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Abstract: In this paper, we consider R?-valued integrable processes which are increasing
in the convex order, i.e. R%valued peacocks in our terminology. After the presentation of
some examples, we show that an R%valued process is a peacock if and only if it has the
same one-dimensional marginals as an R%-valued martingale. This extends former results,
obtained notably by V. Strassen (1965), J.L. Doob (1968) and H. Kellerer (1972).
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1 Introduction

1.1 Terminology

First we fix the terminology. In the sequel, d denotes a fixed integer and
R? is equipped with a norm which is denoted by | - | .

We say that two R%-valued processes: (X;, t > 0) and (Y;, t > 0)
are associated, if they have the same one-dimensional marginals, i.e. if:

(law)

Vtz()’ Xt:}/;f

A process which is associated with a martingale is called a 1-martingale.
An Ré-valued process (X;, t > 0) will be called a peacock if:



i) it is integrable, that is:

Vt>0, E[X.]< o

ii) it increases in the convex order, meaning that, for every convex function
Y : RY — R, the map:

t 20— E[(X)] € (—00,+o0]
is increasing.

This terminology was introduced in [HPRY]. We refer the reader to this
monograph for an explanation of the origin of the term: “peacock”, as well
as for a comprehensive study of this notion in the case d =1 .

Actually, it may be noted that, in the definition of a peacock, only the
family (u;, t > 0) of its one-dimensional marginals is involved. This makes
it natural, in the following, to also call a peacock, a family (u; , t > 0) of
probability measures on R? such that:

i) Vt>0, /\x| pe(dz) < oo,
ii) for every convex function ¢ : R — R, the map:

t>0— /w(:v) pe(dz) € (—oo, +o0]

is increasing.

Likewise, a family (u; , t > 0) of probability measures on R? and an R%
valued process (Y;, t > 0) will be said to be associated if, for every t > 0,
the law of Y; is gy, i.e. if (g, t > 0) is the family of the one-dimensional
marginals of (Y;, ¢t >0).
Obviously, the above notions also are meaningful if one considers processes
and families of measures indexed by a subset of R, (for example N) instead
of R,.

It is an easy consequence of Jensen’s inequality that an R?-valued process
which is a 1-martingale, is a peacock. So, a natural question is whether the
converse holds.



1.2 Case d=1

A remarkable result due to H. Kellerer ([K], 1972) states that, actually,
any R-valued process which is a peacock, is a 1-martingale. More precisely,
Kellerer’s result states that any R-valued peacock admits an associated mar-
tingale which is Markovian.

i)

ii)

Two more recent results now complete Kellerer’s theorem.

G. Lowther ([L], 2008) states that if (u; , t > 0) is an R-valued
peacock such that the map: ¢ — p, is weakly continuous (i.e. for any
R-valued, bounded and continuous function f on R, the map: ¢t —
[ f(z) p(dx) is continuous), then (u; , ¢ > 0) is associated with a
strongly Markovian martingale which moreover is “almost-continuous”
(see [L] for the definition).

In a previous paper ([HR], 2011), we presented a new proof of the above
mentioned theorem of H. Kellerer. Our method, which is inspired from
the “Fokker-Planck Equation Method” ([HPRY, Section 6.2, p.229]),
then appears as a new application of M. Pierre’s uniqueness theorem
for a Fokker-Planck equation ([HPRY, Theorem 6.1, p.223]). Thus, we
show that a martingale which is associated to an R-valued peacock, may
be obtained as a limit of solutions of stochastic differential equations.
However, we do not obtain that such a martingale is Markovian.

1.3 Case d>1

Concerning the case R? with d > 1, and even much more general spaces, we
would like to mention the following three important papers.

i)

ii)

In [CFM] (1964), P. Cartier, J.M.G. Fell and P.-A. Meyer study the
case of two probability measures (i, 12) on a metrizable convex com-
pact K of a locally convex space. They prove, using the Hahn-
Banach theorem, that, if (1, pu2) is a K-valued peacock (indexed
by {1,2}), then there exists a Markovian kernel P on K such that:
0(dxy,dxs) := py(dxy) P(xy,dxs) is the law of a K-valued martingale
(Y1,Y5) associated to (p1, o) -

In [S] (1965), V. Strassen extends the Cartier-Fell-Meyer result to R9-
valued peacocks without making the assumption of compact support.
Then he proves that, if (u, , n > 0) is an R%valued peacock (in-
dexed by N), there exists an associated martingale which is obtained as
a Markov chain.



iii) In [D] (1968), J.L. Doob studies, in a very general extended framework,
peacocks indexed by R, and taking their values in a fixed compact set.
In particular, he proves that they admit associated martingales. Note
that in [D], the Markovian character of the associated martingales is not
considered.

1.4 Organization

The remainder of this paper is organised as follows:

e In Section 2, we present some basic facts concerning the R?-valued
peacocks and we describe some examples, thus extending results of
[HPRY].

e In Section 3, starting from Strassen’s theorem, we prove that a family
(e , t > 0) of probability measures on R?, is associated to a right-
continuous martingale, if and only if, (u; , ¢ > 0) is a peacock such
that the map: t — p; is weakly right-continuous on R, .

e In Section 4, by approximation from the previous result, we extend this
result to the case of general R%valued peacocks.

2 Generalities, Examples

2.1 Notation

In the sequel, d denotes a fixed integer, R? is equipped with a norm which
is denoted by | - |, and we adopt the terminology of Subsection 1.1.

We also denote by M the set of probability measures on R?, equipped
with the topology of weak convergence (with respect to the space Cy(R?)
of R-valued, bounded, continuous functions on R?). We denote by M the
subset of M consisting of measures y € M such that [ |z| p(dz) < co. My
is also equipped with the topology of weak convergence.

C.(R%) denotes the space of R-valued continuous functions on R? with
compact support, and CJ(R?) is the subspace consisting of all the nonneg-
ative functions in C.(R?) .



2.2 Basic facts

Proposition 2.1 Let (X; , t > 0) be an R¥-valued integrable process.
Then (X;, t>0) is a peacock if (and only if) the map: t — E[)(Xy)]
is increasing, for every function 1 : R — R which is convex, of C™ class
and such that the derivative v is bounded on R?.

Proof Let v : R — R be a convex function. For every a € R?, there
exists an affine function h, such that:

Vo € R (z) > ho(x) and  (a) = hy(a) .

Let {a,; n>1} be a countable dense subset of R?. We set:

Then:
Vo € R lim T 9n(2) = ¥(x)

The functions 1, are convex and Lipschitz continuous.
Let ¢ be a nonnegative function, of C'"*° class, with compact support
and such that [ ¢(z) dz =1. We set, for n,p > 1,

d _ 1
Vo € RY, by ,(2) —/wn (a: py> o(y) dy .

Clearly, v, is convex, of C* class and Lipschitz continuous. Consequently,
its derivative is bounded on R?. Moreover, lim, .., ¥, = t, uniformly on
R4,

The desired result now follows directly.

The next result will be useful in the sequel.
Proposition 2.2 Let (X;, t>0) be an R%-valued peacock. Then:
1. the map: t — E[X,] is constant;
2. the map: t — E[|Xy|] is increasing, and therefore, for every T > 0,

sup E[|X;]] = E[|X7]] < 00 ;

0<t<T



3. for every T > 0, the random variables (X, ; 0 <t <T) are uniformly
integrable.

Proof Properties 1 and 2 are obvious.
If c>0,
2] Ljazep < (2]z] — )T

As the function © — (2|z| — )t is convex,

sup E [|Xt| 1{‘Xt‘ZC}j| < E[(Q |XT| - C>+] :
te[0,7

Now, by dominated convergence,

lim E[(2]Xr| — )] =0.

c——+00

Hence, property 3 holds.

2.3 Examples

The following examples are given in [HPRY] for d = 1. The proofs given
below are essentially the same as in [HPRY].

Proposition 2.3 Let X be a centered R%*-valued random variable. Then
(tX,t>0) isa peacock.

Proof Let 9 :R? — R be a convex function, and 0 < s < t. Then,
s X) < (1=2) $(0)+ 2t X).
Since X is centered, by Jensen’s inequality:
$(0) = ¢ (E[t X]) <E[y(t X)] .

Hence,

Efw(s X)) < (1 1) Elb(t X))+ S ERs(¢ X)) = ERp(t )] .



Proposition 2.4 Let (X; , t > 0) be a family of centered, R%-valued,
Gaussian variables. We denote by C(t) = (cij(t))1<ij<a the covariance
matriz of Xy . Then, (X;, t > 0) is a peacock if and only if the map:
t — C(t) 1is increasing in the sense of quadratic forms, i.e:

Va = (a1, --,a9) €ERY ¢ — Z ¢j(t)a;a;  is increasing.
1<i,j<d
Proof
1) For every a € R? | the function:
J 2
reR — Z a; O T; Tj = (Z%%)
1<i j<d i=1

is convex. This entails that, if (X, , t > 0) is a peacock, then the map:
t — C(t) is increasing in the sense of quadratic forms.

2) Conversely, suppose that the map: ¢ — C(t) is increasing in the sense
of quadratic forms. By the proof of [HPRY, Theorem 2.16, p.132], there
exists a centered R%-valued Gaussian process: ([y = (Uy4, -+, Tay) , t >
0), such that:

\V/S,t Z 0, V1 S Z,j S d, E[Fi,s Fj,t] == Ci,j(S A t) .

Therefrom we deduce that (I'; , ¢ > 0) is a martingale which is associated
to (X;, t >0), and consequently, (X;, t>0) is a peacock.

Corollary 2.1 Let A be a d x d matriz. We consider the R%-valued
Ornstein-Uhlenbeck process (U, , t > 0) , defined as (the unique) solution,
started from 0, of the SDE:

dU; =dB, + AU, dt

where (By , t > 0) denotes a d-dimensional Brownian motion. Then,
(Ug, t >0) is a peacock.



Proof One has: .
U, — / exp((t — 5) A) dB, .
0

Hence, for every t > 0, U, is a centered, R%valued Gaussian variable whose
covariance matrix is:

C(t) = /Ot exp(s A) exp(s A%) ds

where A* denotes the adjoint matrix of A . Therefrom it is clear that
the map: ¢t — C(t) 1is increasing in the sense of quadratic forms, and
Proposition 2.4 applies.

(Il

Proposition 2.5 Let (M; , t > 0) be an R%-valued, right-continuous
martingale such that:

VT >0, ]E{sup | M| | < oo .

0<t<T

Then,

1 t
1. (Xt = n / Myds; t > O) 1S a peacock,
0

t
2. (Xt = / (Mg — M) ds; t > 0) 18 a peacock.
0

Proof Using Proposition 2.1, we may use the proof of [HPRY, Theorem
1.4, p.26]. For the convenience of the reader, we reproduce this proof below.

1) Let ¢ :R? — R be a convex function, of C* class and such that the
derivative 1’ is bounded on R?. Setting:

t
Mt:/SdML.;,
0

one has, by integration by parts:
X, =M, —t"'M, and dX,=t"2M,dt.

Denoting by F; the o-algebra generated by {M, ; 0 < u < s} , one
gets, for 0 < s <t

—~

E[X, | F] =X+ (s —t7H M, .

8



Consequently, by Jensen’s inequality,

—

E[b(X))] > EW(X, + (s~ — ) ML) .

Using again the fact that ¢ is convex, one obtains:

—

E[(X;)] > E[(X,)] + (71 =t E['(X,) - M] -

P(X,) - ]\/4\S = /0 u_Qw”(Xu)(]\/Zu,J\/Zu) du +/0 uwy'(X,) - dM,

and therefore
E[(X,)] — Efp(X,)] > (s =t E[/(X,) - M) > 0,

which, by Proposition 2.1, yields the desired result.

Let 1 be as above. One may suppose that My = 0 . One has, for

0<s<t, B _
E[X, | Fs| = Xs+ (t — s) M, .

Consequently, by Jensen’s inequality,
E[¢(X0)] > B (X, + (¢~ 5) M.)]
Using again the fact that v is convex, one obtains:
B[ (X)) > EW(X)] + (t - 5) E[/(X.) - M)

Now,
G(R) M, = / V(X)) (My, M) du + / H(R.) - dM,
0 0

and therefore

E[(X)] - E[W(X,)] > (¢ — ) E['(X,) - M] > 0,

which, by Proposition 2.1, yields the desired result.



3 Right-continuous peacoks

In this section, we shall show that any right continuous peacock admits an
associated right-continuous martingale. For this, we start from Strassen’s
theorem, which we now recall.

Theorem 3.1 (Strassen [S], Theorem 8) Let (u, , n € N) be a se-
quence in M. Then (u, , n € N) is a peacock if and only if there exists a
martingale (M, , n € N) which is associated to (u, , n € N) .

We shall extend this theorem to right-continuous peacocks indexed by R, . In
the case d = 1, the following theorem is proven in [HR], by a quite different
method. In particular, in [HR], we do not use Strassen’s theorem, nor the
Hahn-Banach theorem, but an explicit approximation by solutions of SDE’s.

Theorem 3.2 Let (uy , t > 0) be a family in M. Then the following
properties are equivalent:

i) There exists a right-continuous martingale associated to (u; , t > 0) .
it) (¢, t>0) is a peacock and the map:
t>0— ypeM
18 right-continuous.
Proof

1) We first assume that property i) is satisfied. Then, the fact that (u, , t >
0) is a peacock follows classically from Jensen’s inequality. Let (M, , t >
0) be a right-continuous martingale associated to (y; , t > 0). Then, if
f € Cy(R?) | dominated convergence yields that, for any ¢ > 0,

lim [ (o) plde) = lim BFOL) =) = [ f(a) ).

s—t,5>t s—t,5>t

Therefore, the map:
t Z 0— e € M

is right-continuous, and property ii) is satisfied.

2) Conversely, we now assume that property ii) is satisfied. For every n € N,
we set:
" = o, kEN.

10



By Strassen’s theorem (Theorem 3.1), there exists a martingale (M, én) , ke
N) which is associated to (/L,Q”) , k € N). We set:

XM =M™ if t=k2" and X =0 otherwise.

Consequently, the law of Xt(n) is p, if te{k2™; keN}, andis 0
(the Dirac measure at 0) if ¢ ¢ {k27"; k € N} .
Note that, due to the lack of uniqueness in Strassen’s theorem, the law of
(X/E;;L)—" , k € N) may be not the same as the law of (X,gg’f,}) , keN).
Only the one-dimensional marginals are identical.

Let D={k2™; k,n € N} the set of dyadic numbers. For every n € N,
for every r > 1 and 7, = (t1,t2, -+, t,) € D", we denote by "™ the
law of (X(n) e ,Xt(:l)) , a probability on (R%)".

t1

Lemma 3.1 For every 7. € D", the set of probability measures: {II"™ : n €

N} is tight.

Proof We sct, for z = (z',---,2") € (RY)", |z, = 3_7_, [2’] . Then, for
p >0,

r

rn 1 ™ n 1 n 1 J
(el 2 p) < TG (al,) = ];ZEHX;. < > 2w (lz)
7j=1

j=1
since, by point 2), the law of Xt(f) is either f;; or ¢ . Hence,

lim sup HS:’”)(|m|T >p)=0.

P—0 >0

As a consequence of the previous lemma, and with the help of the diagonal
procedure, there exists a subsequence (n;);>¢ such that, for every 7, €
D", the sequence of probabilities on (R9)": (H(T:’nl) , 1 >0) , weakly
converges to a probability which we denote by H(T:). We remark that,
for [ large enough, the law of Xt(jm) is  py; . Then, there exists an
Re-valued process (X; , t € D) such that, for every r € N and every
T, = (t1, -+, t.) € D", the law of (X;,, -+, X},) is HQ;), and Hgl) = L
for every t € D.

11



Lemma 3.2 The process (X; , t € D) is a martingale associated to
(:U’t , te D) :

Proof As we have already seen, the process (X;, t € D) is associated
to (¢, t € D). We now prove that it is a martingale. We set:

Vp>0, Ve eRY o, (z) = (1\/ ’?)

Then,
Yp € Cb(RdS Rd) and @p(

)=
Let 0 < 51 < 89 < - <58, < s <t beelements of D, and let
f € Co((RH) . We set: || f |l = sup{|f(z)]; z € (RY)"} . Then, for [

large enough,

x for |z| <p.

E[f(X(nz) ---,ngl)) Xt(nz)] _ E[f(X(m) ---,XLE:”)) Xs(nz)] _

S1 ) S1 Y

On the other hand,

|E[f(X81> T 7X5r) QPp(Xt)] - E[f(Xsl, ce ,Xsr) Xt”
< | flloo e (|2 Lgjapmpy) » for every p > 0,

‘IE X oo X(’”))%(X( ))]—E[f(X( D X(nz))X( )]

S1 51

< | f oo f2t (\:c] 1{|r‘2p}) , for every [ and every p > 0,

and likewise, replacing ¢ by s. Moreover,

lim E[f(XT - XY 0, (X)) = B[f(Xa, -+, X)) 0p(X0)]

l—o0

and likewise, replacing t by s. Finally, we obtain, for p > 0,

’E[f(Xsla T 7Xsr) Xt] - E[f(Xsm T 7X5'r) Xs”
< 20 flloo [ (12] Lgazpy) + s (J2] Lggapzpy) ]

and the desired result follows, letting p go to oco.

12



5) By the classical theory of martingales (see, for example, [DM]), almost
surely, for every ¢ > 0,

Mt = lim Xs

s—t,s€D,s>t

is well defined, and (M; , t > 0) is a right-continuous martingale.
Besides, since, by hypothesis, the map: ¢t > 0 — u; € M is right-
continuous, we deduce from Lemma 3.2 that this martingale (M;, t > 0)
is associated to (u;, t >0) .

4 The general case

Theorem 3.2 shall now be extended, by approximation, to the general case.

Theorem 4.1 Let (s , t > 0) be a family in M. Then the following
properties are equivalent:

i) There exists a martingale associated to (p; , t > 0) .

it) (pe, t >0) is a peacock.
Proof Let (u:, t >0) be a peacock.
Lemma 4.1 There exists a countable set A C Ry such that the map:

t— puy € M
is continuous at any s & A.
Proof Let y:R? — R, be defined by:
v(@) = (1= [a)* = (1V Ja]) — Ja]

Then y € CF(R?) and x is the difference of two convex functions. We set:
Xm(7) = m?x(mz) , and we define the countable set H by:

Hz{Zanm(x—qj); reN, meN, a; € Qq, qje@d} )

J=0

13



For h € H , the function: ¢ — g (h) is the difference of two increasing
functions, and hence admits a countable set A, of discontinuities. We set
A = Upen An - Then A is a countable subset of Ry, and ¢ — i (h) is
continuous at any s € A, for every h € H. Now, it is easy to see that H is
dense in Cf(R?) in the following sense: for every ¢ € CF(R?), there exist a
compact set K C R? and a sequence (h,),>0 C H such that:

Vn, Supph, C K and nh_)nolo h,, = ¢ uniformly.
Consequently, ¢t — p; is vaguely continuous at any s ¢ A, and, since
measures u; are probabilities, ¢ — p; is also weakly continuous at any
s & A.

(I

We may write A ={d;; j € N} . For n € N, we denote by (k‘l(n) , 1>0)
the increasing rearrangement of the set:

{k27"; ke N}uU{d;; 0<j<n}.
We define (1™, t >0) by:

"™ = i if there exists [ such that £ = k",
1

(n) kl(—t)l ¢ t kl(n) (n) 1.(n)
and by: ;" = ——— 1, ) + o it e [K" R
t SRR TR TR Lo

Lemma 4.2 The following properties hold:

1. For every n > 0, (ME”) , t > 0) s a peacock and the map: t —

uﬁ”) € M s continuous.

2. For anyt >0, sup{u{(|z]); n € N} < 0o .

3. For anyt > 0, the set {,ul(tn) : n € N} is uniformly integrable.

4. Fort >0, lim,_ . ,ul(tn) = in M.
Proof Properties 1 and 4 are clear by construction. Property 2 (resp.
property 3) follows directly from property 2 (resp. property 3) in Proposition

2.2.
(]

By Theorem 3.2, there exists, for each n, a right-continuous martingale

14



(Mt(") , t > 0) which is associated to (,uﬁn) , t >0). Forany r € N
and 7, = (t1,---,t,) € R, we denote by 1™ the law of (Mt(ln)’ e 7Mt(:1))’
a probability measure on (R%)".

Lemma 4.3 For every 7, € R, the set of probability measures: {ngn) in €
N} s tight.

Proof Asin Lemma 3.1, for p > 0,
,mn 1 - n
e (ol 2 p) < 3w (2,
j=1

and by property 2 in Lemma 4.2,

lim sup II"" (2|, > p) = 0.

P30 >0

O

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a

consequence of the previous lemma, for every r € N and every 7. € R,

libr{n Hg’”) exists for the weak convergence and we denote this limit by H(T:) .

By property 4 in Lemma 4.2, Hgl) = 1 . There exists a process (M, , t > 0)
such that, for every » € N and every 7, = (t1,---,t,) € R, the law of

(M, -+, M) is H(T:). In particular, this process (M;, t > 0) is associated
to (uy, t>0).

Lemma 4.4 The process (M;, t > 0) is a martingale.

Proof The proof is quite similar to that of Lemma 3.2, but we give the
details for the sake of completeness. We recall the notation:

-1
Vp>0, Ve € RY o, (7) = (1 Vv M) x
p
Let 0 <51 <89 <---<s. <5<t beelements of Ry, and let f €
Co((RHT) . We set: || f|loo = sup{|f(z)] ; z € (RY)"} . Then, for every n,

E[f (M, -, M) M™) = B[f(M®, -, M) M®™)] .
On the other hand,
|]E[f(M817 e 7M37‘) Qop(Mt)] - E[f(M317 B Msr) Mt”
< |1 f oo e (|2] Lgjajmpy) » for every p >0,

15



S1 7 ) Sr s1

LG, M) (M) = ELF (MG, -, ME) M)
< | flloo u,g") (]x\ 1{‘x|2p}) , for every n and every p > 0,

and likewise, replacing ¢ by s. Moreover,

G E[f (ML, M) (M) = BIf (My,, -, My,) 0 (My)]

S1 ?
and likewise, replacing t by s. Finally, we obtain, for p > 0,
|E[f(XS1v e aXsr) Xt] - E[f(Xsw U 7X5r) XSH
< 21 f oo sup 1 () aizm) + 1 (2] L) |

and, by property 3 in Lemma 4.2, the desired result follows, letting p go to
00.
(I

This lemma completes the proof of Theorem 4.1.
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