On \mathbb{R}^d -valued peacocks

Francis HIRSCH⁽¹⁾, Bernard ROYNETTE⁽²⁾

July 26, 2011

- (1) Laboratoire d'Analyse et Probabilités, Université d'Évry - Val d'Essonne, Boulevard F. Mitterrand, F-91025 Évry Cedex e-mail: francis.hirsch@univ-evry.fr
- ⁽²⁾ Institut Elie Cartan, Université Henri Poincaré, B.P. 239, F-54506 Vandœuvre-lès-Nancy Cedex e-mail: bernard.roynette@iecn.u-nancy.fr

Abstract: In this paper, we consider \mathbb{R}^d -valued integrable processes which are increasing in the convex order, i.e. \mathbb{R}^d -valued peacocks in our terminology. After the presentation of some examples, we show that an \mathbb{R}^d -valued process is a peacock if and only if it has the same one-dimensional marginals as an \mathbb{R}^d -valued martingale. This extends former results, obtained notably by V. Strassen (1965), J.L. Doob (1968) and H. Kellerer (1972). **Key words:** convex order; martingale; 1-martingale; peacock. **2000 MSC:** Primary: 60E15, 60G44. Secondary: 60G15, 60G48.

1 Introduction

1.1 Terminology

First we fix the terminology. In the sequel, d denotes a fixed integer and \mathbb{R}^d is equipped with a norm which is denoted by $|\cdot|$.

We say that two \mathbb{R}^d -valued processes: $(X_t, t \ge 0)$ and $(Y_t, t \ge 0)$ are *associated*, if they have the same one-dimensional marginals, i.e. if:

$$\forall t \ge 0, \quad X_t \stackrel{(\text{law})}{=} Y_t .$$

A process which is associated with a martingale is called a 1-martingale.

An \mathbb{R}^d -valued process $(X_t, t \ge 0)$ will be called a *peacock* if:

i) it is *integrable*, that is:

$$\forall t \ge 0, \quad \mathbb{E}[|X_t|] < \infty$$

ii) it increases in the convex order, meaning that, for every convex function $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$, the map:

$$t \ge 0 \longrightarrow \mathbb{E}[\psi(X_t)] \in (-\infty, +\infty]$$

is increasing.

This terminology was introduced in [HPRY]. We refer the reader to this monograph for an explanation of the origin of the term: "peacock", as well as for a comprehensive study of this notion in the case d = 1.

Actually, it may be noted that, in the definition of a peacock, only the family $(\mu_t, t \ge 0)$ of its one-dimensional marginals is involved. This makes it natural, in the following, to also call a *peacock*, a family $(\mu_t, t \ge 0)$ of probability measures on \mathbb{R}^d such that:

i)
$$\forall t \ge 0$$
, $\int |x| \mu_t(\mathrm{d}x) < \infty$,

ii) for every convex function $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$, the map:

$$t \ge 0 \longrightarrow \int \psi(x) \ \mu_t(\mathrm{d}x) \in (-\infty, +\infty]$$

is increasing.

Likewise, a family $(\mu_t, t \ge 0)$ of probability measures on \mathbb{R}^d and an \mathbb{R}^d -valued process $(Y_t, t \ge 0)$ will be said to be *associated* if, for every $t \ge 0$, the law of Y_t is μ_t , i.e. if $(\mu_t, t \ge 0)$ is the family of the one-dimensional marginals of $(Y_t, t \ge 0)$.

Obviously, the above notions also are meaningful if one considers processes and families of measures indexed by a subset of \mathbb{R}_+ (for example \mathbb{N}) instead of \mathbb{R}_+ .

It is an easy consequence of Jensen's inequality that an \mathbb{R}^d -valued process which is a 1-martingale, is a peacock. So, a natural question is whether the converse holds.

1.2 Case d = 1

A remarkable result due to H. Kellerer ([K], 1972) states that, actually, any \mathbb{R} -valued process which is a peacock, is a 1-martingale. More precisely, Kellerer's result states that any \mathbb{R} -valued peacock admits an associated martingale which is *Markovian*.

Two more recent results now complete Kellerer's theorem.

- i) G. Lowther ([L], 2008) states that if $(\mu_t, t \ge 0)$ is an \mathbb{R} -valued peacock such that the map: $t \longrightarrow \mu_t$ is weakly continuous (i.e. for any \mathbb{R} -valued, bounded and continuous function f on \mathbb{R} , the map: $t \longrightarrow \int f(x) \mu_t(dx)$ is continuous), then $(\mu_t, t \ge 0)$ is associated with a strongly Markovian martingale which moreover is "almost-continuous" (see [L] for the definition).
- ii) In a previous paper ([HR], 2011), we presented a new proof of the above mentioned theorem of H. Kellerer. Our method, which is inspired from the "Fokker-Planck Equation Method" ([HPRY, Section 6.2, p.229]), then appears as a new application of M. Pierre's uniqueness theorem for a Fokker-Planck equation ([HPRY, Theorem 6.1, p.223]). Thus, we show that a martingale which is associated to an ℝ-valued peacock, may be obtained as a limit of solutions of stochastic differential equations. However, we do not obtain that such a martingale is Markovian.

1.3 Case $d \ge 1$

Concerning the case \mathbb{R}^d with $d \geq 1$, and even much more general spaces, we would like to mention the following three important papers.

- i) In [CFM] (1964), P. Cartier, J.M.G. Fell and P.-A. Meyer study the case of two probability measures (μ_1, μ_2) on a metrizable convex compact K of a locally convex space. They prove, using the Hahn-Banach theorem, that, if (μ_1, μ_2) is a K-valued peacock (indexed by $\{1, 2\}$), then there exists a Markovian kernel P on K such that: $\theta(dx_1, dx_2) := \mu_1(dx_1) P(x_1, dx_2)$ is the law of a K-valued martingale (Y_1, Y_2) associated to (μ_1, μ_2) .
- ii) In [S] (1965), V. Strassen extends the Cartier-Fell-Meyer result to \mathbb{R}^d -valued peacocks without making the assumption of compact support. Then he proves that, if $(\mu_n, n \ge 0)$ is an \mathbb{R}^d -valued peacock (indexed by \mathbb{N}), there exists an associated martingale which is obtained as a Markov chain.

iii) In [D] (1968), J.L. Doob studies, in a very general extended framework, peacocks indexed by ℝ₊ and taking their values in a fixed compact set. In particular, he proves that they admit associated martingales. Note that in [D], the Markovian character of the associated martingales is not considered.

1.4 Organization

The remainder of this paper is organised as follows:

- In Section 2, we present some basic facts concerning the \mathbb{R}^d -valued peacocks and we describe some examples, thus extending results of [HPRY].
- In Section 3, starting from Strassen's theorem, we prove that a family $(\mu_t, t \ge 0)$ of probability measures on \mathbb{R}^d , is associated to a *right-continuous* martingale, if and only if, $(\mu_t, t \ge 0)$ is a peacock such that the map: $t \longrightarrow \mu_t$ is *weakly right-continuous* on \mathbb{R}_+ .
- In Section 4, by approximation from the previous result, we extend this result to the case of general \mathbb{R}^d -valued peacocks.

2 Generalities, Examples

2.1 Notation

In the sequel, d denotes a fixed integer, \mathbb{R}^d is equipped with a norm which is denoted by $|\cdot|$, and we adopt the terminology of Subsection 1.1.

We also denote by \mathcal{M} the set of probability measures on \mathbb{R}^d , equipped with the topology of weak convergence (with respect to the space $C_b(\mathbb{R}^d)$ of \mathbb{R} -valued, bounded, continuous functions on \mathbb{R}^d). We denote by \mathcal{M}_f the subset of \mathcal{M} consisting of measures $\mu \in \mathcal{M}$ such that $\int |x| \, \mu(\mathrm{d}x) < \infty$. \mathcal{M}_f is also equipped with the topology of weak convergence.

 $C_c(\mathbb{R}^d)$ denotes the space of \mathbb{R} -valued continuous functions on \mathbb{R}^d with compact support, and $C_c^+(\mathbb{R}^d)$ is the subspace consisting of all the nonnegative functions in $C_c(\mathbb{R}^d)$.

2.2 Basic facts

Proposition 2.1 Let $(X_t, t \ge 0)$ be an \mathbb{R}^d -valued integrable process. Then $(X_t, t \ge 0)$ is a peacock if (and only if) the map: $t \longrightarrow \mathbb{E}[\psi(X_t)]$ is increasing, for every function $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$ which is convex, of C^{∞} class and such that the derivative ψ' is bounded on \mathbb{R}^d .

Proof Let $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$ be a convex function. For every $a \in \mathbb{R}^d$, there exists an affine function h_a such that:

$$\forall x \in \mathbb{R}^d, \quad \psi(x) \ge h_a(x) \quad \text{and} \quad \psi(a) = h_a(a)$$

Let $\{a_n ; n \ge 1\}$ be a countable dense subset of \mathbb{R}^d . We set:

$$\forall n \ge 1, \quad \psi_n(x) = \sup_{1 \le j \le n} h_{a_j}(x) .$$

Then:

$$\forall x \in \mathbb{R}^d$$
, $\lim_{n \uparrow \infty} \uparrow \psi_n(x) = \psi(x)$.

The functions ψ_n are convex and Lipschitz continuous.

Let ϕ be a nonnegative function, of C^{∞} class, with compact support and such that $\int \phi(x) \, dx = 1$. We set, for $n, p \ge 1$,

$$\forall x \in \mathbb{R}^d, \quad \psi_{n,p}(x) = \int \psi_n\left(x - \frac{1}{p}y\right) \phi(y) \, \mathrm{d}y.$$

Clearly, $\psi_{n,p}$ is convex, of C^{∞} class and Lipschitz continuous. Consequently, its derivative is bounded on \mathbb{R}^d . Moreover, $\lim_{p\to\infty} \psi_{n,p} = \psi_n$ uniformly on \mathbb{R}^d .

The desired result now follows directly.

The next result will be useful in the sequel.

Proposition 2.2 Let $(X_t, t \ge 0)$ be an \mathbb{R}^d -valued peacock. Then:

- 1. the map: $t \longrightarrow \mathbb{E}[X_t]$ is constant;
- 2. the map: $t \longrightarrow \mathbb{E}[|X_t|]$ is increasing, and therefore, for every $T \ge 0$,

$$\sup_{0 \le t \le T} \mathbb{E}[|X_t|] = \mathbb{E}[|X_T|] < \infty ;$$

3. for every $T \ge 0$, the random variables $(X_t; 0 \le t \le T)$ are uniformly integrable.

Proof Properties 1 and 2 are obvious.

If $c \geq 0$,

$$|x| 1_{\{|x| \ge c\}} \le (2|x| - c)^+$$
.

As the function $x \longrightarrow (2|x| - c)^+$ is convex,

$$\sup_{t \in [0,T]} \mathbb{E}\left[|X_t| \, \mathbb{1}_{\{|X_t| \ge c\}} \right] \le \mathbb{E}[(2 \, |X_T| - c)^+] \, .$$

Now, by dominated convergence,

$$\lim_{c \to +\infty} \mathbb{E}[(2|X_T| - c)^+] = 0.$$

Hence, property 3 holds.

2.3 Examples

The following examples are given in [HPRY] for d = 1. The proofs given below are essentially the same as in [HPRY].

Proposition 2.3 Let X be a centered \mathbb{R}^d -valued random variable. Then $(tX, t \ge 0)$ is a peacock.

Proof Let $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$ be a convex function, and $0 \le s < t$. Then,

$$\psi(sX) \le \left(1 - \frac{s}{t}\right) \,\psi(0) + \frac{s}{t} \,\psi(tX) \;.$$

Since X is centered, by Jensen's inequality:

$$\psi(0) = \psi\left(\mathbb{E}[t\,X]\right) \le \mathbb{E}[\psi(t\,X)] \; .$$

Hence,

$$\mathbb{E}[\psi(s\,X)] \le \left(1 - \frac{s}{t}\right) \,\mathbb{E}[\psi(t\,X)] + \frac{s}{t} \,\mathbb{E}[\psi(t\,X)] = \mathbb{E}[\psi(t\,X)] \,.$$

Proposition 2.4 Let $(X_t, t \ge 0)$ be a family of centered, \mathbb{R}^d -valued, Gaussian variables. We denote by $C(t) = (c_{i,j}(t))_{1\le i,j\le d}$ the covariance matrix of X_t . Then, $(X_t, t\ge 0)$ is a peacock if and only if the map: $t \longrightarrow C(t)$ is increasing in the sense of quadratic forms, i.e:

$$\forall a = (a_1, \cdots, a_d) \in \mathbb{R}^d, \quad t \longrightarrow \sum_{1 \le i,j \le d} c_{i,j}(t) a_i a_j \quad is increasing.$$

Proof

1) For every $a \in \mathbb{R}^d$, the function:

$$x \in \mathbb{R}^d \longrightarrow \sum_{1 \le i,j \le d} a_i \, a_j \, x_i \, x_j = \left(\sum_{i=1}^d a_i \, x_i\right)^2$$

is convex. This entails that, if $(X_t, t \ge 0)$ is a peacock, then the map: $t \longrightarrow C(t)$ is increasing in the sense of quadratic forms.

2) Conversely, suppose that the map: $t \longrightarrow C(t)$ is increasing in the sense of quadratic forms. By the proof of [HPRY, Theorem 2.16, p.132], there exists a centered \mathbb{R}^d -valued Gaussian process: $(\Gamma_t = (\Gamma_{1,t}, \cdots, \Gamma_{d,t}), t \ge 0)$, such that:

$$\forall s, t \ge 0, \ \forall 1 \le i, j \le d, \ \mathbb{E}[\Gamma_{i,s} \Gamma_{j,t}] = c_{i,j}(s \land t).$$

Therefrom we deduce that $(\Gamma_t, t \ge 0)$ is a martingale which is associated to $(X_t, t \ge 0)$, and consequently, $(X_t, t \ge 0)$ is a peacock.

Corollary 2.1 Let A be a $d \times d$ matrix. We consider the \mathbb{R}^d -valued Ornstein-Uhlenbeck process $(U_t, t \ge 0)$, defined as (the unique) solution, started from 0, of the SDE:

$$\mathrm{d}U_t = \mathrm{d}B_t + A\,U_t\,\mathrm{d}t$$

where $(B_t, t \ge 0)$ denotes a d-dimensional Brownian motion. Then, $(U_t, t \ge 0)$ is a peacock.

Proof One has:

$$U_t = \int_0^t \exp((t-s) A) \, \mathrm{d}B_s \, .$$

Hence, for every $t \ge 0$, U_t is a centered, \mathbb{R}^d -valued Gaussian variable whose covariance matrix is:

$$C(t) = \int_0^t \exp(sA) \, \exp(sA^*) \, \mathrm{d}s$$

where A^* denotes the adjoint matrix of A. Therefrom it is clear that the map: $t \longrightarrow C(t)$ is increasing in the sense of quadratic forms, and Proposition 2.4 applies.

Proposition 2.5 Let $(M_t, t \ge 0)$ be an \mathbb{R}^d -valued, right-continuous martingale such that:

$$\forall T > 0, \quad \mathbb{E}\left[\sup_{0 \le t \le T} |M_t|\right] < \infty.$$

Then,

1.
$$\left(X_t := \frac{1}{t} \int_0^t M_s \, \mathrm{d}s \; ; \; t \ge 0\right)$$
 is a peacock,
2. $\left(\widetilde{X}_t := \int_0^t (M_s - M_0) \, \mathrm{d}s \; ; \; t \ge 0\right)$ is a peacock.

Proof Using Proposition 2.1, we may use the proof of [HPRY, Theorem 1.4, p.26]. For the convenience of the reader, we reproduce this proof below.

1) Let $\psi : \mathbb{R}^d \longrightarrow \mathbb{R}$ be a convex function, of C^{∞} class and such that the derivative ψ' is bounded on \mathbb{R}^d . Setting:

$$\widehat{M}_t = \int_0^t s \, \mathrm{d}M_s \; ,$$

one has, by integration by parts:

$$X_t = M_t - t^{-1}\widehat{M}_t$$
 and $dX_t = t^{-2}\widehat{M}_t dt$.

Denoting by \mathcal{F}_s the σ -algebra generated by $\{M_u ; 0 \le u \le s\}$, one gets, for $0 \le s \le t$,

$$\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s + (s^{-1} - t^{-1}) \widehat{M}_s .$$

Consequently, by Jensen's inequality,

$$\mathbb{E}[\psi(X_t)] \ge \mathbb{E}[\psi(X_s + (s^{-1} - t^{-1})\widehat{M}_s)].$$

Using again the fact that ψ is convex, one obtains:

$$\mathbb{E}[\psi(X_t)] \ge \mathbb{E}[\psi(X_s)] + (s^{-1} - t^{-1}) \mathbb{E}[\psi'(X_s) \cdot \widehat{M}_s]$$

Now,

$$\psi'(X_s) \cdot \widehat{M}_s = \int_0^s u^{-2} \psi''(X_u)(\widehat{M}_u, \widehat{M}_u) \, \mathrm{d}u + \int_0^s u \, \psi'(X_u) \cdot \mathrm{d}M_u$$

and therefore

$$\mathbb{E}[\psi(X_t)] - \mathbb{E}[\psi(X_s)] \ge (s^{-1} - t^{-1}) \mathbb{E}[\psi'(X_s) \cdot \widehat{M}_s] \ge 0 ,$$

which, by Proposition 2.1, yields the desired result.

2) Let ψ be as above. One may suppose that $M_0 = 0$. One has, for $0 \le s \le t$,

$$\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s + (t-s) M_s$$

Consequently, by Jensen's inequality,

$$\mathbb{E}[\psi(\widetilde{X}_t)] \ge \mathbb{E}[\psi(\widetilde{X}_s + (t-s) M_s)] .$$

Using again the fact that ψ is convex, one obtains:

$$\mathbb{E}[\psi(\widetilde{X}_t)] \ge \mathbb{E}[\psi(\widetilde{X}_s)] + (t-s) \mathbb{E}[\psi'(\widetilde{X}_s) \cdot M_s]$$

Now,

$$\psi'(\widetilde{X}_s) \cdot M_s = \int_0^s \psi''(\widetilde{X}_u)(M_u, M_u) \, \mathrm{d}u + \int_0^s \psi'(\widetilde{X}_u) \cdot \mathrm{d}M_u$$

and therefore

$$\mathbb{E}[\psi(\widetilde{X}_t)] - \mathbb{E}[\psi(\widetilde{X}_s)] \ge (t-s) \mathbb{E}[\psi'(\widetilde{X}_s) \cdot M_s] \ge 0 ,$$

which, by Proposition 2.1, yields the desired result.

3 Right-continuous peacoks

In this section, we shall show that any right continuous peacock admits an associated right-continuous martingale. For this, we start from Strassen's theorem, which we now recall.

Theorem 3.1 (Strassen [S], Theorem 8) Let $(\mu_n, n \in \mathbb{N})$ be a sequence in \mathcal{M} . Then $(\mu_n, n \in \mathbb{N})$ is a peacock if and only if there exists a martingale $(M_n, n \in \mathbb{N})$ which is associated to $(\mu_n, n \in \mathbb{N})$.

We shall extend this theorem to right-continuous peacocks indexed by \mathbb{R}_+ . In the case d = 1, the following theorem is proven in [HR], by a quite different method. In particular, in [HR], we do not use Strassen's theorem, nor the Hahn-Banach theorem, but an explicit approximation by solutions of SDE's.

Theorem 3.2 Let $(\mu_t, t \ge 0)$ be a family in \mathcal{M} . Then the following properties are equivalent:

- i) There exists a right-continuous martingale associated to $(\mu_t, t \ge 0)$.
- ii) $(\mu_t, t \ge 0)$ is a peacock and the map:

$$t \ge 0 \longrightarrow \mu_t \in \mathcal{M}$$

is right-continuous.

Proof

- 1) We first assume that property i) is satisfied. Then, the fact that $(\mu_t, t \ge 0)$ is a peacock follows classically from Jensen's inequality. Let $(M_t, t \ge 0)$
 - 0) be a right-continuous martingale associated to $(\mu_t, t \ge 0)$. Then, if $f \in C_b(\mathbb{R}^d)$, dominated convergence yields that, for any $t \ge 0$,

$$\lim_{s \to t, s > t} \int f(x) \ \mu_s(\mathrm{d}x) = \lim_{s \to t, s > t} \mathbb{E}[f(M_s)] = \mathbb{E}[f(M_t)] = \int f(x) \ \mu_t(\mathrm{d}x) \ dx$$

Therefore, the map:

$$t \ge 0 \longrightarrow \mu_t \in \mathcal{M}$$

is right-continuous, and property ii) is satisfied.

2) Conversely, we now assume that property ii) is satisfied. For every $n \in \mathbb{N}$, we set:

$$\mu_k^{(n)} = \mu_{k2^{-n}} \quad , \quad k \in \mathbb{N} \; .$$

By Strassen's theorem (Theorem 3.1), there exists a martingale $(M_k^{(n)}, k \in \mathbb{N})$ which is associated to $(\mu_k^{(n)}, k \in \mathbb{N})$. We set:

$$X_t^{(n)} = M_k^{(n)}$$
 if $t = k 2^{-n}$ and $X_t^{(n)} = 0$ otherwise.

Consequently, the law of $X_t^{(n)}$ is μ_t if $t \in \{k 2^{-n} ; k \in \mathbb{N}\}$, and is δ (the Dirac measure at 0) if $t \notin \{k 2^{-n} ; k \in \mathbb{N}\}$.

Note that, due to the lack of uniqueness in Strassen's theorem, the law of $(X_{k2^{-n}}^{(n)}, k \in \mathbb{N})$ may be not the same as the law of $(X_{k2^{-n}}^{(n+1)}, k \in \mathbb{N})$. Only the one-dimensional marginals are identical.

3) Let $D = \{k 2^{-n} ; k, n \in \mathbb{N}\}$ the set of dyadic numbers. For every $n \in \mathbb{N}$, for every $r \geq 1$ and $\tau_r = (t_1, t_2, \cdots, t_r) \in D^r$, we denote by $\Pi_{\tau_r}^{(r,n)}$ the law of $(X_{t_1}^{(n)}, \cdots, X_{t_r}^{(n)})$, a probability on $(\mathbb{R}^d)^r$.

Lemma 3.1 For every $\tau_r \in D^r$, the set of probability measures: $\{\Pi_{\tau_r}^{(r,n)}; n \in \mathbb{N}\}$ is tight.

Proof We set, for $x = (x^1, \dots, x^r) \in (\mathbb{R}^d)^r$, $|x|_r = \sum_{j=1}^r |x^j|$. Then, for p > 0,

$$\Pi_{\tau_r}^{(r,n)}(|x|_r \ge p) \le \frac{1}{p} \Pi_{\tau_r}^{(r,n)}(|x|_r) = \frac{1}{p} \sum_{j=1}^r \mathbb{E}[|X_{t_j}^{(n)}|] \le \frac{1}{p} \sum_{j=1}^r \mu_{t_j}(|x|)$$

since, by point 2), the law of $X_{t_j}^{(n)}$ is either μ_{t_j} or δ . Hence,

$$\lim_{p \to \infty} \sup_{n \ge 0} \Pi_{\tau_r}^{(r,n)}(|x|_r \ge p) = 0 .$$

4) As a consequence of the previous lemma, and with the help of the diagonal procedure, there exists a subsequence $(n_l)_{l\geq 0}$ such that, for every $\tau_r \in D^r$, the sequence of probabilities on $(\mathbb{R}^d)^r$: $(\Pi_{\tau_r}^{(r,n_l)}, l \geq 0)$, weakly converges to a probability which we denote by $\Pi_{\tau_r}^{(r)}$. We remark that, for l large enough, the law of $X_{t_j}^{(n_l)}$ is μ_{t_j} . Then, there exists an \mathbb{R}^d -valued process $(X_t, t \in D)$ such that, for every $r \in \mathbb{N}$ and every $\tau_r = (t_1, \dots, t_r) \in D^r$, the law of $(X_{t_1}, \dots, X_{t_r})$ is $\Pi_{\tau_r}^{(r)}$, and $\Pi_t^{(1)} = \mu_t$ for every $t \in D$.

Lemma 3.2 The process $(X_t, t \in D)$ is a martingale associated to $(\mu_t, t \in D)$.

Proof As we have already seen, the process $(X_t, t \in D)$ is associated to $(\mu_t, t \in D)$. We now prove that it is a martingale. We set:

$$\forall p > 0, \ \forall x \in \mathbb{R}^d, \ \varphi_p(x) = \left(1 \lor \frac{|x|}{p}\right)^{-1} x$$

Then,

$$\varphi_p \in C_b(\mathbb{R}^d; \mathbb{R}^d)$$
 and $\varphi_p(x) = x$ for $|x| \le p$.

Let $0 \leq s_1 < s_2 < \cdots < s_r \leq s \leq t$ be elements of D, and let $f \in C_b((\mathbb{R}^d)^r)$. We set: $||f||_{\infty} = \sup\{|f(x)| ; x \in (\mathbb{R}^d)^r\}$. Then, for l large enough,

$$\mathbb{E}[f(X_{s_1}^{(n_l)},\cdots,X_{s_r}^{(n_l)})X_t^{(n_l)}] = \mathbb{E}[f(X_{s_1}^{(n_l)},\cdots,X_{s_r}^{(n_l)})X_s^{(n_l)}].$$

On the other hand,

$$\begin{split} & \left\| \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) \,\varphi_p(X_t)] - \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) \, X_t] \right\| \\ & \leq \quad \|f\|_{\infty} \,\mu_t \left(|x| \, \mathbf{1}_{\{|x| \ge p\}} \right), \quad \text{for every } p > 0, \\ & \left\| \mathbb{E}[f(X_{s_1}^{(n_l)}, \cdots, X_{s_r}^{(n_l)}) \,\varphi_p(X_t^{(n_l)})] - \mathbb{E}[f(X_{s_1}^{(n_l)}, \cdots, X_{s_r}^{(n_l)}) \, X_t^{(n_l)}] \right\| \\ & \leq \quad \|f\|_{\infty} \,\mu_t \left(|x| \, \mathbf{1}_{\{|x| \ge p\}} \right), \quad \text{for every } l \text{ and every } p > 0, \end{split}$$

and likewise, replacing t by s. Moreover,

$$\lim_{l \to \infty} \mathbb{E}[f(X_{s_1}^{(n_l)}, \cdots, X_{s_r}^{(n_l)}) \varphi_p(X_t^{(n_l)})] = \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) \varphi_p(X_t)],$$

and likewise, replacing t by s. Finally, we obtain, for p > 0,

$$|\mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) X_t] - \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) X_s]| \le 2 ||f||_{\infty} [\mu_t (|x| 1_{\{|x| \ge p\}}) + \mu_s (|x| 1_{\{|x| \ge p\}})],$$

and the desired result follows, letting p go to ∞ .

5) By the classical theory of martingales (see, for example, [DM]), almost surely, for every $t \ge 0$,

$$M_t = \lim_{s \to t, s \in D, s > t} X_s$$

is well defined, and $(M_t, t \ge 0)$ is a right-continuous martingale. Besides, since, by hypothesis, the map: $t \ge 0 \longrightarrow \mu_t \in \mathcal{M}$ is rightcontinuous, we deduce from Lemma 3.2 that this martingale $(M_t, t \ge 0)$ is associated to $(\mu_t, t \ge 0)$.

4 The general case

Theorem 3.2 shall now be extended, by approximation, to the general case.

Theorem 4.1 Let $(\mu_t, t \ge 0)$ be a family in \mathcal{M} . Then the following properties are equivalent:

- i) There exists a martingale associated to $(\mu_t, t \ge 0)$.
- ii) $(\mu_t, t \ge 0)$ is a peacock.

Proof Let $(\mu_t, t \ge 0)$ be a peacock.

Lemma 4.1 There exists a countable set $\Delta \subset \mathbb{R}_+$ such that the map:

$$t \longrightarrow \mu_t \in \mathcal{M}$$

is continuous at any $s \notin \Delta$.

Proof Let $\chi : \mathbb{R}^d \longrightarrow \mathbb{R}_+$ be defined by:

$$\chi(x) = (1 - |x|)^+ = (1 \vee |x|) - |x|.$$

Then $\chi \in C_c^+(\mathbb{R}^d)$ and χ is the difference of two convex functions. We set: $\chi_m(x) = m^d \chi(m x)$, and we define the countable set \mathcal{H} by:

$$\mathcal{H} = \left\{ \sum_{j=0}^{r} a_j \, \chi_m(x-q_j) \; ; \; r \in \mathbb{N}, \; m \in \mathbb{N}, \; a_j \in \mathbb{Q}_+, \; q_j \in \mathbb{Q}^d \right\} \; .$$

For $h \in \mathcal{H}$, the function: $t \longrightarrow \mu_t(h)$ is the difference of two increasing functions, and hence admits a countable set Δ_h of discontinuities. We set $\Delta = \bigcup_{h \in \mathcal{H}} \Delta_h$. Then Δ is a countable subset of \mathbb{R}_+ , and $t \longrightarrow \mu_t(h)$ is continuous at any $s \notin \Delta$, for every $h \in \mathcal{H}$. Now, it is easy to see that \mathcal{H} is dense in $C_c^+(\mathbb{R}^d)$ in the following sense: for every $\varphi \in C_c^+(\mathbb{R}^d)$, there exist a compact set $K \subset \mathbb{R}^d$ and a sequence $(h_n)_{n\geq 0} \subset \mathcal{H}$ such that:

$$\forall n, \text{ Supp } h_n \subset K \text{ and } \lim_{n \to \infty} h_n = \varphi \text{ uniformly}$$

Consequently, $t \longrightarrow \mu_t$ is vaguely continuous at any $s \notin \Delta$, and, since measures μ_t are probabilities, $t \longrightarrow \mu_t$ is also weakly continuous at any $s \notin \Delta$.

We may write $\Delta = \{d_j ; j \in \mathbb{N}\}$. For $n \in \mathbb{N}$, we denote by $(k_l^{(n)}, l \ge 0)$ the increasing rearrangement of the set:

$$\{k \, 2^{-n} ; k \in \mathbb{N}\} \cup \{d_j ; 0 \le j \le n\}$$
.

We define $(\mu_t^{(n)}, t \ge 0)$ by:

$$\mu_t^{(n)} = \mu_{k_l^{(n)}}$$
 if there exists l such that $t = k_l^{(n)}$,

and by:
$$\mu_t^{(n)} = \frac{k_{l+1}^{(n)} - t}{k_{l+1}^{(n)} - k_l^{(n)}} \mu_{k_l^{(n)}} + \frac{t - k_l^{(n)}}{k_{l+1}^{(n)} - k_l^{(n)}} \mu_{k_{l+1}^{(n)}}$$
 if $t \in [k_l^{(n)}, k_{l+1}^{(n)}]$.

Lemma 4.2 The following properties hold:

- 1. For every $n \ge 0$, $(\mu_t^{(n)}, t \ge 0)$ is a peacock and the map: $t \longrightarrow \mu_t^{(n)} \in \mathcal{M}$ is continuous.
- 2. For any $t \ge 0$, $\sup\{\mu_t^{(n)}(|x|) ; n \in \mathbb{N}\} < \infty$.
- 3. For any $t \ge 0$, the set $\{\mu_t^{(n)}; n \in \mathbb{N}\}$ is uniformly integrable.
- 4. For $t \ge 0$, $\lim_{n\to\infty} \mu_t^{(n)} = \mu_t$ in \mathcal{M} .

Proof Properties 1 and 4 are clear by construction. Property 2 (resp. property 3) follows directly from property 2 (resp. property 3) in Proposition 2.2.

By Theorem 3.2, there exists, for each n, a right-continuous martingale

 $(M_t^{(n)}, t \ge 0)$ which is associated to $(\mu_t^{(n)}, t \ge 0)$. For any $r \in \mathbb{N}$ and $\tau_r = (t_1, \dots, t_r) \in \mathbb{R}^r_+$, we denote by $\Pi_{\tau_r}^{(r,n)}$ the law of $(M_{t_1}^{(n)}, \dots, M_{t_r}^{(n)})$, a probability measure on $(\mathbb{R}^d)^r$.

Lemma 4.3 For every $\tau_r \in \mathbb{R}^r_+$, the set of probability measures: $\{\Pi^{(r,n)}_{\tau_r}; n \in \mathbb{N}\}$ is tight.

Proof As in Lemma 3.1, for p > 0,

$$\Pi_{\tau_r}^{(r,n)}(|x|_r \ge p) \le \frac{1}{p} \sum_{j=1}^r \mu_{t_j}^{(n)}(|x|),$$

and by property 2 in Lemma 4.2,

$$\lim_{p \to \infty} \sup_{n \ge 0} \prod_{\tau_r}^{(r,n)} (|x|_r \ge p) = 0$$

_	
_	

Let now \mathcal{U} be an ultrafilter on \mathbb{N} , which refines Fréchet's filter. As a consequence of the previous lemma, for every $r \in \mathbb{N}$ and every $\tau_r \in \mathbb{R}^r_+$, $\lim_{\mathcal{U}} \Pi^{(r,n)}_{\tau_r}$ exists for the weak convergence and we denote this limit by $\Pi^{(r)}_{\tau_r}$. By property 4 in Lemma 4.2, $\Pi^{(1)}_t = \mu_t$. There exists a process $(M_t, t \ge 0)$ such that, for every $r \in \mathbb{N}$ and every $\tau_r = (t_1, \cdots, t_r) \in \mathbb{R}^r_+$, the law of $(M_{t_1}, \cdots, M_{t_r})$ is $\Pi^{(r)}_{\tau_r}$. In particular, this process $(M_t, t \ge 0)$ is associated to $(\mu_t, t \ge 0)$.

Lemma 4.4 The process $(M_t, t \ge 0)$ is a martingale.

Proof The proof is quite similar to that of Lemma 3.2, but we give the details for the sake of completeness. We recall the notation:

$$\forall p > 0, \ \forall x \in \mathbb{R}^d, \ \varphi_p(x) = \left(1 \lor \frac{|x|}{p}\right)^{-1} x$$

Let $0 \leq s_1 < s_2 < \cdots < s_r \leq s \leq t$ be elements of \mathbb{R}_+ , and let $f \in C_b((\mathbb{R}^d)^r)$. We set: $\|f\|_{\infty} = \sup\{|f(x)| ; x \in (\mathbb{R}^d)^r\}$. Then, for every n,

$$\mathbb{E}[f(M_{s_1}^{(n)},\cdots,M_{s_r}^{(n)})\,M_t^{(n)}] = \mathbb{E}[f(M_{s_1}^{(n)},\cdots,M_{s_r}^{(n)})\,M_s^{(n)}] \,.$$

On the other hand,

$$\begin{aligned} & \left| \mathbb{E}[f(M_{s_1}, \cdots, M_{s_r}) \varphi_p(M_t)] - \mathbb{E}[f(M_{s_1}, \cdots, M_{s_r}) M_t] \right| \\ & \leq \| f \|_{\infty} \mu_t \left(|x| \, \mathbf{1}_{\{|x| \ge p\}} \right), \text{ for every } p > 0, \end{aligned}$$

$$\begin{aligned} & \left| \mathbb{E}[f(M_{s_1}^{(n)}, \cdots, M_{s_r}^{(n)}) \,\varphi_p(M_t^{(n)})] - \mathbb{E}[f(M_{s_1}^{(n)}, \cdots, M_{s_r}^{(n)}) \, M_t^{(n)}] \right| \\ & \leq \| f \|_{\infty} \,\mu_t^{(n)} \left(|x| \, \mathbf{1}_{\{|x| \ge p\}} \right), \quad \text{for every } n \text{ and every } p > 0, \end{aligned}$$

and likewise, replacing t by s. Moreover,

$$\lim_{\mathcal{U}} \mathbb{E}[f(M_{s_1}^{(n)},\cdots,M_{s_r}^{(n)})\varphi_p(M_t^{(n)})] = \mathbb{E}[f(M_{s_1},\cdots,M_{s_r})\varphi_p(M_t)],$$

and likewise, replacing t by s. Finally, we obtain, for p > 0,

$$\begin{split} & \left| \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) X_t] - \mathbb{E}[f(X_{s_1}, \cdots, X_{s_r}) X_s] \right| \\ & \leq 2 \| f \|_{\infty} \sup_{n \geq 0} \left[\mu_t^{(n)} \left(|x| \, \mathbf{1}_{\{|x| \geq p\}} \right) + \mu_s^{(n)} \left(|x| \, \mathbf{1}_{\{|x| \geq p\}} \right) \right] \,, \end{split}$$

and, by property 3 in Lemma 4.2, the desired result follows, letting p go to ∞ .

This lemma completes the proof of Theorem 4.1.

Acknowledgment We are grateful to Marc Yor for his help during the preparation of this paper.

References

- [CFM] P. Cartier; J.M.G. Fell; P.-A. Meyer. Comparaison des mesures portées par un convexe compact. Bull. Soc. Math. France, 92 (1964), p.435-445.
- [DM] C. Dellacherie; P.-A. Meyer. Probabilités et potentiel, Chapitres V à VIII, Théorie des martingales. Hermann (1980).
- [D] J.L. Doob. Generalized sweeping-out and probability. J. Funct. Anal., 2 (1968), p. 207-225.
- [HPRY] F. Hirsch; C. Profeta; B. Roynette; M. Yor. *Peacocks and associated martingales, with explicit constructions*. Bocconi & Springer Series, vol. 3, Springer (2011).
- [HR] F. Hirsch; B. Roynette. A new proof of Kellerer's theorem. Prépublication Université d'Evry, nº 323, 09/2011 (2011).

- [K] H.G. Kellerer. Markov-Komposition und eine Anwendung auf Martingale. Math. Ann., 198 (1972), p. 99 - 122.
- [L] G. Lowther. Fitting martingales to given marginals. http://arxiv.org/abs/0808.2319v1 (2008).
- [S] V. Strassen. The existence of probability measures with given marginals. Ann. Math. Stat. 36 (1965), p. 423-439.