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1 Introduction

1.1 Terminology

First we fix the terminology. In the sequel, d denotes a fixed integer and
Rd is equipped with a norm which is denoted by | · | .

We say that two Rd-valued processes: (Xt , t ≥ 0) and (Yt , t ≥ 0)
are associated, if they have the same one-dimensional marginals, i.e. if:

∀t ≥ 0, Xt
(law)
= Yt .

A process which is associated with a martingale is called a 1-martingale.
An Rd-valued process (Xt , t ≥ 0) will be called a peacock if:
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i) it is integrable, that is:

∀t ≥ 0, E[|Xt|] <∞

ii) it increases in the convex order, meaning that, for every convex function
ψ : Rd −→ R, the map:

t ≥ 0 −→ E[ψ(Xt)] ∈ (−∞,+∞]

is increasing.

This terminology was introduced in [HPRY]. We refer the reader to this
monograph for an explanation of the origin of the term: “peacock”, as well
as for a comprehensive study of this notion in the case d = 1 .

Actually, it may be noted that, in the definition of a peacock, only the
family (µt , t ≥ 0) of its one-dimensional marginals is involved. This makes
it natural, in the following, to also call a peacock, a family (µt , t ≥ 0) of
probability measures on Rd such that:

i) ∀t ≥ 0,

∫
|x| µt(dx) <∞ ,

ii) for every convex function ψ : Rd −→ R, the map:

t ≥ 0 −→
∫
ψ(x) µt(dx) ∈ (−∞,+∞]

is increasing.

Likewise, a family (µt , t ≥ 0) of probability measures on Rd and an Rd-
valued process (Yt , t ≥ 0) will be said to be associated if, for every t ≥ 0,
the law of Yt is µt , i.e. if (µt , t ≥ 0) is the family of the one-dimensional
marginals of (Yt , t ≥ 0) .
Obviously, the above notions also are meaningful if one considers processes
and families of measures indexed by a subset of R+ (for example N) instead
of R+.

It is an easy consequence of Jensen’s inequality that an Rd-valued process
which is a 1-martingale, is a peacock. So, a natural question is whether the
converse holds.
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1.2 Case d = 1

A remarkable result due to H. Kellerer ([K], 1972) states that, actually,
any R-valued process which is a peacock, is a 1-martingale. More precisely,
Kellerer’s result states that any R-valued peacock admits an associated mar-
tingale which is Markovian.

Two more recent results now complete Kellerer’s theorem.

i) G. Lowther ([L], 2008) states that if (µt , t ≥ 0) is an R-valued
peacock such that the map: t −→ µt is weakly continuous (i.e. for any
R-valued, bounded and continuous function f on R, the map: t −→∫
f(x) µt(dx) is continuous), then (µt , t ≥ 0) is associated with a

strongly Markovian martingale which moreover is “almost-continuous”
(see [L] for the definition).

ii) In a previous paper ([HR], 2011), we presented a new proof of the above
mentioned theorem of H. Kellerer. Our method, which is inspired from
the “Fokker-Planck Equation Method” ([HPRY, Section 6.2, p.229]),
then appears as a new application of M. Pierre’s uniqueness theorem
for a Fokker-Planck equation ([HPRY, Theorem 6.1, p.223]). Thus, we
show that a martingale which is associated to an R-valued peacock, may
be obtained as a limit of solutions of stochastic differential equations.
However, we do not obtain that such a martingale is Markovian.

1.3 Case d ≥ 1

Concerning the case Rd with d ≥ 1, and even much more general spaces, we
would like to mention the following three important papers.

i) In [CFM] (1964), P. Cartier, J.M.G. Fell and P.-A. Meyer study the
case of two probability measures (µ1, µ2) on a metrizable convex com-
pact K of a locally convex space. They prove, using the Hahn-
Banach theorem, that, if (µ1, µ2) is a K-valued peacock (indexed
by {1, 2}), then there exists a Markovian kernel P on K such that:
θ(dx1, dx2) := µ1(dx1)P (x1, dx2) is the law of a K-valued martingale
(Y1, Y2) associated to (µ1, µ2) .

ii) In [S] (1965), V. Strassen extends the Cartier-Fell-Meyer result to Rd-
valued peacocks without making the assumption of compact support.
Then he proves that, if (µn , n ≥ 0) is an Rd-valued peacock (in-
dexed by N), there exists an associated martingale which is obtained as
a Markov chain.
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iii) In [D] (1968), J.L. Doob studies, in a very general extended framework,
peacocks indexed by R+ and taking their values in a fixed compact set.
In particular, he proves that they admit associated martingales. Note
that in [D], the Markovian character of the associated martingales is not
considered.

1.4 Organization

The remainder of this paper is organised as follows:

• In Section 2, we present some basic facts concerning the Rd-valued
peacocks and we describe some examples, thus extending results of
[HPRY].

• In Section 3, starting from Strassen’s theorem, we prove that a family
(µt , t ≥ 0) of probability measures on Rd, is associated to a right-

continuous martingale, if and only if, (µt , t ≥ 0) is a peacock such
that the map: t −→ µt is weakly right-continuous on R+.

• In Section 4, by approximation from the previous result, we extend this
result to the case of general Rd-valued peacocks.

2 Generalities, Examples

2.1 Notation

In the sequel, d denotes a fixed integer, Rd is equipped with a norm which
is denoted by | · | , and we adopt the terminology of Subsection 1.1.

We also denote by M the set of probability measures on Rd, equipped
with the topology of weak convergence (with respect to the space Cb(Rd)
of R-valued, bounded, continuous functions on Rd). We denote by Mf the
subset ofM consisting of measures µ ∈M such that

∫
|x| µ(dx) <∞. Mf

is also equipped with the topology of weak convergence.
Cc(Rd) denotes the space of R-valued continuous functions on Rd with

compact support, and C+
c (Rd) is the subspace consisting of all the nonneg-

ative functions in Cc(Rd) .
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2.2 Basic facts

Proposition 2.1 Let (Xt , t ≥ 0) be an Rd-valued integrable process.
Then (Xt , t ≥ 0) is a peacock if (and only if) the map: t −→ E[ψ(Xt)]
is increasing, for every function ψ : Rd −→ R which is convex, of C∞ class
and such that the derivative ψ′ is bounded on Rd.

Proof Let ψ : Rd −→ R be a convex function. For every a ∈ Rd, there
exists an affine function ha such that:

∀x ∈ Rd, ψ(x) ≥ ha(x) and ψ(a) = ha(a) .

Let {an ; n ≥ 1} be a countable dense subset of Rd. We set:

∀n ≥ 1, ψn(x) = sup
1≤j≤n

haj
(x) .

Then:
∀x ∈ Rd, lim

n↑∞
↑ ψn(x) = ψ(x) .

The functions ψn are convex and Lipschitz continuous.
Let φ be a nonnegative function, of C∞ class, with compact support

and such that
∫
φ(x) dx = 1 . We set, for n, p ≥ 1,

∀x ∈ Rd, ψn,p(x) =

∫
ψn

(
x− 1

p
y

)
φ(y) dy .

Clearly, ψn,p is convex, of C∞ class and Lipschitz continuous. Consequently,
its derivative is bounded on Rd. Moreover, limp→∞ ψn,p = ψn uniformly on
Rd.

The desired result now follows directly.
2

The next result will be useful in the sequel.

Proposition 2.2 Let (Xt , t ≥ 0) be an Rd-valued peacock. Then:

1. the map: t −→ E[Xt] is constant;

2. the map: t −→ E[|Xt|] is increasing, and therefore, for every T ≥ 0,

sup
0≤t≤T

E[|Xt|] = E[|XT |] <∞ ;
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3. for every T ≥ 0, the random variables (Xt ; 0 ≤ t ≤ T ) are uniformly
integrable.

Proof Properties 1 and 2 are obvious.
If c ≥ 0,

|x| 1{|x|≥c} ≤ (2 |x| − c)+ .

As the function x −→ (2 |x| − c)+ is convex,

sup
t∈[0,T ]

E
[
|Xt| 1{|Xt|≥c}

]
≤ E[(2 |XT | − c)+] .

Now, by dominated convergence,

lim
c→+∞

E[(2 |XT | − c)+] = 0 .

Hence, property 3 holds.
2

2.3 Examples

The following examples are given in [HPRY] for d = 1. The proofs given
below are essentially the same as in [HPRY].

Proposition 2.3 Let X be a centered Rd-valued random variable. Then
(tX , t ≥ 0) is a peacock.

Proof Let ψ : Rd −→ R be a convex function, and 0 ≤ s < t. Then,

ψ(sX) ≤
(

1− s

t

)
ψ(0) +

s

t
ψ(tX) .

Since X is centered, by Jensen’s inequality:

ψ(0) = ψ (E[tX]) ≤ E[ψ(tX)] .

Hence,

E[ψ(sX)] ≤
(

1− s

t

)
E[ψ(tX)] +

s

t
E[ψ(tX)] = E[ψ(tX)] .

2
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Proposition 2.4 Let (Xt , t ≥ 0) be a family of centered, Rd-valued,
Gaussian variables. We denote by C(t) = (ci,j(t))1≤i,j≤d the covariance
matrix of Xt . Then, (Xt , t ≥ 0) is a peacock if and only if the map:
t −→ C(t) is increasing in the sense of quadratic forms, i.e:

∀a = (a1, · · · , ad) ∈ Rd, t −→
∑

1≤i,j≤d

ci,j(t) aiaj is increasing.

Proof

1) For every a ∈ Rd , the function:

x ∈ Rd −→
∑

1≤i,j≤d

ai aj xi xj =

(
d∑
i=1

ai xi

)2

is convex. This entails that, if (Xt , t ≥ 0) is a peacock, then the map:
t −→ C(t) is increasing in the sense of quadratic forms.

2) Conversely, suppose that the map: t −→ C(t) is increasing in the sense
of quadratic forms. By the proof of [HPRY, Theorem 2.16, p.132], there
exists a centered Rd-valued Gaussian process: (Γt = (Γ1,t, · · · ,Γd,t) , t ≥
0), such that:

∀s, t ≥ 0, ∀1 ≤ i, j ≤ d, E[Γi,s Γj,t] = ci,j(s ∧ t) .

Therefrom we deduce that (Γt , t ≥ 0) is a martingale which is associated
to (Xt , t ≥ 0) , and consequently, (Xt , t ≥ 0) is a peacock.

2

Corollary 2.1 Let A be a d × d matrix. We consider the Rd-valued
Ornstein-Uhlenbeck process (Ut , t ≥ 0) , defined as (the unique) solution,
started from 0, of the SDE:

dUt = dBt + AUt dt

where (Bt , t ≥ 0) denotes a d-dimensional Brownian motion. Then,
(Ut , t ≥ 0) is a peacock.
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Proof One has:

Ut =

∫ t

0

exp((t− s)A) dBs .

Hence, for every t ≥ 0, Ut is a centered, Rd-valued Gaussian variable whose
covariance matrix is:

C(t) =

∫ t

0

exp(sA) exp(sA∗) ds

where A∗ denotes the adjoint matrix of A . Therefrom it is clear that
the map: t −→ C(t) is increasing in the sense of quadratic forms, and
Proposition 2.4 applies.

2

Proposition 2.5 Let (Mt , t ≥ 0) be an Rd-valued, right-continuous
martingale such that:

∀T > 0, E
[

sup
0≤t≤T

|Mt|
]
<∞ .

Then,

1.

(
Xt :=

1

t

∫ t

0

Ms ds ; t ≥ 0

)
is a peacock,

2.

(
X̃t :=

∫ t

0

(Ms −M0) ds ; t ≥ 0

)
is a peacock.

Proof Using Proposition 2.1, we may use the proof of [HPRY, Theorem
1.4, p.26]. For the convenience of the reader, we reproduce this proof below.

1) Let ψ : Rd −→ R be a convex function, of C∞ class and such that the
derivative ψ′ is bounded on Rd. Setting:

M̂t =

∫ t

0

s dMs ,

one has, by integration by parts:

Xt = Mt − t−1M̂t and dXt = t−2M̂t dt .

Denoting by Fs the σ-algebra generated by {Mu ; 0 ≤ u ≤ s} , one
gets, for 0 ≤ s ≤ t,

E[Xt | Fs] = Xs + (s−1 − t−1) M̂s .

8



Consequently, by Jensen’s inequality,

E[ψ(Xt)] ≥ E[ψ(Xs + (s−1 − t−1) M̂s)] .

Using again the fact that ψ is convex, one obtains:

E[ψ(Xt)] ≥ E[ψ(Xs)] + (s−1 − t−1) E[ψ′(Xs) · M̂s] .

Now,

ψ′(Xs) · M̂s =

∫ s

0

u−2ψ′′(Xu)(M̂u, M̂u) du+

∫ s

0

uψ′(Xu) · dMu

and therefore

E[ψ(Xt)]− E[ψ(Xs)] ≥ (s−1 − t−1) E[ψ′(Xs) · M̂s] ≥ 0 ,

which, by Proposition 2.1, yields the desired result.

2) Let ψ be as above. One may suppose that M0 = 0 . One has, for
0 ≤ s ≤ t,

E[X̃t | Fs] = X̃s + (t− s)Ms .

Consequently, by Jensen’s inequality,

E[ψ(X̃t)] ≥ E[ψ(X̃s + (t− s)Ms)] .

Using again the fact that ψ is convex, one obtains:

E[ψ(X̃t)] ≥ E[ψ(X̃s)] + (t− s) E[ψ′(X̃s) ·Ms] .

Now,

ψ′(X̃s) ·Ms =

∫ s

0

ψ′′(X̃u)(Mu,Mu) du+

∫ s

0

ψ′(X̃u) · dMu

and therefore

E[ψ(X̃t)]− E[ψ(X̃s)] ≥ (t− s) E[ψ′(X̃s) ·Ms] ≥ 0 ,

which, by Proposition 2.1, yields the desired result.

2
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3 Right-continuous peacoks

In this section, we shall show that any right continuous peacock admits an
associated right-continuous martingale. For this, we start from Strassen’s
theorem, which we now recall.

Theorem 3.1 (Strassen [S], Theorem 8) Let (µn , n ∈ N) be a se-
quence in M. Then (µn , n ∈ N) is a peacock if and only if there exists a
martingale (Mn , n ∈ N) which is associated to (µn , n ∈ N) .

We shall extend this theorem to right-continuous peacocks indexed by R+. In
the case d = 1, the following theorem is proven in [HR], by a quite different
method. In particular, in [HR], we do not use Strassen’s theorem, nor the
Hahn-Banach theorem, but an explicit approximation by solutions of SDE’s.

Theorem 3.2 Let (µt , t ≥ 0) be a family in M. Then the following
properties are equivalent:

i) There exists a right-continuous martingale associated to (µt , t ≥ 0) .

ii) (µt , t ≥ 0) is a peacock and the map:

t ≥ 0 −→ µt ∈M

is right-continuous.

Proof

1) We first assume that property i) is satisfied. Then, the fact that (µt , t ≥
0) is a peacock follows classically from Jensen’s inequality. Let (Mt , t ≥
0) be a right-continuous martingale associated to (µt , t ≥ 0). Then, if
f ∈ Cb(Rd) , dominated convergence yields that, for any t ≥ 0,

lim
s→t,s>t

∫
f(x) µs(dx) = lim

s→t,s>t
E[f(Ms)] = E[f(Mt)] =

∫
f(x) µt(dx) .

Therefore, the map:
t ≥ 0 −→ µt ∈M

is right-continuous, and property ii) is satisfied.

2) Conversely, we now assume that property ii) is satisfied. For every n ∈ N,
we set:

µ
(n)
k = µk2−n , k ∈ N .
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By Strassen’s theorem (Theorem 3.1), there exists a martingale (M
(n)
k , k ∈

N) which is associated to (µ
(n)
k , k ∈ N) . We set:

X
(n)
t = M

(n)
k if t = k 2−n and X

(n)
t = 0 otherwise.

Consequently, the law of X
(n)
t is µt if t ∈ {k 2−n ; k ∈ N} , and is δ

(the Dirac measure at 0) if t 6∈ {k 2−n ; k ∈ N} .
Note that, due to the lack of uniqueness in Strassen’s theorem, the law of
(X

(n)

k2−n , k ∈ N) may be not the same as the law of (X
(n+1)

k2−n , k ∈ N) .
Only the one-dimensional marginals are identical.

3) Let D = {k 2−n ; k, n ∈ N} the set of dyadic numbers. For every n ∈ N,

for every r ≥ 1 and τr = (t1, t2, · · · , tr) ∈ Dr, we denote by Π
(r,n)
τr the

law of (X
(n)
t1 , · · · , X

(n)
tr ) , a probability on (Rd)r.

Lemma 3.1 For every τr ∈ Dr , the set of probability measures: {Π(r,n)
τr ; n ∈

N} is tight.

Proof We set, for x = (x1, · · · , xr) ∈ (Rd)r, |x|r =
∑r

j=1 |xj| . Then, for
p > 0,

Π(r,n)
τr (|x|r ≥ p) ≤ 1

p
Π(r,n)
τr (|x|r) =

1

p

r∑
j=1

E[|X(n)
tj |] ≤

1

p

r∑
j=1

µtj (|x|)

since, by point 2), the law of X
(n)
tj is either µtj or δ . Hence,

lim
p→∞

sup
n≥0

Π(r,n)
τr (|x|r ≥ p) = 0 .

2

4) As a consequence of the previous lemma, and with the help of the diagonal
procedure, there exists a subsequence (nl)l≥0 such that, for every τr ∈
Dr, the sequence of probabilities on (Rd)r: (Π

(r,nl)
τr , l ≥ 0) , weakly

converges to a probability which we denote by Π
(r)
τr . We remark that,

for l large enough, the law of X
(nl)
tj is µtj . Then, there exists an

Rd-valued process (Xt , t ∈ D) such that, for every r ∈ N and every

τr = (t1, · · · , tr) ∈ Dr, the law of (Xt1 , · · · , Xtr) is Π
(r)
τr , and Π

(1)
t = µt

for every t ∈ D.
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Lemma 3.2 The process (Xt , t ∈ D) is a martingale associated to
(µt , t ∈ D) .

Proof As we have already seen, the process (Xt , t ∈ D) is associated
to (µt , t ∈ D) . We now prove that it is a martingale. We set:

∀p > 0, ∀x ∈ Rd, ϕp(x) =

(
1 ∨ |x|

p

)−1

x .

Then,
ϕp ∈ Cb(Rd; Rd) and ϕp(x) = x for |x| ≤ p .

Let 0 ≤ s1 < s2 < · · · < sr ≤ s ≤ t be elements of D, and let
f ∈ Cb((Rd)r) . We set: ‖ f ‖∞ = sup{|f(x)| ; x ∈ (Rd)r} . Then, for l

large enough,

E[f(X(nl)
s1

, · · · , X(nl)
sr

)X
(nl)
t ] = E[f(X(nl)

s1
, · · · , X(nl)

sr
)X(nl)

s ] .

On the other hand,

|E[f(Xs1 , · · · , Xsr)ϕp(Xt)]− E[f(Xs1 , · · · , Xsr)Xt]|
≤ ‖ f ‖∞ µt

(
|x| 1{|x|≥p}

)
, for every p > 0,

∣∣∣E[f(X(nl)
s1

, · · · , X(nl)
sr

)ϕp(X
(nl)
t )]− E[f(X(nl)

s1
, · · · , X(nl)

sr
)X

(nl)
t ]

∣∣∣
≤ ‖ f ‖∞ µt

(
|x| 1{|x|≥p}

)
, for every l and every p > 0,

and likewise, replacing t by s. Moreover,

lim
l→∞

E[f(X(nl)
s1

, · · · , X(nl)
sr

)ϕp(X
(nl)
t )] = E[f(Xs1 , · · · , Xsr)ϕp(Xt)] ,

and likewise, replacing t by s. Finally, we obtain, for p > 0,

|E[f(Xs1 , · · · , Xsr)Xt]− E[f(Xs1 , · · · , Xsr)Xs]|
≤ 2 ‖ f ‖∞

[
µt
(
|x| 1{|x|≥p}

)
+ µs

(
|x| 1{|x|≥p}

)]
,

and the desired result follows, letting p go to ∞.

2

12



5) By the classical theory of martingales (see, for example, [DM]), almost
surely, for every t ≥ 0,

Mt = lim
s→t,s∈D,s>t

Xs

is well defined, and (Mt , t ≥ 0) is a right-continuous martingale.
Besides, since, by hypothesis, the map: t ≥ 0 −→ µt ∈ M is right-
continuous, we deduce from Lemma 3.2 that this martingale (Mt , t ≥ 0)
is associated to (µt , t ≥ 0) .

2

4 The general case

Theorem 3.2 shall now be extended, by approximation, to the general case.

Theorem 4.1 Let (µt , t ≥ 0) be a family in M. Then the following
properties are equivalent:

i) There exists a martingale associated to (µt , t ≥ 0) .

ii) (µt , t ≥ 0) is a peacock.

Proof Let (µt , t ≥ 0) be a peacock.

Lemma 4.1 There exists a countable set ∆ ⊂ R+ such that the map:

t −→ µt ∈M

is continuous at any s 6∈ ∆.

Proof Let χ : Rd −→ R+ be defined by:

χ(x) = (1− |x|)+ = (1 ∨ |x|)− |x| .

Then χ ∈ C+
c (Rd) and χ is the difference of two convex functions. We set:

χm(x) = md χ(mx) , and we define the countable set H by:

H =

{
r∑
j=0

aj χm(x− qj) ; r ∈ N, m ∈ N, aj ∈ Q+, qj ∈ Qd

}
.
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For h ∈ H , the function: t −→ µt(h) is the difference of two increasing
functions, and hence admits a countable set ∆h of discontinuities. We set
∆ =

⋃
h∈H∆h . Then ∆ is a countable subset of R+, and t −→ µt(h) is

continuous at any s 6∈ ∆, for every h ∈ H. Now, it is easy to see that H is
dense in C+

c (Rd) in the following sense: for every ϕ ∈ C+
c (Rd), there exist a

compact set K ⊂ Rd and a sequence (hn)n≥0 ⊂ H such that:

∀n, Supphn ⊂ K and lim
n→∞

hn = ϕ uniformly.

Consequently, t −→ µt is vaguely continuous at any s 6∈ ∆, and, since
measures µt are probabilities, t −→ µt is also weakly continuous at any
s 6∈ ∆.

2

We may write ∆ = {dj ; j ∈ N} . For n ∈ N, we denote by (k
(n)
l , l ≥ 0)

the increasing rearrangement of the set:

{k 2−n ; k ∈ N} ∪ {dj ; 0 ≤ j ≤ n} .

We define (µ
(n)
t , t ≥ 0) by:

µ
(n)
t = µ

k
(n)
l

if there exists l such that t = k
(n)
l ,

and by: µ
(n)
t =

k
(n)
l+1 − t

k
(n)
l+1 − k

(n)
l

µ
k
(n)
l

+
t− k(n)

l

k
(n)
l+1 − k

(n)
l

µ
k
(n)
l+1

if t ∈ [k
(n)
l , k

(n)
l+1].

Lemma 4.2 The following properties hold:

1. For every n ≥ 0, (µ
(n)
t , t ≥ 0) is a peacock and the map: t −→

µ
(n)
t ∈M is continuous.

2. For any t ≥ 0, sup{µ(n)
t (|x|) ; n ∈ N} <∞ .

3. For any t ≥ 0, the set {µ(n)
t ; n ∈ N} is uniformly integrable.

4. For t ≥ 0, limn→∞ µ
(n)
t = µt in M .

Proof Properties 1 and 4 are clear by construction. Property 2 (resp.
property 3) follows directly from property 2 (resp. property 3) in Proposition
2.2.

2

By Theorem 3.2, there exists, for each n, a right-continuous martingale
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(M
(n)
t , t ≥ 0) which is associated to (µ

(n)
t , t ≥ 0). For any r ∈ N

and τr = (t1, · · · , tr) ∈ Rr
+, we denote by Π

(r,n)
τr the law of (M

(n)
t1 , · · · ,M (n)

tr ),
a probability measure on (Rd)r.

Lemma 4.3 For every τr ∈ Rr
+ , the set of probability measures: {Π(r,n)

τr ; n ∈
N} is tight.

Proof As in Lemma 3.1, for p > 0,

Π(r,n)
τr (|x|r ≥ p) ≤ 1

p

r∑
j=1

µ
(n)
tj (|x|),

and by property 2 in Lemma 4.2,

lim
p→∞

sup
n≥0

Π(r,n)
τr (|x|r ≥ p) = 0 .

2

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a
consequence of the previous lemma, for every r ∈ N and every τr ∈ Rr

+,

lim
U

Π(r,n)
τr exists for the weak convergence and we denote this limit by Π

(r)
τr .

By property 4 in Lemma 4.2, Π
(1)
t = µt . There exists a process (Mt , t ≥ 0)

such that, for every r ∈ N and every τr = (t1, · · · , tr) ∈ Rr
+, the law of

(Mt1 , · · · ,Mtr) is Π
(r)
τr . In particular, this process (Mt , t ≥ 0) is associated

to (µt , t ≥ 0) .

Lemma 4.4 The process (Mt , t ≥ 0) is a martingale.

Proof The proof is quite similar to that of Lemma 3.2, but we give the
details for the sake of completeness. We recall the notation:

∀p > 0, ∀x ∈ Rd, ϕp(x) =

(
1 ∨ |x|

p

)−1

x .

Let 0 ≤ s1 < s2 < · · · < sr ≤ s ≤ t be elements of R+, and let f ∈
Cb((Rd)r) . We set: ‖ f ‖∞ = sup{|f(x)| ; x ∈ (Rd)r} . Then, for every n,

E[f(M (n)
s1
, · · · ,M (n)

sr
)M

(n)
t ] = E[f(M (n)

s1
, · · · ,M (n)

sr
)M (n)

s ] .

On the other hand,

|E[f(Ms1 , · · · ,Msr)ϕp(Mt)]− E[f(Ms1 , · · · ,Msr)Mt]|
≤ ‖ f ‖∞ µt

(
|x| 1{|x|≥p}

)
, for every p > 0,
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∣∣∣E[f(M (n)
s1
, · · · ,M (n)

sr
)ϕp(M

(n)
t )]− E[f(M (n)

s1
, · · · ,M (n)

sr
)M

(n)
t ]
∣∣∣

≤ ‖ f ‖∞ µ(n)
t

(
|x| 1{|x|≥p}

)
, for every n and every p > 0,

and likewise, replacing t by s. Moreover,

lim
U

E[f(M (n)
s1
, · · · ,M (n)

sr
)ϕp(M

(n)
t )] = E[f(Ms1 , · · · ,Msr)ϕp(Mt)] ,

and likewise, replacing t by s. Finally, we obtain, for p > 0,

|E[f(Xs1 , · · · , Xsr)Xt]− E[f(Xs1 , · · · , Xsr)Xs]|

≤ 2 ‖ f ‖∞ sup
n≥0

[
µ

(n)
t

(
|x| 1{|x|≥p}

)
+ µ(n)

s

(
|x| 1{|x|≥p}

)]
,

and, by property 3 in Lemma 4.2, the desired result follows, letting p go to
∞.

2

This lemma completes the proof of Theorem 4.1.
2
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