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ON CYCLOTOMIC Z2-EXTENSIONS OF IMAGINARY
QUADRATIC FIELDS
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Let K = Q(i/ — m) for a positive square-free integer m. For each
n ^ 0, let Bn be the maximal real subfield of the cyclotomic field of the
2%+2-th roots of unity. Let BM = \Jn=oBn and let K^ = B^K. Then the
extension KJK is called a cyclotomic Z2-extension. Let hn be the class
number of Kn = Bn K and let 2°n be the exact power of 2 dividing hn.
Iwasawa proved, in [2] and [3], that there exist an integer n0 ^ 0 and
an integer c such that

(1) en = Xn + c for all n^ n0 ,

where λ is the invariant of this Z2-extension.
The group-theoretic meaning of this invariant λ is as follows. Let An

be the 2-Sylow subgroup of the ideal class group of Kn. For each m ^
n ^ 0, the norm map from Km to Kn defines a morphism from Am to An.
Let X be the limit of this projective system, then as an abelian group

(2) X=Z\®T,

where T is a finite abelian 2-group. This integer λ coincides with that

of (1).
We always define the natural action of Γ — Gal {KJK) on X and

call X the Iwasawa module for KJK as a .Γ-module. The action of Γ
will be used in Section 4.

In this paper, we shall determine the right hand side of (2), especially
the invariant λ, and find a value of n0 satisfying (1).

Finally, the author would like to express his hearty thanks to
Professor K. Uchida for his kind encouragement and guidance.

(Added on October 13, 1978)
After this paper was accepted for publication, the author received

the preprint by B. Ferrero entitled "The cyclotomic Z2-extension of
imaginary quadratic fields" in which he proves the same formula for
the invariant λ by a purely algebraic method. Moreover, his Theorem
5 c) and f) implies the torsion subgroup T in our Theorem 1 is in fact
of order 2.
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1. It is clear that Q(V — m)-Bn = Q(V — 2m)-Bn for all n ^ 1, and
in the case of m = 1 or 3, λ = c = 0 is well-known, so it may be sufficient
to treat only the case that m is an odd integer bigger than 3. In this
case, every Kn{n ^ 0) contains no roots of unity other than ± 1 . For
simplicity, we shall use the following notations.

e{2)N: the exponent of the exact power of 2 dividing a natural
number N.

d(2)A: the 2-rank of a compact abelian group A.

LEMMA 1. The class number of Bn in the narrow sense, hence also
in the wide sense, is odd for all n ^ 0.

PROOF. It is well-known in the wide sense, and the proof is almost
the same (see Iwasawa [1] and [2]).

Let a(Kn) be the number of the ambiguous ideal classes in KJBn,
and let sn be the number of the ramified prime ideals in KJBn. Then
a well-known formula states that

( 3 ) a(Kn) = h(Bn) V"^1 f o r a l l n^O,

where h(Bn) is the class number of Bn, En is the unit group of Bn and
^V* is the norm map from Kn to Bn. The following lemma is essential
to our theorems, which was suggested to the author by Professor K.
Uchida.

LEMMA 2. [En: En Π ^rKn] = 22n for all n ^ 0 .

PROOF. Let B* be the multiplicative group of all non-zero elements
of Bn, and let B*+ be its subgroup of totally positive elements. Let P
be the principal ideal group of Bn, and let P+ be its subgroup of ideals
generated by J?ί,+, then it holds that

P/P+ ς* Bϊ/En-Bt+ .

But by Lemma 1, the left hand side vanishes, therefore

In any finite algebraic number field, there exist elements with an arbitrary
signature, so the above equality states that there exist in En elements
with an arbitrary signature. On the other hand, since Kn is an imaginary
abelian field, any element of ^VKn is totally positive. Therefore

[En: En n

Conversely, it is clear that
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then by Dirichlet's unit theorem,

[En: En Π ^ΓKn] ^ [En: El] = 22% .

This completes the proof.

LEMMA 3. e{2)a(Kn) = 8 , - 1 for all n ^ 0 .

PROOF. Apply e{2) to both sides of (3), then the lemma follows at
once from Lemmas 1 and 2.

LEMMA 4. e{2)a(Kn) = d{2)An for all n ^ 0 .

PROOF. Let / be the generator of Gal (KJBn). Then for any element
c of An, c1+J is the natural image of an ideal class of Bn. But by Lemma
1, c1+J is of odd order, so c1+J must be 1. Therefore c2 = 1 if and only
if c - cJ.

Combining this with Lemma 3, we have the following proposition.

PROPOSITION 1. d{2)An = sn — 1 for all n ^ 0 .

As iJLoo/ίΓ is a cyclotomic Z2-extension, it is well-known that sn is
constant for all sufficiently large n (the exact value of this constant will
be given later). Thus we have another proof of the vanishing of the
invariant μ of this Z2-extension (see Iwasawa [3]).

2. As Kn+JBn is an abelian extension of type (2, 2), there exists an
intermediate field Ln of degree 2 over Bn different from Kn and Bn+ί.
For an abelian field k, let h(k), R(k), W(k), and ίc be its class number,
regulator, the number of roots of unity contained in k and the group of
Dirichlet characters, respectively. For a Dirichlet character θ, let fθ

be its conductor and let M(θ) = L{l,θ)*Λ/fθ, where L(s,θ) is of course
usual Dirichlet's L-function. Then a class number formula states that

where θ ranges over all non-principal elements of ίcf and i and 2j are
the numbers of real and complex conjugate fields of k, respectively.
Applying this formula to each Kn, we get

foral1 n=°>h(Kn)R(Kn)

where θ ranges over all the elements of Kn+1 not contained in Kn.
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The right hand side = (2n)-2n{Ue1M(d1)}{Ue2M(d2)}9

_ h(Ln)h(Bn+ί)R(Ln)R(Bn+1)
h(BJR(BJ

where ^(resp. θ2) ranges over all the elements of Ln (resp. Bn+ι) not con-
tained in Bn. Hence we get

HKn+1) _ h(Ln)h(Bn+1) . R(Ln)R(Bn+1)R(Kn)
h(Kn) h(BJ R(BJR(Kn+1)

By our assumption, W(Kn) = W(Ln) = 2 and some prime ideal of Bn not
dividing 2 must be ramified in Kn and Ln for all n ^ 0. Thus the unit
index is 1 in each case, that is,

R(Kn)/R(Bn) = R(Ln)/R(Bn) = 22*"1 for all n ^ 0 .

Therefore

( 4 ) h(Kn+1)/h(Kn) = h(LnMBn+1)/2h(BJ for all n ^ 0 .

Since Λ(2?n) is prime to 2 for all -̂  ̂  0 by Lemma 1, we get the following
lemma by applying e(2) to both sides of (4).

LEMMA 5. en+1 — en = — 1 + e(2)h(Ln) for all n ^ 0 .

Let a(Ln) be the number of the ambiguous ideal classes in LJBn,
and let tn be the number of the ramified prime ideals in LJBn. Then
the same argument as in the preceding section shows that e(2)α(LJ =
tn — 1 for all n ^ 0. Hence we get the following proposition.

PROPOSITION 2. en+1 — en :> tn — 2 for all n ^ 0 ,

especially λ ^ ίn - 2 /or αίί n^ n0 .

3. If 2 is ramified in i£/Q, every prime ideal of Bn is ramified in
Kn and Lw at the same time. If 2 is not ramified in K/Q, a unique prime
ideal of Bn dividing 2 is not ramified in Kn, but is ramified in Ln. Every
other prime ideal of Bn is ramified in Kn and Ln at the same time. Hence
we get the following proposition.

PROPOSITION 3.

+ 1 if m = 3 (mod 4) .

if m = 1 (mod 4) .

Combining this with Propositions 1 and 2, we get that for all n^

sn - 1 = d{2)An ^X^sn-1 i f m = S ( m o d 4) ,

if m = l (mod 4) .
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As we stated before, sn is constant for all sufficiently large n. If we
denote this constant by s^, then d{2)An = s^ — 1 for all sufficiently large
n. Therefore d{2)X = sTO — 1 by the properties of protective limits. When
m = l(mod 4), the cases λ = s^ — 1 and s^ — 2 are possible. But the
former means X is torsion-free as an abelian group, a contradiction to
the following lemma. Hence λ = s^ — 2 must hold.

LEMMA 6. If m = l(mod 4), c* = (c(20), , c(2J, •) is of order 2
in X, where 2n is a unique prime ideal of Kn dividing 2 and c(2n) is
the ideal class of Kn containing 2n for each n ^ 0.

PROOF. Clearly c* is contained in X and 2\ is principal even in Bn

for all n ^ 0. It is easily shown that 20 is not principal in KQ. Hence
2n cannot be principal in Kn for any n ^ 0.

Finally we must find the exact value of sTO. It is clear that 2 has
a unique prime divisor in Bn for all n ^ 0. For odd primes, the theory
of the cyclotomic fields shows the following.

LEMMA 7. An odd prime p is completely decomposed in Bn{p)/Q and
is not decomposed in BJBn{p), where n{p) = — 3 + e{2\p2 — 1).

If a prime p is ramified in K/Q, every prime ideal of Bn dividing
p must be ramified in KJBn, and conversely. Therefore s^ is the sum of
the decomposition numbers in BJQ of all the ramified primes in K/Q,
that is,

Σ 2MP) if m = 3 (mod 4) .

S°° ~ 11 + Σ 2n{p) if m = l (mod 4) .

Consequently we get the following theorem.
THEOREM 1. Let K = Q(λ/—m) or Q(y/—2m), where m is a square-

free odd integer bigger than 3, and let X be the Iwasawa module for the
cyclotomic Z2-extension of K. Then as an abelian group

Z\ if m Ξ 3 (mod 4) ,
= [Z\ 0 Γ if m = 1 (mod 4) ,

where T is a non-trivial finite cyclic 2-group and in both cases, λ =
- 1 + Σ?>im2Λ(p), where n(p) = - 3 + e(2)(p2 - 1).

4. Next we shall find a value of n0 satisfying (1). As usual, let
Γ = Gal (KJK) and let 7 be a fixed topological generator of Γ, and put
7Λ = 72W, ωw = 1 — 7n for each n ^ 0.

When m = 3(mod 4), X is torsion-free as an abelian group. Iwasawa's
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argument in [2] Sections 3-2, 7-4 and 7-5 really shows that we can take
Wo to be 8 + 1 if 2XzDύ)8X. In general, d{2)X ^ Φ2){X/ωnX] ^ d{2)An for
all n ^ 0. Thus if d{2)X = Φ2)Aβ, [X: 2X] = d{2){X/ωgX} = [X: 2X]/[ω8X:
ft)8I(Ί 2X], that is 2 l D ά ) 8 J . From the preceding section, d{2)A8 = d{2)X
if s ^ m.B.xPιm n{p). Therefore we can take n0 to be 1 + ma,xplmn(p).

When m = I(mod4), X has torsion as an abelian group, but is
strictly-finite as a Γ-module.

LEMMA 8. The projection from Π*=o An to Ao induces an injection
from T to Ao.

PROOF. Let c be an element of T of order 2*. Then since T is
cyclic, 2i~1c coincides with c* of Lemma 6. Taking the 0-th factors, we
get 2i~1c0 = c(2o). We are done since c(20) is of order 2 in Ao.

By this lemma, we have (Γ + ωnX)/ωnX = T for all w ^ 0. Let
X* = X/Γ, then it holds that 2e* = [X: ωnX] - [X*: ωwX*][Γ] for all
n ^ 0. Applying Iwasawa's method to X*, we can get the same result
as that in the preceding case.

THEOREM 2. Let the notations be as in the introduction and Theorem
1. Then it holds that

en = Xn + c for all n ^ 1 + max n(p).
p\m
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