

2
a—1, X2—mp

2
ay

where p, u are positive integers, u(^3) is odd and a=(u
2
—l)l[mp(u—p)] is a

positive integer;

(ii) v=4a> m=2, n=2a, b=4a
2
, r=2a, k=2, A^O, X2=l,

where a is a positive integer;

(iii) v=4p
?
a, m=2y n=2p

2
ay b=4p

2
a

2
, r=2pau, k=2pu, \}=u

2
—ly X2=u

2
,

where py u are positive integers, u(^3) is odd and a=(u
2
—l)l[2p(u—p)] is a

positive integer.

Proof. The following lemma which has been proved in Mukerjee, Kage-

yama and Bhagwandas [12] will be helpful:

Lemma 3.1. Let u\ s (^2) be fixed positive integers. Then the equation

u'u
2—spuu' -\-sf?=\ does not have positive integral-valued solutions (u, p).

For an SRGD design one has

(3.1) r(k-\) = X̂ w—

(3.2) rk = X2

Consider now a cyclic SRGD design, without short orbits, having

(3.3) Aa = V f l .

For such a design, b is an integral multiple of v and the parameters must satisfy

one of the necessary conditions ( i ) , (ii), (iii) in Theorem 2.2. First suppose
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that the parameters satisfy the condition ( i ) in Theorem 2.2. Then n is odd

and

(3.4) \2=mw,

w being a positive integer. By (3.1)—(3.4),

(3.5) r = X2+n— 1 = mzo+n—l ,

and by (3.2), (3.4), (3.5),

(3.6) k/m = \2n\r = mmti\(mw+n~X),

which is a positive integer. Hence

(3.7) b\v = r/k = (tnw+n-l)
2
l(m

2
nrt),

which is again a positive integer. In particular, therefore, (mzo-\-n—l)
2
lm

2 is

a positive integer, and consequently,

(3.8) » = m £ + l ,

for some positive integer £. Applying (3.8) in (3.6), (3.7), it follows that both

(m£+l)wl(w+%) and (w+%)
2
l[(mt;+l)z0] are positive integers. The integrality

of (w+%)
2
l[(mt;+l)w] implies that of ??\w. Let (£, ri)=L Then one can write

%=ql and w=pl such that (p, ?)=1. Since %
2
l
<
vo=q

l
llp is an integer, / is a multiple

of p9 i.e., l=pa. Thus, £ and w are of the form

(3.9) Z = pq<*9 w=p
2
a,

for some positive integers p, qy a such that (p> ? )=1. Now,

= (mpqa+l)pl(p+q),

which are positive integers. Since p, q are relatively prime and so are a, mpqa

+ 1, it follows that both (fnpqa-\-l)l(p-\-q) and (p-{-q)
2
l(mpqa+l) are positive

integers. This means that there exist positive integers w, u' such that

(3.10) mpqa+l = u'u
2

9 p+q = u'u .

Writing ma=s and eliminating q, it follows from (3.10) that

u'u
2
—spuu'+sp

2 = 1 .

Since s=ma (^2), it is clear by Lemma 3.1 that u'=l. Hence by (3.10),

(3.11) mpqa+l = u
2
, p+q = u .
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By (3.3)—(3.9) and (3.11), it may now be seen that the parameters of the design

are of the form ( i ) in Theorem 3.1 where by (3.11), a=(u
2
—l)l[mp(u—p)].

In a similar manner, the parametric forms (ii) and (iii) in Theorem 3.1 follow

from the situation (iii) in Theorem 2.2. Observe that the situation (ii) in Theo-

rem 2.2 cannot arise if X2—^i+l-

From Theorem 3.1, the following is evident:

Corollary 3.1.1. For a cyclic SRGD design {without short orbits) with

X2=X!+1:

(a) If n is odd, then n must be a perfect square and n=l (mod m);

(b) If n is even, then m=2 and X2
 must

 be an odd perfect square.

From Example 2.1, it is clear that the designs of the form (ii) in Theorem

3.1 can always be constructed cyclically. The same, however, cannot be estab-

lished for the designs of the forms ( i ) or (iii). Considering the range ry / J ^ 2 0 ,

we find that over this range there are only two designs of the form ( i ) in Theo-

rem 3.1, namely,

A : *>=18, m=2y n=9y b=36y r=12, k=6y \ 3 = 3 , \ 2 = 4 ,

D2: *;=36, m=4y n=9y b=36y r=12, h=\2y \x=3y X2=4,

and only one design of the form (iii) in Theorem 3.1, namely,

D3: v=S, m=2y n=4y 6=16, r=12y k=6y Aa=8, X2=9 .

The design D3 is the complement of the design

D'3: v=8, m=2, n=4, 6=16, r=4, k=2y X2=0, X2=l ,

and from Example 2.1, it follows that D'3y and hence D3y can be constructed

cyclically. A computer search, however, reveals that a cyclic construction

of the design Dx or D2 is impossible. This investigation completely explores

the cyclic SRGD designs with X2—^i+l over the range r, &fg20 and, inciden-

tally, demonstrates that the necessary conditions in Theorem 2.2 are not suffi-

cient in general although they are sufficient over the Clatworthy [4] range.

It may be further remarked that the computer search for proving the non-

existence of cyclic constructions for Dx and D2 was done over a microcomputer

PC 9801/VM2 (NEC). For Dly application of first principles (based on a

general program searching cyclic GD designs) established the non-existence

in about 15.25 hours, while application of Theorem 2.1 did the same in only

43 seconds. As for D2y from first principles the search could not be completed

even in 70 hours, while applying Theorem 2.1 non-existence followed in about

19 hours. This shows that despite its cumbersome appearance, Theorem 2.1
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is of considerable help in so far as computer enumerations are concerned.

4. Cyclic SRGD designs with short orbits

In general, various possibilities arise if short orbits are allowed in cyclic

SRGD designs. In order to give some idea about the possible extensions of

the results in Section 2 without going too much of complexities, we treat here

only the case when the block size k is prime. Clearly, then m=k and X^O.

Lemma 4.1. / / a cyclic SRGD design with prime k has short orbits, then

m (=k) and n are relatively prime.

Proof. It is well-known (cf. Rao [14]) that if a cyclic SRGD design with

prime k has short orbits then such short orbits are necessarily generated by

the initial block {0, n, In, •••, (m— \)n}. Since X^O, it follows that the treat-

ments 0, n, 2/z, •••, (m—V)n must belong to different equivalence classes. Now,

if m and n are not relatively prime, let h (>1) be their highest common factor

and define z=mjh. Clearly then l^z^m— 1 and zn = 0 (mod m) showing

that 0 and zn belong to the same equivalence class and thus contradicting the

last sentence in the preceding paragraph.

In a cyclic SRGD design with prime k and having short orbits, let JJ, (2^

be the number of short orbits. Then the number of full orbits is given by

(4.1) a = [\2n(k-l)-f,(k-l)]H(k-l)k} = (Xfl-n)lk .

Theorem 4.1. When k is prime, for the existence of a cyclic SRGD design

having //, (^1) short orbits, it is necessary and sufficient that

(a) /j,=\2n (mod k),

(b) if (\2n—fi,)lk=a, then there exist integers fl (O^i^m— 1, l^u^a)

such that defining L= {0, 1, •••, n— 1}, fi^L for all z, u and in each of the sets

t£i xO jri + 1 x\ xm — l -fm — l — i SO xm — i 1
\J U J Wi J U JU)"*yJu Ju iJU JU *•)'")

where the differences are reduced mod n, every element of L— {/3i} occurs \2 times

and the element /9/(mod n) occurs \2— p times (l^i^m— 1), with /3 being the

minimum positive integer satisfying &/3+l=0 (mod n).

Proof. The proof follows along with the line of proof of Theorem 2.1.

The necessity of (a) is evident from (4.1). To prove the necessity of (b) note

that here k/m=l and hence, as in Theorem 2.1, the a initial blocks in the full

orbits must be of the form

(4.2) {mfl mfl+1, .-, mf^+(m-\)},
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where O^fL^n-1 (O^i^tn-1, l^u^a). Let

(4.3) * £ + l = 3»,

where clearly z^k—1 (=m—l). Then zn is contained in the equivalence

class Sv In short orbits, therefore, 0 and zn occur together in //, blocks and,

consequently, in full orbits they occur together in X2— £& blocks. From (4.2)

and (4.3), proceeding exactly along the line of proof of Theorem 2.1, it follows

that among

/fl /0 £2 x\ xm-\ fm-2 xO xm-l 1 I 1 < ^ / < i V l

where the differences are reduced mod «, each element of L other than /3 is

repeated X2 times while the element /3 is repeated \2—fj, times. The further

details regarding the necessity of (b) follow in a similar manner. The suffi-

ciency part of the theorem may be proved by retracing the above steps.

Our next result follows along with the line of Theorem 2.2.

Theorem 4.2. When k is prime, for the existence of a cyclic SRGD design

having pu (^1) short orbitsy it is necessary that fjb=\2n (mod k) and either ( i ) n

is odd or (ii)n is even and \2 ™ even.

Proof. Summing the elements of the sets in Theorem 4.1 (b) in two ways,

we have, analogously to (2.3), the necessary condition

n(n—l)\2—ij3fj, = —ia (mod n\ l^i^

whence separate consideration of the cases of odd and even n yield the required

result.

The following example illustrates a cyclic SRGD design with short orbits.

EXAMPLE 4.1. If k=3 and n=l (mod 6), then cyclic SRGD designs with

short orbits and having parameters

v=3n> m=3, n, b=\2n
2
, r=X2n, k=3, Xj=0, \2=l, 2 (mod 3)

may be constructed as follows. By Colbourn and Colbourn [5], there exists

a cyclic BIB(w, 3, 1) design for n=l (mod 6). Hence there exists a cyclic BIB

(n, 3, X2) design for any X2- F° r e a c h initial block {b0, blf b2} of this design

take the following two initial blocks:

{(n-l)&0, (n-1)*!-!!, (n-l)&a-2fi}f {(n-l)io, (n-\)bx-2n, (n~l)b2-n} ,

with the entries reduced mod 3n. Then these initial blocks, together with

X2 copies of an initial block {0, n> 2n}, which has a short orbit, generate a cyclic
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SRGD design with the desired parameters.
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