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ABSTRACT
A modern direction in steganography calls for embedding
while minimizing a distortion function defined in a suffi-
ciently complex model space. In this paper we show that,
quite surprisingly, even a high-dimensional cover model does
not automatically guarantee immunity to simple attacks.
Moreover, the security can be compromised if the distor-
tion is optimized to an incomplete cover model. We demon-
strate these pitfalls with two recently proposed stegano-
graphic schemes and support our arguments experimentally.
Finally, we discuss how the corresponding models might be
modified to eliminate the security flaws.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Security, Algorithms, Theory

Keywords
Cover model, overtraining, HUGO, distortion, steganalysis

1. INTRODUCTION
There appears a simple recipe how to construct secure

steganographic systems – adopt a model for the cover source
and make the embedding preserve it exactly. This can, how-
ever, be achieved only for very simple cover models that do
not describe empirical sources, such as digital images, well.
For more complex (high-dimensional) models, the underly-
ing distributions of cover and stego objects cannot be accu-
rately estimated due to lack of data.1 A different and rather
1The number of samples increases exponentially with model
dimensionality.
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promising direction is to use complex models but abandon
the goal of exactly preserving the cover distribution and the
need to sample it. Instead, the embedding minimizes a dis-
tortion function in the model space defined to correlate with
statistical detectability. This philosophy is somewhat remi-
niscent of classification using support vector machines where
one maximizes a margin between examples from both classes
instead of estimating the underlying distributions and con-
structing a likelihood ratio test.

The first embedding scheme that dared to approximately
preserve a complex cover model was the Feature-Correction
Method (FCM) [14]. After adopting a model for images
(selecting a feature space), a given payload was embedded
while minimizing the distortion induced in the feature space
and by introducing additional changes to bring the feature
vector near its original position.2 The FCM, however, has
one familiar disease – even though the embedding could be
made significantly less detectable with steganalyzers using
the same feature space, it became in fact more detectable
in alternative feature spaces that could even be just slight
modifications of the original feature space. The steganog-
raphy was “overtrained” to a cover model that was not a
complete statistical description of the cover source.

Aware of this deficiency, the authors of [18] designed what
can be interpreted as a more advanced version of the FCM
without the feature correction with a cover model of di-
mensionality 107 to make the model “more complete” and
make it hopefully impossible for Eve to detect embedding
by working outside the model. The algorithm, whose name
is HUGO (Highly Undetectable steGO), is a case of the so-
called minimum-embedding-impact steganography that em-
beds a given payload while minimizing the impact of in-
troduced modifications measured using a suitably defined
distortion function. As long as the distortion corresponds
to statistical distinguishability, steganography cast within
this framework formally becomes source coding with a fi-
delity criterion for which near-optimal coding schemes were
developed [6, 4]. HUGO was used in the steganalysis con-
test BOSS (Break Our Steganographic System) conceived
as Alice’s challenge to Eve. The first contribution of this
paper reveals an unexpected weakness of HUGO caused by
an abrupt end of the model that enables Eve to build a sim-
ple low-dimensional detector with unusual properties: the
detection accuracy is almost flat w.r.t. payload and the
detector is more accurate on highly textured images than

2A more detailed extensive study of the FCM appeared re-
cently in [3].



on images with a smooth content. We also show that this
weakness can be easily prevented by adjusting HUGO’s em-
bedding parameters.

The steganographic security of stegosystems built from
the principle of minimum impact depends on how well the
distortion captures the statistical impact of embedding. A
general method for designing distortion functions that cor-
relate with statistical detectability was recently introduced
in [5]. The authors proposed to learn the parameters of the
distortion function (essentially a look-up table) by minimiz-
ing the margin of a linear support vector machine (L-SVM)
on a sample of cover and stego image features. One inter-
esting result of this work was a new algorithm for the JPEG
domain whose security as tested using blind steganalyzers on
known feature spaces, was shown to be significantly better
when compared to the state of the art. The second contribu-
tion of this paper is another surprising revelation that this
new algorithm with optimized distortion is, in fact, highly
detectable using an appropriately enlarged cover model of a
relatively low dimension. The steganography is again over-
trained to an incomplete model, allowing Eve to mount an
accurate attack.

This paper is organized as follows. In the next section,
we introduce the notation and summarize the methodology
adopted in all our steganalysis experiments. Selected ele-
ments of the HUGO algorithm relevant to this work are de-
scribed in Section 3, where we also point out a weakness of
HUGO’s model and study its effect on statistical detectabil-
ity experimentally for different embedding parameters and
payloads. Section 4 starts with a discussion of the method-
ology for optimizing the distortion function as introduced
in [5]. Then, a low-dimensional feature space is introduced
and shown to detect embedding with optimized distortion
functions with very high accuracy. Each experimental sec-
tion is closed with a discussion on how the model flaw ex-
ploited in the attack can be eliminated and the security of
the algorithm thus improved. The paper is summarized in
Section 5.

2. NOTATION AND SETUP
Everywhere in this article, lower-case boldface symbols are

used for vectors and capital-case boldface symbols for matri-
ces or higher-dimensional arrays. The symbols X = (Xij) ∈
X = In1×n2 and Y = (Yij) ∈ X will always represent either
pixel values of grayscale cover and stego images with n =
n1n2 pixels (I = {0, . . . , 255}) or quantized DCT coefficients
in the corresponding JPEG files (I = {−1023, . . . , 1024}).
For any x ∈ R and T > 0, we define truncT (x) = x for
x ∈ [−T, T ] and truncT (x) = T sign(x) otherwise. The sym-
bol �x� stands for the smallest integer larger than or equal
to x.

All experiments in this paper will be carried out on two
databases of grayscale images: CAMERA and BOSSbase.
CAMERA contains 6, 500 images originally taken by 22 digi-
tal cameras in their RAW format, resized so that the smaller
side was 512 pixels, converted to grayscale, and compressed
using the Matlab command ’imwrite’ with JPEG quality fac-
tor 75. BOSSbase consists of 9, 074 images taken with seven
digital cameras in their RAW format, converted to grayscale,
and resized/cropped to 512 × 512 using the script provided
by the BOSS organizers [7]. All steganalyzers are binary
classifiers implemented using libSVM [2] as Gaussian SVMs
(G-SVMs) for each case of cover/stego images (for each pay-

load). The hyperparameters C and γ (the penalty and ker-
nel width) of the G-SVMs were determined by a search
on the following grid: GC × Gγ , GC = {10i|i = 0, . . . , 5},
Gγ = {2j/d|j = −4, . . . , 3}, where d is the feature dimen-
sionality. All experiments are realized by randomly splitting
the database into two halves, training on one half and test-
ing on the other half. The detection performance is reported
as the minimal total error PE � minPFA

1
2 (PFA +PMD(PFA))

averaged over ten independent database splits; PFA and PMD
are the probabilities of false alarm and missed detection and
PMD(PFA) makes the dependency of PMD on PFA explicit as
both are functions of a single threshold parameter of the
classifier.

3. ABRUPT MODEL END IN HUGO
In this section, we analyze the HUGO algorithm with the

same settings as in the BOSS competition. First, we point
out a weakness in its model and then demonstrate its effect
on detectability through a series of experiments. Finally, we
show that the weakness can be easily removed by adjust-
ing HUGO’s embedding parameters. This contribution was
inspired by one of the features proposed to attack HUGO
in [11]. The authors, however, did not analyze why the fea-
ture was so effective for detecting HUGO neither did they
make any connections with a flaw in HUGO’s model.

3.1 HUGO’s model
Starting with a cover image X, HUGO represents it with

a feature vector computed from four three-dimensional co-
occurrence matrices obtained from differences of horizon-
tally, vertically, and diagonally neighboring pairs of pixels.
Using d = (d1, d2, d3) ∈ T3 = {−T, . . . , T }3, the horizontal
co-occurrence matrix is defined as:

C→
d = Pr(D→

i,j = d1, D→
i,j+1 = d2, D→

i,j+2 = d3), (1)

where D→
i,j = truncT (Xi,j − Xi,j+1), i = 1, . . . , n1, j =

1, . . . , n2 − 2, and Pr(·) stands for a sampled probability
distribution. The vertical, diagonal, and minor diagonal
matrices are defined similarly. Denoting the co-occurrence
matrix computed from X in direction k ∈ {→, ←, ↑, ↓} as
CX,k

d , d ∈ T3, the feature vector is (FX, GX) ∈ R
2(2T +1)3

with

FX
d =

∑
k∈{→,←,↑,↓}

CX,k
d ,

GX
d =

∑
k∈{↘,↖,↙,↗}

CX,k
d . (2)

The distortion function that is minimized in HUGO is
a weighted L1-norm between the cover and stego feature
vectors:

D(X, Y) =
T∑

d∈T3

[
w(d)

∣∣FX
d − FY

d
∣∣ +

+w(d)
∣∣GX

d − GY
d

∣∣] , (3)

where the heuristically defined weights

w(d) =
(√

d2
1 + d2

2 + d2
3 + σ

)−γ

(4)

quantify the detectability of an embedding change in the dth
element of F and G. In (4), σ and γ are scalar parameters
with values σ = 1 and γ = 1.
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Figure 1: The number of BOSSbase images with
histogram bin h90 > i.

The secret message is embedded by modifying pixels by
±1 while minimizing the distortion (3) using syndrome-trellis
codes [6].

3.2 Model weakness
The default setting for the threshold T used in (3) was

T = 90, which means that the embedding approximately
preserves a 2(2T + 1)3 = 11, 859, 482-dimensional feature
vector. HUGO designers have likely opted for such a high
dimension to make it as hard as possible for Eve to mount an
attack. Indeed, the individual co-occurrence bins with |d| >
90 are mostly empty or very sparsely populated and the
steganalyst cannot use them to make any reliable inference
about the presence of a secret message. However, this does
not mean that the marginals of the feature vector (2) will
necessarily be sparsely populated as well.

For image X, let us define the vector hX
i , i = 0, . . . , 255,

as the total number of pixel pairs adjacent either in the hori-
zontal, vertical, diagonal, or minor-diagonal direction whose
difference in absolute value is equal to i. Figure 1 shows
the total number of cover images X from BOSSbase with
hX

90 ≥ i as a function of i. For example, there are 3, 799
images with hX

90 ≥ 100. Because pixel pairs with differences
below 90 are treated differently by the embedding algorithm
than pairs with differences above 90, the histogram contains
a detectable artifact around the value of 90, where HUGO’s
model ends. This is confirmed in Figure 2 where we show
the histogram bins of cover and stego images (HUGO with
payload 0.4 bpp) averaged over all BOSSbase images. Note
that the bins hX

89 and hX
90 decrease while hX

91 and hX
92 in-

crease after embedding. This is because the difference 90 is
more likely to be changed to 91 than to 89 as this change
is less costly, increasing thus the bin 91. Since, 89 receives
mostly values from 88 rather than from 90 it decreases. Fi-
nally, since the change from 91 to 92 is less costly than to
90 (which is within the model), 91 changes more often to 92
than to 90, further increasing 92 and decreasing 90.

Figure 3 shows, that the two-dimensional feature vector
(hX

90, hX
91) already has a non-trivial distinguishing power.

Note that better detection with this feature vector will be
obtained for images with higher counts in these two bins,
which are images with noise, textures, and edges. On the
contrary, images with mostly smooth content contain fewer
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Figure 2: Histogram bins hX
i , i = 83, . . . , 98 for cover

images (dots) and hY
i for stego images embedded

with HUGO with payload 0.4 bpp (crosses) averaged
over all BOSSbase images.
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Figure 3: Histogram bin hX
91 versus hY

90 for cover
(dots) and stego images (crosses) with payload 0.4
bpp for all BOSSbase images X.

pixel pairs with difference 90 and will thus be less reliably
detected.

Since the effect of the model end at 90 “spills over” to the
neighboring bins, the detection can be improved by includ-
ing more than just two bins:

hX = (hX
90−r, . . . , hX

91+r), r ≥ 0. (5)

Even though the bins outside of the interval [89, 93] do
not practically change, they may still be very useful as ref-
erences for the classifier. While we did observe a drop in the
classification error PE with r increasing up to approximately
r = 10, the difference when using r = 1 (four-dimensional
feature) and r = 10 (24-dimensional feature) was less than
1% depending on the payload. The first column in Table 1
shows the detection accuracy PE on BOSSbase for six rela-
tive payloads α ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}bpp. Note that
the error is nearly constant w.r.t. to the payload, which is
highly unusual for a detection statistic. We explain this pe-
culiar behavior by HUGO’s adaptive embedding mechanism
– smaller payloads introduce a higher percentage of changes
in textured areas and around edges where the feature vec-
tor (5) is effective.



T = 90 T = 255
α [bpp] hX SQUARE SQUARE+hX hX SQUARE SQUARE+hX

.05 .3361 .4423 .3233 .4950 .4430 .4432

.10 .3288 .4042 .2911 .4975 .4006 .3993

.20 .3082 .3287 .2254 .4973 .3263 .3262

.30 .2959 .2647 .1648 .4974 .2601 .2630

.40 .2941 .1958 .1284 .4984 .2012 .2008

.50 .2851 .1534 .0926 .4956 .1545 .1468

Table 1: Detection error PE for six payloads and two settings of HUGO when using the histogram feature
(dim 4), the SQUARE feature (dim 338), and a combination of both (dim 342).

Since the feature vector (5) detects embedding in images
that exhibit a higher level of noise and texture, it is tempting
to see how well HUGO can be detected when combining the
four histogram features with those that better detect em-
bedding in smooth regions. We use the following SQUARE
features that are similar in spirit to those described in [9]
and also in [11].

To obtain the SQUARE feature vector for image X, we
first compute a noise residual by convolving X with a sym-
metrical square kernel K and then truncate the result with
T = 2:

R = trunc2(K � X). (6)
One horizontal, CR,→, and one vertical, CR,↓, four-dimen-

sional co-occurrence matrix from R are formed. For exam-
ple, the horizontal co-occurrence is defined as expected with
d ∈ T4:

CR,→
d = {(i, j)|Ri,j = d1, Ri,j+1 = d2,

Ri,j+2 = d3, Ri,j+3 = d4}, (7)

with the vertical version defined analogically. The range of
indices i, j in (7) is adjusted so that both Ri,j and Ri,j+3
are defined.

The following two kernels will be used in this paper:

K3 =

( −1 2 −1
2 −4 2

−1 2 −1

)
, (8)

K5 =

⎛
⎜⎜⎝

−1 2 −2 2 −1
2 −6 8 −6 2

−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1

⎞
⎟⎟⎠ . (9)

The kernel K3 has been used for steganalysis in the past
(e.g., [12, 1]) and is a good approximation of a translational-
invariant linear filter that best approximates local content
in the least-square sense. The larger filter was arrived at ex-
perimentally by observing the steganalysis error on HUGO
images embedded with payload 0.4 bpp on BOSSbase. It
seems to nicely complement (8).

Each co-occurrence matrix, CR,→ and CR,↓, has (2T +
1)4 = 625 elements. We further reduce the dimensional-
ity to 169 by using the sign symmetry3 and the directional
symmetry of natural images:

C̃d ← Cd + C−d, (10)

Ĉd ← C̃d + C̃←−d , (11)
3Sign-symmetry means that taking a negative of an image
does not change its statistical properties.

for all d ∈ T4, where
←−
d � (d4, d3, d2, d1). Thus, the final

feature vector, (ĈR,→
d , ĈR,↓

d ), consists of two symmetrized
co-occurrence matrices and has a total dimensionality 2 ×
169 = 338. The symmetrization makes the resulting detec-
tion statistic more robust and thus improves the detection.
Because the threshold in the definition of the SQUARE fea-
tures is T = 2, they are more likely to detect images with
smooth content rather than textured/noisy images. Thus,
we expect the performance of SQUARE and the four his-
togram features to be complementary.

Table 1 contains all results of detecting HUGO in im-
ages of BOSSbase. As expected, the histogram features
significantly improve the performance of SQUARE. For ex-
ample, for payload 0.4 bpp, which was used in the BOSS
competition, the detection error decreases from 19.58% for
SQUARE to 12.84% after adding only four additional his-
togram features. This confirms our analysis above that the
histogram features and the SQUARE features have approx-
imately complementary performance. Also note that the
gain due to the histogram features w.r.t. SQUARE de-
creases with decreased payload. It is quite remarkable that
a mere 342 relatively simple features can detect HUGO with
payload 0.4 bpp more accurately than any other attack on
HUGO published so far [9, 8, 16, 11]. Finally, as the right
half of the table shows, when the threshold used in HUGO’s
distortion measure (3) is set to T = 255,4 the model flaw
disappears and the histogram features become completely
ineffective.

4. OVERTRAINED DISTORTION
FUNCTION

Currently, the most successful approach to building stego-
systems for empirical cover sources is to embed while mini-
mizing a distortion function [13, 20, 18, 4, 6]. The security
depends primarily on how well the distortion actually mea-
sures statistical detectability. In [5], the authors showed
how to minimize detectability by parametrizing the distor-
tion and determining the best parameters by optimization.
The objective function was the margin of a linear SVM de-
termined from 80 pairs of cover and stego images represented
in the 548-dimensional CC-PEV model (feature) space [15]
chosen as a reasonable representative of a current state-of-
the-art steganography model. The optimized distortion was
used to construct a new JPEG steganography algorithm,
which we refer to as MOD (Model Optimized Distortion).
To show that the distortion was not overtrained to a fixed
4This can be achieved by simply running the HUGO simu-
lator with the switch --T.



model, the authors tested MOD with the CC-PEV set with
a slightly different cropping in calibration as well as with
the Cross-Domain Feature set (CDF) obtained by merging
CC-PEV and the 686-dimensional SPAM vector [17] com-
puted from images represented in the spatial-domain. MOD
was reported to be significantly more secure than the nsF5
algorithm [10].

While the parametrization of the distortion function was
chosen sufficiently rich (see below), the MOD algorithm was
optimized to make changes undetectable within the CC-
PEV model. While this model considers both inter- and
intra-block dependencies among DCT coefficients by form-
ing co-occurrence matrices, it does so only for a rather lim-
ited range. In this section, we show that by enlarging the
corresponding parts of the CC-PEV model the MOD algo-
rithm quickly becomes highly detectable and, quite para-
doxically, less secure than the heuristically designed nsF5.

4.1 Optimized costs
In the MOD algorithm, the cost ρij of changing a DCT

coefficient Xi,j by ±1 is determined by its immediate intra-
and inter-block neighborhood:5

Nir = {Xi+8,j , Xi,j+8, Xi−8,j , Xi,j−8}, (12)
Nia = {Xi+1,j , Xi,j+1, Xi−1,j , Xi,j−1}. (13)

It is determined as a sum

ρij =
∑

z∈Nia

(θ(ia)
Xi,j −z)2 +

∑
z∈Nir

(θ(ir)
Xi,j −z)2, (14)

where θ = (θ(ir), θ(ia)) is a vector of 2(2Δ+1+1) inter- and
intra-block cost parameters:

θ(ir) = (θ(ir)
−Δ, . . . , θ

(ir)
Δ , θ

(ir)
• ), (15)

θ(ia) = (θ(ia)
−Δ, . . . , θ

(ia)
Δ , θ

(ia)
• ). (16)

Furthermore, we adopt the convention θ
(ia)
z = θ

(ia)
• , θ

(ir)
z =

θ
(ir)
• whenever |Xi,j −z| > Δ. The subscript of each parame-

ter corresponds to the difference between Xi,j and its imme-
diate neighbor. For example, one would expect that |θ(ir)

k |
would be larger for small |k| and vice versa, reflecting the
fact that changes in smooth regions should be more costly
than in textured areas. The value of Δ controls the size of
the parameter space and the complexity of the distortion
function.

The authors optimized the parameters (15) and (16) for
Δ = 6 for the 548-dimensional CC-PEV cover model and
stego images embedded with payload 0.5 bpac (bits per
non-zero AC DCT coefficient). Two versions of the MOD
algorithm were introduced – one in which both intra- and
inter-block costs were optimized and the version in which
only the inter-block parameters were optimized while θ(ia) ≡
(0, . . . , 0). The latter one exhibited better security when
tested with the CDF feature set.

4.2 Security weakness due to incomplete
cover model

The CC-PEV cover model considers various dependencies
among DCT coefficients, including inter-block co-occurrence
matrices constrained to a rather limited range of {−2, . . . , 2}
5Xi,j ∈ {−1024, . . . , 1024} is the DCT mode (i mod
8, j mod 8) in the �i/8� , �j/8�th block.

−30 −20 −10 0 10 20 30
0

20

40

60

Changed DCT coefficient

H
is
to
gr
am

Figure 4: Histogram of changes to DCT coefficient
values introduced by the MOD stegosystem with
θ(ia) = 0 at payload 0.10 bpac. The chart displays the
average counts over 1,000 randomly selected images
from the CAMERA database.
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Figure 5: Detection error when steganalyzing the
MOD stegosystem with θ(ia) = 0 at payload 0.10
bpac using the IBC features (17) as a function of
the threshold T .

and Markov features [21] in the range {−4, . . . , 4} capturing
intra-block dependencies. A distortion function with pa-
rameters optimized w.r.t. this rather abruptly terminated
model will likely underestimate the importance of dependen-
cies among DCT coefficients outside of the range. Indeed,
the MOD algorithm with θ(ia) = 0 makes ∼ 95% of all em-
bedding changes to coefficients with absolute value greater
than 2 (see Figure 4). Such changes are unlikely to be de-
tected by the small-range co-occurrences in the CC-PEV
model. We confirm that this overtraining manifests in prac-
tice by first attacking the MOD algorithm with enlarged
inter-block co-occurrences (IBCs).

Formally, the feature vector is a sum of two two-dimensional
co-occurrence matrices:

CX
d = CX̃,→

d + CX̃,↓
d , (17)

where d ∈ {−T, . . . , T }2, X̃ = truncT (X), and

CX,→
d = {(i, j)|Xi,j = d1 ∧ Xi,j+8 = d2} (18)

CX,↓
d = {(i, j)|Xi,j = d1 ∧ Xi+8,j = d2}. (19)
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Figure 6: Detection error PE for the MOD algorithm and nsF5 when attacked with CC-PEV features and
the union of the IBC and EM models.

Algorithm Features .025 .050 .075 .100 .125 .150 .175 .200 .225 .250 .275 .300

θ(ia) =0 CC-PEV .4913 .4684 .4384 .4115 .3885 .3646 .3431 .3190 .2976 .2727 .2495 .2253
IBC .3214 .1331 .0453 .0196 .0128 .0098 .0095 .0092 .0090 .0092 .0088 .0093

IBC+EM .3228 .1382 .0502 .0215 .0138 .0105 .0102 .0095 .0103 .0109 .0100 .0095

θ(ia) =0 CC-PEV .4900 .4589 .4338 .4063 .3768 .3425 .3154 .2798 .2528 .2225 .1898 .1583
IBC .4066 .3117 .2339 .1711 .1330 .1068 .0849 .0706 .0619 .0560 .0506 .0470

IBC+EM .3694 .2451 .1589 .1074 .0737 .0580 .0471 .0434 .0391 .0348 .0340 .0309

nsF5 CC-PEV .4154 .3288 .2454 .1779 .1271 .0795 .0535 .0347 .0230 .0170 .0111 .0087
IBC .4697 .4400 .4102 .3776 .3384 .3009 .2625 .2276 .1972 .1726 .1485 .1278

IBC+EM .4406 .3695 .2971 .2380 .1943 .1415 .1020 .0829 .0671 .0537 .0438 .0362

Table 2: Detection error PE when attacking nsF5 and the MOD algorithm across different payloads (in bpac)
using CC-PEV, IBC, and the union IBC+EM.

With threshold T , the dimensionality of the IBC feature
vector (17) is (2T + 1)2. Figure 5 shows the results of de-
tecting the MOD stegosystem (the version with θ(ia) = 0)
at a fixed payload 0.10 bpac using the IBC features on the
CAMERA database. For comparison, the detection error,
PE, for CC-PEV features is depicted with a horizontal line.
Note that, according to our expectations, as soon as the IBC
features get out of the CC-PEV model (T = 2), the detec-
tion error starts rapidly decreasing and reaches PE ≈ 2%
with T = 10.

To complete the picture, we steganalyze both versions of
the MOD algorithm across a wider range of payloads using
the IBC features with T = 10 (model dimensionality 441).
The error rates shown in Table 2 should be compared to
those obtained using the CC-PEV features. The striking
difference clearly supports our argument that the MOD al-
gorithm has been overtrained to an incomplete cover model.
Note that the MOD algorithm optimized w.r.t. both inter-
and intra-block dependencies now becomes more secure than
the version optimized w.r.t. inter-block dependencies. This
is to be expected as the latter will naturally be more over-
trained to the incomplete CC-PEV model. Finally, notice
that the IBC features, so powerful against the MOD algo-
rithm, are not very effective against nsF5.

The accuracy of the attack can be further improved by
also extending the intra-block part of the CC-PEV feature
vector formed as a sum of four 9 × 9 conditional probability
matrices modeling the differences between absolute values
of neighboring DCT coefficients as a Markov process and
thresholded with T = 4 (see [21, 19] for details). We en-
large this statistical descriptor by increasing the threshold
to T = 10, obtaining thus a 441-dimensional feature vector,
which we will refer to as the EM (Extended Markov) vec-
tor. As Table 2 shows, the enlarged model further decreases
the security of the MOD algorithm optimized w.r.t. both
inter- and intra-block neighborhood to the extent that it is
no longer more secure than the nsF5 algorithm (for payloads
less then 0.2 bpac).

Figure 6 summarizes the detection of both versions of the
MOD algorithm and nsF5 using the CC-PEV and the 882-
dimensional union of the IBC and EM feature sets. Note
that the security of nsF5 was not compromised by attacking
it with IBC+EM features. In fact, the CC-PEV features
are more successful in attacking nsF5 because the IBC+EM
model lacks the diversity of the CC-PEV model and also
because most changes made by nsF5 are made to DCT co-
efficients already covered by the small-range co-occurrences
in the CC-PEV model.



Also note that the security of the inter-block-only op-
timized version of MOD (θ(ia) = 0) is now much lower
when compared to the case when both inter- and intra-block
weights are optimized. This should intuitively be the case as
considering both types of dependencies leads to a more accu-
rate (and complete) cover model that should be less prone to
overtraining. We conjecture that the security of the MOD
algorithm can likely be markedly improved by optimizing
the costs w.r.t. an enlarged CC-PEV model.

5. CONCLUSION
The most secure steganographic methods for empirical

covers today are designed to embed while minimizing a suit-
ably defined distortion function. However, designing the
distortion without introducing fatal flaws appears to be a
rather difficult task. We demonstrate this on two examples
of modern steganographic schemes – HUGO and a recently
proposed embedding algorithm for JPEG images with a dis-
tortion function optimized w.r.t. statistical undetectabil-
ity. In particular, we show that a high-dimensional com-
plex cover model does not automatically guarantee immu-
nity to simple attacks. Moreover, the security of an embed-
ding scheme employing a distortion function optimized to
maximize security can be completely compromised and the
embedding become highly detectable if its cover model is
incomplete.
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