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On data-based selection of summary measures from
repeated measurements
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Abstract. Univariate analysis of variance of a good summary measure, or
two, may provide a simple and effective way of analyzing repeated measure-
ments. It is shown here that selection of a linear summary measure on the ba-
sis of inspection of the total sample of response curves, leads to valid F -tests
in the subsequent analysis of variance. The selection may also be based on
residuals from a base model, rather than on the raw data. The treatments
should, however, be blinded in this summary measure selection step, that is,
the inspection of the sample of curves (or residuals) and the selection of the
summary measure may not rely on which responses stem from which treat-
ment groups. It is advocated as a convenient and often effective method to use
the first principal component from the total sample of curves as the first sum-
mary measure. The main mathematical result of the paper is a simple proof of
the validity of the F -tests for linear summary measures selected in this way,
provided data are multivariate normally distributed. Alternatively, permuta-
tion tests may be used to provide a distribution free reference distribution for
the F -statistic. Two examples illustrate the method.

1 Introduction

Repeated measurements, or longitudinal data, arise when the response measured
on each experimental unit in an experiment is a series of observations of the same
kind, for example the concentration of a certain hormone from blood samples taken
at specific times after a treatment. Thus, we are dealing with a multivariate re-
sponse, or a response vector. A full model-based analysis of an experiment result-
ing in repeated measurements may cause various kinds of trouble related to the
choice of covariance structure within the series. Aside from technical difficulties,
these comprise, in particular, high sensitivity of assessment of treatment effects to
the choice of covariance model, and low power of tests when a model with freely
varying covariance matrix is used for long series. A specific dilemma is that more
intensive measuring on each experimental unit may lead to poorer results because
of the many covariance parameters that must be estimated in a full multivariate
analysis.
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An alternative way is to use a so-called summary measure calculated from each
of the experimental units as a specific function of the response vector. This univari-
ate result is then subsequently used in an ordinary analysis of variance (ANOVA).
If two or three summary measures are used, they may be analyzed separately in an
ANOVA for each of them, jointly in a multivariate analysis of variance, or first uni-
variately for the first summary measure, then univariately for the second summary
given the first, in an analysis of covariance, etc.

A well-chosen summary measure often provides a good and simple way of
assessing treatment effects and other effects of interest. The problem for the re-
searcher is, however, to choose a good summary measure. It is the purpose of
the present article to advocate a default method of choosing the summary mea-
sure(s) based on principal components, and to prove that certain data-based selec-
tion methods are valid in the sense of leading to F -distributed test statistics in the
ANOVA, despite the initial data-based selection. This holds when the vectors of
responses are multivariate normal with any covariance matrix. If this assumption
is dubious, the reference distribution may alternatively be created by permutations,
again without introducing selection bias.

The key point is that it is perfectly valid to use the total sample of curves, re-
garded as a single population, as a basis for selection of the summary measure.
In particular, the first one or two principal components may be used as summary
measures. The validity of such a procedure may not be immediately evident as
the principal components depend on the data. The use of principal components is
based on the reasoning that when treatment effects of sufficiently large size are
present, they are likely to dominate also the total variation and cause the pattern of
the treatment effect to reflect itself in the summary measure.

In more general terms the result is that such data based selection of a linear
function of the response vector as a summary measure does not lead to selection
bias in the subsequent F -test in the analysis of variance. This is, of course, in sharp
contrast to a selection of summary measure based on variation between treatment
groups. The result is hardly surprising and, indeed, the proof is short, but our pur-
pose was to give precise conditions allowing more flexible use of the approach
than just the basic one, calculating the principal components from the given data.

The theorem and the approach advocated here only serve for testing treatment
effects and several other effects. If such effects seem to be present, methods be-
yond the scope of the present paper should be used for estimation of their size and
character.

Example 1 (Activity of rats). Thirty cages, each with two young rats were ran-
domly divided into three treatment groups. The treatment was daily exposure to
White Spirit levels 0 (control), 1 and 2, respectively, in relative units. The rats
were then tested monthly for activity by counting how many times the two rats
crossed a beam of light during a 57 hours test period. The rats were followed in
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Figure 1 The monthly log-counts for the activity of rats example. The three treatments (doses) are
displayed in one plot each. Points from the same cage are joined and the thick line represents mean.

this way for 10 months. Counts varied between 3962 and 24,197. The experimen-
tal unit is a cage, and for each of these the 10-dimensional response vector used
here is the natural logarithm of the count for each of the 10 months. Results for
one cage at the high dose are excluded here for reasons that are not relevant for the
present paper.

The data are shown in Figure 1, where all response profiles are shown for each
dose. These data, kindly provided by Grete Østergaard, are part of a series of ex-
periments some of which are described in Østergaard et al. (1992).

The structure of this experiment is simple, but the choice of model and method
for analysis may not be obvious since there are many possibilities. Some of these
are briefly shown in Section 4. The present proposal, to analyze the scores from
the first principal component (or first eigenvector) in a univariate analysis, auto-
matically picks up the main features, at least in the present case. Important for
the validity of the analysis, though, is that the principal component analysis is
carried out on the total sample of response vectors, rather than separating the
treatment groups as is done in the figure. It is a key point of the present paper
that the test of treatment effect thereby remains valid. Thus, in the present case,
a principal component analysis of the 29 10-dimensional vectors of logarithmic
counts is carried out, ignoring groups but with unspecified 10-dimensional mean
and variance–covariance. The 29 scores for the first component are then used in a
one-way analysis of variance for testing group effect.

Example 2 (Glucose). The effect of infusion of a peptide (PYY) on appetite, en-
ergy balance and metabolism was investigated on 12 obese and 12 normal-weight
persons; see Sloth et al. (2007) for further details. Here we use the plasma glu-
cose measurements which were taken just before infusion (time 0) and then every
30 minutes for three hours. The infusion was discontinued after 90 minutes and a
meal was given two hours later. The peptide was given in two forms, here referred
to as treatment A and B, and each subject tried both treatments in a randomized
crossover design. The total of 48 response curves are seen in Figure 2. The data,
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Figure 2 Plasma glucose levels from Example 2 for 24 subjects, 12 normal-weight (solid lines),
and 12 obese (dashed lines), each trying two treatments. The two treatments (forms of PYY) are
displayed in one plot each.

kindly provided by Birgitte Sloth, are part of the data material described in Sloth
et al. (2007).

Apart from the difficulty in seeing any treatment effects, it is seen that the re-
sponse changes dramatically when the meal is given at time 210 minutes. Care
should be taken not to assume homogeneity of variance over time when modeling
the data and furthermore some thought should be given to use an analysis focusing
mainly on the relevant part of the time period. Again the method suggested here,
using the first principal component, automatically puts more weight on the last part
of the period in the present case.

Use of principal components in conjunction with series of measurements is ad-
vocated by many authors in the field of functional data analysis. Thus, Jones and
Rice (1992) use principal components to display important features of large col-
lection of similar curves showing for example the curves corresponding to the
minimum, median and maximum of the scores associated with the first princi-
pal component. Rice and Silverman (1991) and Hall et al. (2006), and references
therein, focus mostly on the estimation and representation of the function. Another
application is the choice of covariates for covariance adjustment in growth curve
analysis; see Soler and Singer (2000). Combination with parametric effects is in-
vestigated in, for example, Capra and Müller (1997) and Silverman (1995), but in
a full and more complicated modeling approach. The approach discussed in the
present paper is simpler and less ambitious by not trying to estimate the functions,
but rather to extract the key features with the purpose of investigating their possi-
ble dependence on various factors. Even this point is an obvious idea and, at least,
implicit in the literature on longitudinal and functional data. The present paper
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adds, first, the conditions and proof for this procedure not to cause selection bias,
second, suggests that variation due to less relevant effects may be removed in the
calculation of principal components by use of the residuals from a basic model,
third, advocates this method as a good alternative to more complicated methods,
and fourth, recommends data inspection to be used in a proper way to select sum-
mary measures—a point often overlooked.

2 Main result

Let yi be the p-dimensional response vector from individual i = 1, . . . , n, and let
Y denote the corresponding n × p matrix. A linear summary measure is a one-
dimensional linear function,

Zi = cT yi,

weighing the response coordinates by the coefficients specified as the vector c. Fre-
quently used linear summary measures are the simple mean, area under the curve,
which is often almost equivalent to the mean, the average slope of the response
with time, and increase in response over a certain interval. Once the summary
measure has been chosen and calculated for each individual, the analysis may con-
tinue using analysis of variance, or linear models more generally. In particular, an
F -test may be obtained for treatment effect or for any other effect under consider-
ation, provided that it may be expressed as a linear hypothesis in a univariate linear
model with a univariate response for each individual.

The main result states that the selection of the vector, c, of coefficients defining
the summary measure may be based, in any way, on the variation between the
sample of curves without altering the F -distribution that would be obtained by a
univariate analysis of variance of the summary measure, if the coefficients were
given beforehand. This result requires a multivariate normal distribution of the
response vector and independence between individuals.

As our base model we use

Y = Xbβb + eb, (2.1)

where Xb is an n × q (design) matrix, βb is a q × p parameter matrix, and the
remainder e has independent rows with p × p variance matrix �b. The maximum
likelihood estimates are denoted β̂b and �̂b. The residuals from this model are

êb = Y − Xbβ̂b,

and it is the idea behind the base model that the variation between these residuals
are to be used for selection of the summary measure. This variation is defined as
the p × p matrix

SSb = êT
b êb
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consisting of sums of squares and cross products. The base model should be
thought of as a model containing only the effects that we want to correct for when
testing the hypothesis. Thus, the use of the residuals from the base model rather
than the raw observations permits elimination of certain uninteresting types of ef-
fects, for example of sex, before numerical or graphical inspection of the curves
for interesting features of variation is carried out to find good summary measures.

Next we consider our hypothesis model

Y = X0β0 + e0 (2.2)

which should contain the base model and which we wish to test against the model

Y = Xaβa + ea, (2.3)

where the subscript stands for “alternative.” Similar notation as above is used for
these models.

Now the summary measure is supposed to be chosen by inspection of the vari-
ation between the residual vectors from the base model, that is,

Zi(SSb) = c(SSb)
T Yi,

where the vectors Zi as well as c are written as functions of (SSb), while the
dependence of Zi on Yi is notationally depressed.

Let F(SSb) denote the usual univariate F -test with response variables Zi(SSb),
i = 1, . . . , n, for reduction of the linear model (2.3) to the model (2.2), both models
with p = 1. An expression for this F -statistic is

F(SSb) = cT (SS0 − SSa)c/(DF0 − DFa)

cT (SSa)c/DFa

,

where SS0 and SSa are defined analogously to SSb, c = c(SSb), DFa = n −
rank(Xa) and so on.

Theorem 2.1. Let three nested models be given as above, with Xb spanning a sub-
space contained in that spanned by X0 which again is contained in that spanned
by Xa . Let c(SSb) be any nonvanishing p-vector with coefficients that are functions
of SSb. If the hypothesis (2.2) holds with a multivariate normal distribution for e0,
then F(SSb) has an F -distribution with (DF0 − DFa,DFa) degrees of freedom,
unaffected by the choice of c(SSb).

Proof. Under the null-model (2.2) the statistic (β̂0,SS0) is complete sufficient and
hence, by Basu’s theorem, independent of any ancillary statistic. We continue by
proving that for any fixed coefficient vector c, the corresponding F -statistic Fc is
ancillary and consequently independent of SSb which is a function of SS0 and β̂0,
since β̂b is a function of β̂0. To prove the ancillarity of Fc note that the distribution
of Fc remains the same when the response vector is transformed by

Y → YA + X0b
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for any nonsingular p × p matrix A and any p-vector b. The ancillarity then fol-
lows because this group of transformations generates the entire model (2.2). This
completes the proof. �

From the proof it appears immediately that the result holds for any class of (test)
statistics of the form T (v) indexed by v in some arbitrary index set V , provided
that:

• T (v) is ancillary for the model (2.2),
• T (v) has the same distribution, PT say, for any v ∈ V ,
• the selected statistic, Ts(y), say, is defined as a choice of v depending only on

the sufficient statistic under the model (2.2), that is, Ts(y) = T (v(β̂0,SS0)).

The result is that the selected statistic, Ts(y) then also has distribution PT . This
extension is useful when the model includes random effects, for example, so that
test statistics may no longer follow the F -distribution.

3 Principal components as summary measures

The first principal component is that linear function of the response vector that has
the largest sample standard deviation relative to the length of the vector of coeffi-
cients. It may also be characterized as the first eigenvector of the sample covariance
matrix of the response vectors, or rather as the projection on this vector. If treat-
ment effect is substantial it may be expected to affect the total sample variance;
thus the first principal component is a reasonable candidate if a single summary
measure is to be chosen automatically.

Sometimes, however, the primary variation is due to differences between the
general response level of individuals, while effects of interest are rather reflected
in the shape than in the level of the curves. Then it may be useful to try also the
second principal component as summary measure. Since this is generally not inde-
pendent of the first component, the subsequent linear model analysis of the second
component should include the first component as a covariate to avoid having the
same treatment features showing up twice, or the two components should be an-
alyzed as a bivariate response in a multivariate analysis of variance, for example.
Whether to use one, two or possibly even three principal components is a matter
of judgement on the basis of inspection of the patterns of the response profiles,
again without regard to treatment groups, the number of profiles observed, and
knowledge of the response variable under investigation.

4 Examples

In the present section we briefly indicate how the suggested method works in the
two introductory examples. For comparison we start each of the examples with
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some results from more conventional analyses. It is not attempted to give a full
analysis of the data. In particular there are other aspects of the analysis than the
test of treatment effect.

Example 1 (Activity of rats (continued)). At least four or five different tests
for treatment effect fall within mainstream approaches. Starting with the summary
measures, the average activity over the entire period or the slope of a regression
line might be calculated for each cage, reflecting, respectively, the general level of
activity and the rate of decline of activity. One-way analysis of variance leads to
the P -value 0.068 for the activity level and 0.0062 for the slope, with the rate of
decline in the high-dose group being less than half of those of the other two groups.
An analysis of covariance of the slope with level as covariate may be preferred;
this gives the P -value 0.057 but should, of course, be seen in conjunction with the
analysis of the level.

Turning to models for the full longitudinal data a reasonable attempt may be
the multivariate one-way analysis of variance (MANOVA). The test for treatment
effect gives the P -value 0.0043. Supplementary month-by-month ANOVA reveal
that the differences occur mainly in months 6–9. This model uses a covariance
matrix with 55 parameters, which may be excessive. A more parsimonious model
may be preferred assuming variance homogeneity and modeling the correlation
with one or two parameters. For example, an autoregressive model of first order
run in the procedure Mixed in SAS/STAT Software Version 9.1 of the SAS System
for Windows gives the P -value 0.049 for main effect of treatment and 0.0027 for
the interaction between treatment and month.

In any case the results point towards a treatment effect which is most clearly
seen by the analysis of the slopes. A full analysis should be more thorough and
validate the longitudinal models carefully, but would lead to the same result. The
point here is that there are many choices to make, and the analysis may not always
be straightforward.

In comparison the first principal component from the sample of 29 10-
dimensional vectors represents 63% of the variation and has coefficients (or load-
ings)

0.05,0.11,0.12,0.24,0.36,0.40,0.41,0.36,0.39,0.41,

on the respective point in time. The summary measure obtained as the linear func-
tion of each response vector with these coefficients, enhances the period when
treatment differences are more pronounced. A one-way ANOVA using this sum-
mary measure gives the P -value 0.0167. This approach leads easily and directly to
a reasonable conclusion, although perhaps not to the same depth of investigation
as a more complete modeling. The analysis could, however, be extended with the
second principal component which has loadings

0.52,0.67,0.35,0.15,−0.09,−0.13,−0.13,−0.18,−0.15,0.19,
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so that the summary measure resembles a slope and gives the P -value 0.021 when
the first principal component is used as covariate.

Example 2 (Glucose (continued)). Of importance here is not only whether the
treatment effects differ, but whether they are the same in the two groups, that is,
whether treatment and group interact. We focus here on testing for such an interac-
tion. The crossover structure of this experiment is experimentally sensible and also
very common in nutritional studies, but complicates the analysis. It is not easy to
come up with a reasonable model for the covariance matrix of the vector of obser-
vations from the same individual, since it consists of two series of measurements.
The obvious variance heterogeneity due to the peak period makes it almost impos-
sible to find satisfactory models implemented in commonly used software. Fur-
thermore, the first measurement (at time 0) is a baseline measurement, unaffected
by the treatment, which we would like to use as a covariate in the model. The
conditioning on this first measurement further affects the covariance structure in
a heterogeneous manner. Some failed attempts were made to achieve convergence
for models with an unspecified covariance matrix for the series of measurements
combined with a random effect of subject. Discouraged by these difficulties the
two series from each subject were replaced by their differences. These difference
series, each representing treatment A versus treatment B and eliminating subject
main effects, were then analyzed in a MANOVA with baseline difference as co-
variate and with the two factors group and time together with their interaction.

The MANOVA resulted in the P -value 0.034 for the interaction between time
and group, and (after elimination of the interaction) in the P -value 0.20 for the
main effect of group. Notice that since these are effects on the treatment differ-
ences, they correspond to interactions with treatment in the original data. Taken
together these two tests give some indication of a group-dependent treatment ef-
fect varying over time. These P -values were calculated using the default method
in the procedure Mixed in SAS/STAT Software Version 9.1 of the SAS System
for Windows, for approximating degrees of freedom in the F -distribution. Use
of Satterthwaite’s method (Satterthwaite (1946)) gave very similar results, but the
Kenward–Roger correction (Kenward and Roger (1997)) gave the P -value 0.30
for interaction between group and time, followed by 0.39 for main effect of group,
thus giving no indication of any group effect at all.

As an alternative, avoiding these difficulties, principal components were calcu-
lated from the residuals from the base model

Y = μ(subject) + α(treatment) + β · baseline + e, (4.1)

fitted for each time point separately. Here e denotes the residual, μ and α are
arbitrary functions of the factor in question, and β is a constant. The first principal
component of the resulting residual vectors has coefficients

0.01,0.00,0.02,0.03,0.04,0.04,−0.02,−0.17,0.66,0.65,0.31,0.14
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for time 30, 60, . . . , 360 minutes. As expected this coefficient puts main weight on
the peak period seen in Figure 2.

The scores, obtained by multiplying each residual vector with the coefficient
vector, were then analyzed in a univariate analysis, and in particular an F -test was
calculated for the interaction between group and treatment. In the general terms of
Section 2 this means that the null model (2.2) was identical to the base model (2.1),
while the alternative model (2.3) also included the interaction term. The P -value
for the interaction, using a linear normal model, was 0.048, giving some indication
of a group-treatment interaction around the peak-time results.

From the estimates obtained from the univariate model for the first principal
component it appears that the obese subjects have a more pronounced peak with
treatment B than with treatment A, whereas the reverse is true for the normal-
weight persons. This could, of course, be a random finding since the P -value is
not very small.

5 Permutation tests

Once a summary measure has been chosen and a test statistic computed we need
a reference distribution for assessing the test statistic. The F -distribution is often
adequate, but if the assumptions leading to this distribution are in doubt a permu-
tation test may be used. For comparison of treatment groups this entails drawing a
number of random permutations of the response vectors so that they are allocated
at random to the treatment groups. As discussed below, permutation test may be
applied in more complex situations as well.

Since the permutation distribution is, by construction, conditional on the total
sample of response curves, the selection of the test statistic may clearly be done
on the basis of this total sample. Thus, even nonlinear statistics may be selected
for the permutation test, such as the ratio between the values at two specific time
points found as typical ‘peak times’ by inspection of the total sample of response
curves.

For the rat activity example consider again the F -statistic based on the scores
corresponding to the first principal component. The P -value obtained from 10,000
random permutations of these scores across the treatment groups was 0.0164, in
close agreement with the P -value 0.0167, obtained from the F -distribution. Notice
that the result is the same whether the eigenvectors, scores and F -statistics are
calculated before or after the permutation of the 29 rats.

For the glucose example the permutation test was carried out by randomly per-
muting the group allocation (obese or normal-weight) on the 24 subjects while
keeping the remaining variables unchanged. For the F -test statistic for interaction
between group and treatment in the previous section the permutation P -value was
0.046 based on 10,000 random permutations, again in good agreement with the
P -value 0.048 from the normal distribution model.
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Permuting only the group factor always means that the hypothesis tested is that
group allocation has no impact, no matter how the test statistic is chosen, but the
choice of test statistic is decisive for which alternatives the test is directed to-
wards and has power to detect. In the present case, the choice was to use the first
principal component as response vector, after elimination of effects of baseline
measurement, subject and treatment, and to consider the test for combined effect
of treatment and group. Since any main effect of group is absorbed into the sub-
ject effect, a significant result points towards an interaction between group and
treatment on the response profiles as represented by the first principal component.

6 Discussion

There are several possibilities of adapting the principal component method to in-
vestigate different effects of the various factors. Thus, if at some stage of the anal-
ysis the shape of the response series is of interest rather than their level, we do not
want main effects of between-subject factors to affect the result, assuming for the
moment that there is one series per subject. For that purpose we replace each series
by the incremental series obtained as the successive differences and then proceed
as before. A treatment effect on the first principal component, for example, then
means that treatment interacts with time, because neither an additive effect of time
nor of treatment would affect the summary measures by more than a common
constant. Similarly it was seen in Example 2 (the glucose data) how an interac-
tion between two between-series factors may be tested by suitable choice of the
hypothesis model. Finally, the choice of base model may eliminate uninteresting
effects, such as that of baseline, before the summary measure is derived.

Summarizing a series of measurements into one or two measures before further
analysis may seem like a waste of data and important information may, indeed, be
lost. There is also a potential gain, however, because well-chosen measures focus
on the key features of the data, thereby avoiding loss of power due to the use of
an omnibus test or due to estimation of many covariance parameters. The price is
that there may be features of the response profiles that are affected by treatment or
other factors, but which happen not to show up in the first principal component,
even asymptotically as the number of series increases. In practice, however, the
number of series is fixed and there is no way to guarantee that any perceivable
treatment effect is found.

Alternative methods may provide a more complete modeling of the data, but
they are not without problems as seen in Example 2 in Section 4. The hardest
problem is often the choice of covariance structure. A model assuming variance
homogeneity may well be unrealistic, especially if an initial (baseline) measure-
ment is used as covariate. More rich and realistic models may involve many pa-
rameters, especially with long or dense series of measurements, and this may in
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turn cause loss of power. On top of this, the theory of distributional approxima-
tions to the test statistics is not sufficiently well developed to give reliable results,
as was also seen in Section 4.

The arguments above are not intended to imply that the method of summary
measures, defined as principal components or otherwise, should always be used.
Varying time points between subjects is one situation for which principal com-
ponents are not suited, although summary measures still give valid results if time
points are the same, but some observations are missing at random. Another type
of situation, where principal components should not be used, occurs when the in-
teresting feature of each curve, say a peak, is displaced in time from one series
to another. A third type occurs when there is a sufficient number of replications
to analyze the curves more fully. The use of a principal component summary is,
however, a perfectly sound and often quite good alternative to more complicated
methods, the reliability of which may be hard to judge even for experts.

Appendix: Data used in the examples

Table 1 The data from Example 1: Activity of rats. Each line represents a cage with two rats. First
column (T) is treatment (exposure in ppm), the subsequent columns contain the monthly counts. Data
originate from Grete Østergaard, University of Copenhagen

Month

T 1 2 3 4 5 6 7 8 9 10

0 20584 15439 17376 14785 11189 10366 8725 9974 9576 6849
0 23265 16956 16200 12934 13763 11893 9949 10490 8674 7153
0 17065 12429 14757 10524 11783 8828 9016 9635 8028 8099
0 19265 19316 20598 16619 16092 13422 10532 10614 9466 9494
0 21062 14095 13267 12543 12734 12268 12219 11791 10379 8463
0 23456 10939 13270 14089 12986 13723 11878 13338 12442 10094
0 13383 11899 12531 15081 14295 13650 9988 11518 11915 7844
0 22717 22434 23151 13163 10029 10408 9119 10188 9549 11153
0 17437 13950 15535 14199 11540 9568 8481 9143 8117 5765
0 18546 12520 15394 10137 9218 7343 6702 7173 7257 5708

400 18536 16827 19185 12445 13227 10412 9855 9169 9639 6853
400 18831 14043 16493 12562 10397 8568 8599 8818 6011 5062
400 15016 13765 16648 14537 13929 10778 9897 9225 9491 5523
400 22276 15497 22024 15616 12440 11454 10290 9456 9567 7003
400 18943 14834 18403 16232 13085 12679 10489 9495 10896 8836
400 13598 10233 13392 10457 9236 8847 9445 9501 8509 5656
400 20498 22136 22094 19825 18157 11452 14809 14564 14503 10643
400 19586 12710 12745 7294 15757 15296 14097 14308 13933 10210
400 11474 8108 17714 16795 17364 16766 15016 13475 14349 8698
400 10284 10760 15628 10692 8420 5842 6138 10271 8435 4486
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Table 1 (Continued)

Month

T 1 2 3 4 5 6 7 8 9 10

800 18459 15805 19924 18337 24197 18790 19333 22234 18291 11595
800 16186 11750 16470 18637 14862 14695 14458 14228 12909 9079
800 9614 8319 11375 9446 13157 11153 10540 11476 8976 6123
800 15688 15016 20929 12706 17351 15089 14605 15952 14795 10434
800 15864 13169 20991 20655 19763 19180 19003 18172 15025 11790
800 17721 14489 19085 21333 17011 16148 15280 14762 15745 10477
800 17606 7558 15646 15194 13036 10316 8172 8977 8378 3962
800 15189 14046 14909 14713 14999 14201 13184 13073 14639 10330
800 16388 14538 17548 19416 22034 17761 14488 16068 14773 10595

Table 2 The data from Example 2: Glucose. Each line contains half-hourly plasma glucose con-
centrations (mmol/�) for one subject on one day. S denotes subject number and T denotes treatment
(variant of PYY). Data originate from Birgitte Sloth, Department of Human Nutrition, University of
Copenhagen

Time after start of infusion (min)

S Group T 0 30 60 90 120 150 180 210 240 270 300 330 360

1 lean A 4.90 4.65 4.95 4.75 4.86 4.97 4.75 4.81 7.46 8.87 5.06 4.36 4.73
2 lean A 4.78 4.71 4.70 4.65 4.60 4.68 4.60 4.61 4.96 6.92 5.41 4.43 4.28
3 lean A 5.10 5.20 5.25 5.30 5.22 5.11 5.25 5.06 7.80 5.86 4.47 4.61 5.10
4 lean A 5.05 5.24 5.06 5.02 5.24 5.16 4.95 5.00 7.45 6.10 4.54 4.43 5.29
5 lean A 4.91 4.86 4.70 4.72 4.64 4.65 4.46 4.78 7.22 6.44 4.39 3.02 3.43
6 lean A 5.24 5.31 5.32 5.23 5.31 5.30 4.41 5.11 7.37 4.01 4.73 5.54 5.76
7 lean A 5.09 5.18 5.19 5.23 5.21 5.10 5.17 5.27 7.15 6.18 4.85 5.27 5.57
8 lean A 5.23 5.20 5.09 5.19 4.98 5.16 4.98 5.09 6.50 6.19 6.42 6.50 5.71
9 lean A 5.12 5.26 5.23 5.34 5.29 5.29 5.26 5.16 6.20 8.44 7.78 5.98 5.44

10 lean A 5.11 5.18 4.94 4.89 4.90 4.90 4.90 4.92 5.94 4.54 3.75 3.70 4.28
11 lean A 5.26 5.43 5.17 5.17 5.16 5.11 5.08 5.27 7.24 5.04 4.88 5.18 5.38
12 lean A 4.92 4.79 4.95 4.93 5.26 5.24 5.35 5.37 7.52 9.69 7.22 5.36 5.13
13 obese A 5.17 5.18 5.24 5.20 5.15 5.23 5.12 5.02 6.69 6.86 5.31 5.24 5.33
14 obese A 5.39 5.30 5.14 5.08 4.95 5.00 5.01 4.85 5.77 6.01 5.42 4.95 5.08
15 obese A 5.37 5.41 5.38 5.45 5.36 5.19 5.26 5.22 7.11 6.96 5.86 5.91 5.72
16 obese A 5.02 5.20 4.91 5.07 5.05 4.95 4.71 4.91 6.01 8.27 6.34 5.13 5.09
17 obese A 5.91 6.02 5.91 5.79 5.70 5.41 5.38 5.18 6.18 7.33 4.93 6.64 5.44
18 obese A 6.15 6.21 6.13 6.06 5.99 5.82 5.76 5.66 7.54 7.60 6.82 5.91 5.86
19 obese A 5.54 5.56 5.53 5.38 5.28 5.13 5.32 5.15 6.10 6.68 6.18 5.68 5.63
20 obese A 5.53 5.53 5.48 5.49 5.47 5.55 5.49 5.40 6.29 8.54 4.78 5.52 3.07
21 obese A 4.88 4.81 4.75 4.72 4.77 4.82 4.65 4.78 7.59 9.16 4.82 6.87 6.41
22 obese A 5.80 5.61 5.53 5.70 5.33 5.44 5.25 5.23 6.80 6.75 5.77 4.30 5.02
23 obese A 5.25 5.09 5.22 5.06 5.14 4.20 4.95 3.86 6.61 6.47 4.90 4.79 5.02
24 obese A 5.19 5.02 5.00 5.00 4.95 4.95 4.99 4.92 6.07 7.02 5.43 4.93 4.83
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Table 2 (Continued)

Time after start of infusion (min)

S Group T 0 30 60 90 120 150 180 210 240 270 300 330 360

1 lean B 4.91 4.80 4.70 4.73 4.76 4.66 4.67 4.77 8.12 8.31 5.50 4.54 4.24
2 lean B 5.11 5.01 4.84 4.68 4.79 4.64 4.50 4.72 5.44 6.34 5.09 4.20 4.75
3 lean B 5.17 5.09 5.11 5.01 5.20 5.07 5.18 5.23 8.20 5.97 4.82 4.42 4.29
4 lean B 4.99 5.08 4.96 4.90 4.96 5.01 5.00 4.96 7.38 4.55 3.87 4.54 5.30
5 lean B 4.80 4.82 4.75 4.81 5.05 5.17 5.07 5.05 7.09 7.47 5.26 4.63 4.99
6 lean B 5.18 5.24 5.15 5.22 5.24 5.19 5.11 5.32 7.70 4.35 5.14 5.51 4.92
7 lean B 5.32 5.06 5.10 5.14 5.01 4.96 5.03 5.17 7.03 5.74 4.00 5.18 5.75
8 lean B 5.32 5.15 5.24 5.12 5.16 5.28 5.14 5.83 6.62 4.90 3.99 4.80 5.95
9 lean B 5.17 5.36 5.19 5.36 5.26 5.41 5.34 5.40 7.41 5.65 5.39 5.11 4.92

10 lean B 4.74 5.00 4.77 4.75 4.69 4.58 4.72 4.67 5.94 4.38 3.17 3.02 3.83
11 lean B 5.10 5.24 5.12 5.26 5.22 5.24 5.12 5.25 7.05 5.07 5.65 6.29 5.61
12 lean B 5.05 5.03 5.09 5.11 5.24 5.29 5.31 5.29 7.76 9.35 7.52 6.11 5.11
13 obese B 5.42 5.33 5.24 5.26 5.24 5.33 5.02 5.24 6.14 6.75 5.62 5.46 5.26
14 obese B 5.41 5.51 5.33 5.21 5.15 5.11 5.09 4.99 6.32 6.43 5.61 5.02 5.41
15 obese B 6.18 6.13 6.00 5.92 5.86 5.85 5.80 5.72 8.23 8.26 5.60 5.81 6.44
16 obese B 5.45 5.32 5.20 5.14 5.06 5.18 4.94 4.97 6.55 7.03 6.65 6.27 6.26
17 obese B 6.27 6.22 5.99 5.95 5.76 5.61 5.48 5.31 6.62 8.46 6.16 6.13 5.70
18 obese B 6.16 6.15 5.92 5.84 5.68 5.57 5.52 5.57 7.90 8.43 7.14 5.74 5.70
19 obese B 5.52 5.66 5.58 5.50 5.34 5.32 5.28 5.35 6.11 6.03 4.96 5.44 6.29
20 obese B 5.36 5.22 5.25 5.31 5.29 5.15 5.11 5.05 6.72 8.28 6.02 4.89 5.14
21 obese B 4.93 4.80 4.67 4.75 4.61 4.52 4.60 4.59 5.52 9.22 6.26 6.14 6.41
22 obese B 5.36 5.28 5.33 5.41 5.29 5.32 5.27 5.38 6.53 8.10 5.30 6.10 5.17
23 obese B 5.13 5.25 5.20 5.08 5.10 5.09 5.12 5.04 5.22 7.69 5.09 4.31 4.83
24 obese B 5.05 4.99 5.03 4.97 4.59 4.76 4.76 4.76 5.20 6.15 5.41 5.26 5.06
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