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Abstract Will we ever have a theory of data mining analogous to the relational
algebra in databases? Why do we have so many clearly different clustering algo-
rithms? Could data mining be automated? We show that the answer to all these
questions is negative, because data mining is closely related to compression and
Kolmogorov complexity; and the latter is undecidable. Therefore, data mining
will always be an art, where our goal will be to find better models (patterns)
that fit our datasets as best as possible.

Keywords Data mining · Compression · Kolmogorov complexity · Clustering ·
Classification · Forecasting · Outliers

1 Introduction

Will we ever have a theory of data mining, in the same way we have the rela-
tional algebra and calculus (Codd 1971) (or Ramakrishnan and Gehrke 2002)
for databases? Will we ever be able to automate the discovery of patterns, clus-
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ters, correlations? The first of these questions was raised in several recent KDD
panels.

We argue that data mining, in its general case, is equivalent to compres-
sion and Kolmogorov complexity, which is undecidable. We will focus on both
versions of data mining: supervised learning (classification, regression) and
unsupervised learning (pattern discovery, clustering). Additional data mining
tasks like forecasting and outlier detection are all closely related to the ones
above. For forecasting in a numerical time sequence, we need to do auto-regres-
sion and express the future as a function of the past. For outliers in a cloud of
n-dimensional data points, once we are able to somehow summarize (that is,
compress, or equivalently, describe succinctly) the vast majority of those points
we label the remainders as outliers.

Let us start with some examples to illustrate the concepts of Kolmogorov
complexity.

Example 1 (Outlier) Find the outlier in a cloud of 2-d points, as shown in Fig. 1.

Looking at the linear-linear scatter-plot of Fig. 1(a), we would argue that
the point labeled X is the outlier, since it is distant from all the other points.
Point X is at (1024, 1024). Figure 1(b) shows the same dataset in log-log scales.
Now, point Y seems like the outlier at (17, 17); all the other points are equi-
spaced, because their coordinates are powers of 2: (1, 1), (2, 2), . . ., (2i, 2i), for
1 ≤ i ≤ 10.

Once we are told that almost all the data points are at powers of 2, most
people would tend to consider point Y at (17, 17) as the outlier. Why?

Some people may justify their choice of Y, saying that the log-log scatter-plot
of Fig. 1(b) reveals more structure than its linear-linear counterpart; since point
Y violates this structure, that is the one that is the outlier.

This answer is still qualitative, but it can bring us one step closer to our final
destination. How do humans measure ‘structure’ and ‘order’? This is where
compression and Kolmogorov complexity help: The log-log scatter-plot is eas-
ier to describe: it consists of equi-spaced points, except for Y. Taking logarithms
helped us discover a pattern that was not obvious in the linear-linear plot.

A real example is shown in Fig. 2, in which the area is plotted against the
population of 235 countries of the world in 2001. Again, in linear-linear scales,
we see no major pattern except for a large cluster near the origin and a few
countries as outliers, that is, countries with large population or large area, or
both: China, India, Russia, Canada, the United States, China, Brazil, Austra-
lia. In log-log scales, there is a strong correlation between (log) area and (log)
population, which makes sense; in that case the outliers are the densely popu-
lated countries: Macau, with 21,606 persons per square mile (p/sqm), Monaco
with 16,000 p/sqm, Singapore and Hong Kong with 6,600 p/sqm; and even larger
countries, like Bangladesh with 911 p/sqm, Japan with 335 p/sqm. On the other
side, outliers are also the sparse ones (Australia, with 2 p/sqm, Mongolia, with
1 p/sqm). The plot also reveals some unexpected outliers: the country with
the smallest area is Vatican City (0.44 square miles), and the country with the
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Fig. 1 What is the outlier: (a) scatter-plot in linear scales and (b) in log-log scales

smallest population is the Pitcairn Islands, with 47 people(!), but with its own
web domain name (see www.nic.pn).

As we discuss very soon, almost all data mining operations are closely related
to compression, Kolmogorov complexity, and conditional Kolmogorov com-
plexity. Specifically, we have:

• Unsupervised learning, such as clustering, would benefit from (lossless) com-
pression. For example, for a cloud of N points in d dimensions, a clustering
algorithm would like to find the best-fitting pattern that describes our cloud
of points. Typical methods include k-means (which tries to fit k multi-variate
Gaussians) and BIRCH (Zhang et al. 1996) (which tries to fit spheres).

• Outliers: closely related to unsupervised learning. Following up on the
clustering example above, outliers could be considered as the points that
belong to singleton clusters. Similarly, points that belong to micro-clusters
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Fig. 2 What is the outlier—area versus population, for all countries (2001): (a) scatter-plot in linear
scales and (b) in log-log scales

(Papadimitriou et al. 2003) are also suspicious. The fact that there is not yet
a perfect definition for outliers and micro-clusters is not a surprise; as we
argue later, it is also related to the (uncomputable) Kolmogorov complexity.

• Classification and in general, supervised learning, is closely related to con-
ditional compression. Suppose we are given N patient records, with n
attributes each, like body height, body weight, age, gender; and one more
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attribute, the class label (e.g., ‘healthy’ or not). One way of envisioning
classification trees is as a means to compress the class labels of the train-
ing set given the other n attributes. That is, the tree performs a conditional
compression of the class labels given all the other attribute values for all
records.

• Distance function definition: Given a set of data items (e.g., patient records,
or strings, or images, etc.), how can we find a good distance function between
a pair of such items? It turns out that this is also related to conditional com-
pression (given the first patient record, what is the minimum number of
changes we need to make, to transform it into the second record).

Next, we give a more formal description of the above observations. The rest
of this paper is organized as follows: Section 2 gives the main idea and theo-
rems. Section 2.2 lists some case studies where compression and Kolmogorov
complexity led to successful data mining concepts and algorithms. Section 3 dis-
cusses some related issues. Section 4 gives our “practitioners’ guide”. Section 5
gives the conclusions.

2 Main idea—Theorems and case studies

All of our arguments are based on the concept of Kolmogorov complexity (see
Li and Vitanyi 1997 for a complete treatment). Let us illustrate it with a few
examples. We give examples with bit strings for the sake of illustration. Suppose
we have the following bit strings, all of the same length, 1 million (1 M) bits long.

• b1 = ‘0000. . .000’
• b2 = ‘010101. . .0101’.
• b3: the first million bits of fractional extension of

√
2.

• b4: the first million bits of fractional extension of π .
• b5: a binary string corresponding to a sequence of one million tosses with a

fair coin where heads are represented by “1” and tails by “0”.

Which is more ‘complex’? How would we measure complexity? Which string
has more information? Clearly, b1 is simple—just zeros. b2 is slightly more com-
plex, while b3 and b4 are more complex. What about b5? b5 can be any of b1, b2,
b3, b4; in fact, any of all possible binary strings. Each such string of million zeros
and ones can be generated with equal probability: 2−1M. What if we restrict b5
to include only binary strings where the number of ones is near to 1M/2, the
number of occurences of blocks “00” is close to 1M/4, and so on?

Complexity is intuitively measured by the number of English words we need
to describe each bit string. We can measure the information of such a bit string
in terms of its description length. The Kolmogorov complexity, invented by
R. J. Solomonoff (1964), A. N. Kolmogorov (1965), and G. J. Chaitin (1969),
formalizes this idea of complexity: the complexity of a bit string is the shortest
Universal Turing Machine (UTM) program that can generate the desired string.
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Definition 1 The conditional Kolmogorov complexity K(x|y) of a string x under
condition y is equal to KU(x|y) defined relative to the universal Turing machine
U as

KU(x|y) = min{|p| : p ∈ 0, 1∗ and U(p, y) = x}

where p is a description of x (i.e., a program) and U outputs x when given as
input the program p and some extra information y to help generate x (Li and
Vitanyi 1997).

Definition 2 The unconditional Kolmogorov complexity of a string x is defined
as K(x) = K(x|ε), where ε is the empty string (|ε| = 0) (Li and Vitanyi 1997).

The definition of Kolmogorov complexity agrees with our intuition: b1 should
need a simple, short UTM program, b2 should need one slightly more complex,
b3 should need one that, for example, implements Newton’s iterative method
that computes the square root of a number, and b4 should need a UTM program
that implements, say, Ramanujan’s formula for π , up to 1 million bits. This is
probably the fastest converging formula for π (Schroeder 1991).

1
π

= 2
√

2
9801

∞∑

n=0

(4n)!(1103 + 26390n)

(n!)4396n . (1)

In fact, π is an example of an infinite sequence that contains O(1) information
since the digits of this number can be produced forever by a fixed short program.
For b5, if we impose the restriction we mentioned earlier, an incompressible or
Kolmogorov random string (Li and Vitanyi 1997; Megalooikonomou 1997) is
produced.

Definition 3 A binary string is incompressible if K(x) ≥ |x| where K(x) is the
(unconditional) Kolmogorov complexity of x (Li and Vitanyi 1997).

Martin-Löf (1966) has shown that incompressible strings pass all effective
statistical tests for randomness, so we will call incompressible strings random
strings. However, not all traditionally random strings are Kolmogorov random.
π ’s digits are random according to traditional randomness tests, but quite reg-
ular in terms of algorithmic randomness. Moreover, it turns out that almost all
strings of a given length n are Kolmogorov random, and thus, incompressible
(Li and Vitanyi 1997). The motivation for introducing Kolmogorov complexity
is that phenomena with shorter explanations are typically less complex than
phenomena with longer explanations.

On the surface, we are done: given a string (and, in general, a dataset repre-
sented as a bit string), estimate its Kolmogorov complexity. If the string/dataset
obeys some patterns and correlations (like the obvious pattern of b1, or the sub-
tler pattern of b4), its Kolmogorov complexity will be low. We could study the
UTM that achieves the lowest complexity, and reverse-engineer the patterns it
exploited. This would have been great, except that it is impossible.
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2.1 Theorems

Theorem 1 (Undecidability of Kolmogorov Complexity (Cover and Thomas
1991) (Sect. 7.7)) The Kolmogorov complexity of an arbitrary string x, K(x), is
undecidable (or non-computable).

A short argument is the following: To determine K(x) we must execute every
program and collect all that stop and compute x, choosing the one that has
the smallest size. However, from the halting problem, we cannot decide if a
program stops or not. The fact that the function K() is not computable can be
formally proved by contradiction.

So, it is not possible to compute K(x) (Cover and Thomas 1991; Li and
Vitanyi 1997). We can, however, approximate it. A reasonable upper bound on
Kolmogorov complexity is the Lempel-Ziv encoding (Ziv and Lempel 1978).

Let Xi be a stationary, ergodic process over a finite discrete sized alphabet.
Let lLZ(x) be the Lempel-Ziv codeword length of a string x of length n, where
x = x1, x2, . . . , xn. The following theorem holds:

Theorem 2 (Kolmogorov Complexity and Lempel-Ziv encoding (Cover and
Thomas 1991))

K(x|n) ≤ lLZ(x) + c, lim
n→∞(1/n)lLZ(x) = (1/n)K(x|n)

where K(x|n) is the Kolmogorov complexity of string x given n.

The Kolmogorov complexity of a sequence of random variables is also related
to its entropy. In general, the expected value of Kolmogorov complexity of a
random sequence is close to the Shannon entropy:

Theorem 3 (Kolmogorov Complexity and Entropy (Cover and Thomas 1991)
(Sect. 7.3)) Let the stochastic process {Xi} be drawn i.i.d. according to the prob-
ability mass function f (x), x ∈ X , where X is a finite alphabet. Let f (xn) =∏n

i=1 f (xi). Then there exists a constant c such that:

H(X) ≤ 1
n

∑

xn

f (xn)K(xn|n) ≤ H(X) + |X | log n
n

+ c
n

for all n. Thus

E
1
n

K(Xn|n) → H(X).

2.2 Case studies

Here we survey older work on machine learning and data mining, where com-
pression, entropy, and Kolmogorov complexity play an important role. We start
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our discussion with supervised learning, and continue with unsupervised learn-
ing, distance function design and other, more exotic applications such as graph
mining and spatial data mining.

2.2.1 Supervised learning—classifiers

The typical way to build a classification tree needs to use a measure of homo-
geneity of a node in order to decide whether or not we should split it fur-
ther. The typical measures are the entropy gain, and the Gini index (Mitchell
1997; Quinlan 1993). Notice that the entropy is closely related to Kolmogorov
complexity (see Theorem 3), and that the Gini index is a special case of the
generalized (or Renyi) entropies (see Schroeder 1991[p. 203]):

Sq = 1
q − 1

log
M∑

i=1

pq
i (2)

where Sq is the generalized entropy of order q, pi is the probability of the i-th
outcome of the random variable of interest, and M is the number of possible
outcomes. Notice that for q → 1 the formula reduces to Shanon’s entropy, while
for q = 2 it is a function of the sum of squares, like the Gini index.

Compression arguments, and specifically MDL (Minimum Description
Length), was explicitly used in SLIQ (Mehta et al. 1996); there, a node was
split only if it helped the compression of the class labels.

2.2.2 Unsupervised learning and clustering

One of the hard problems in clustering is determining k, the number of clus-
ters. Most methods let the user determine k, or some other threshold, which
indirectly decides k. A parameter-free approach to the problem is to penalize
model complexity with one of the three methods: Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), or Minimum Description Length
(MDL). All of these ideas are related to Kolmogorov complexity. Recent suc-
cessful clustering methods along these lines include X-means (Pelleg and Moore
2000) and G-means (Hamerly and Elkan 2003).

2.2.3 Distance function design

Distance functions are very important for clustering, similarity searches and
case-based reasoning. The question is, how could we design good distance func-
tions? For numerical data (e.g., vectors, or time series), the Euclidean distance
seems good, possibly after some normalization, say by the standard deviation.

However, for other data types like strings, trees, graphs, images, and audio,
the Euclidean distance is not applicable or not suitable. All of the resulting
distance functions essentially attempt to measure the cost of transforming the
first item into the second. We can envision it as the conditional Kolmogorov
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complexity K(x|y). Here, we provide a list of popular distance functions, which
operate along these lines:

• Typed text and the string editing distance: The typical distance between
two strings s1 and s2 is the Damerau (or Damerau-Levenshtein) distance
(Damerau 1964), which is the number of insertions, deletions, and substi-
tutions, that are needed to transform the first string into the second. The
operations may have weights that depend on the application (e.g., inser-
tions are more expensive in an OCR application; substitution of ‘a’ with ‘s’
is cheaper, for typed English text on a QWERTY keyboard). The similarity
to the conditional Kolmogorov complexity is striking.

• Voice, audio, and the time-warping distance: Here we want to allow for
small accelerations and decelerations. The time warping distance between
two numerical sequences s1 and s2 allows for stutters of s1 and s2, so that the
resulting sequences match well under the Euclidean distance for example.
The stutters may incur no penalty, or merely a small penalty, or they may be
allowed under certain conditions. Rabiner and Juang (Rabiner and Juang
1993) provide several variations of this general theme and its applications
to voice processing. The time warping distance is also very suitable for bio-
logical time series like electro-cardiograms. There is a considerable amount
of research on time warping, with recent additions on indexing sequences
under the time warping distance (Yi et al. (1998); Keogh (2002)). Again, the
point is that the time warping distance is closely related to the conditional
Kolmogorov complexity.

• Image comparisons and ‘Attributed Relational Graphs’ (ARGs): Given two
images I1 and I2, say of human faces, and assuming that they have been
parsed, into, say, ‘eyes’, ‘nose’, and ‘mouth’, a popular distance function
is the Eschera-Fu distance (Eschera and Fu 1984). After representing the
pieces as a graph, where every node is an object (say, ‘left eye’, etc), every
edge carries information about the relative position of objects (angle, dis-
tance) and every node has attributes (area, perimeter, color histogram), the
Eschera-Fu distance is defined as the cheapest set of editing operations that
need to be done to transform one ARG to the other.

• Trees, tf-idf weighting and cosine similarity: Recently, work has been done
(Megalooikonomou et al. 2006) to define the similarity of tree-like structures
by using (symbolic) string representations and employing tf-idf weighting
and cosine similarity. This has enabled a broadened study of the relation
of Kolmogorov randomness (that can be defined for trees using representa-
tions that provide 1-1 correspondence with strings), complexity of tree struc-
ture and function. In order to apply Kolmogorov complexity arguments to
objects that are not strings, typically one needs to encode the objects using
strings and the encoding should contain, in some sense, information about
the properties under study. For example, by employing Prüfer encoding
to obtain a unique characterization string for each tree, some research-
ers (Megalooikonomou et al. 2006) were able to capture, in the string
representation, important information regarding the structure, and in
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particular, the branching patterns of the nodes, and use them for tree simi-
larity analysis.

• Symbolic representation of signals and corresponding distance functions:
Given a set of time sequences or images, one can represent them by extract-
ing a “vocabulary” of key-subsequences (Megalooikonomou et al. 2005)
or key-blocks (Zhu et al. 2002) (employing Vector Quantization, Gersho
and Gray 1992), and encoding each time series or image based on the
frequency of appearance of each key-subsequence or key-block. The simi-
larities between different time series or images can then be calculated using
variations of the histogram model.

All of the above methods use the spirit of conditional Kolmogorov complex-
ity, without explicitly employing it. A formal way of explicitly using the infor-
mation theoretic concept of (conditional) Kolmogorov complexity to define a
sequence distance function was suggested by Li et al. (2001, 2003) followed by
(Keogh et al. 2004), that proposed a novel, parameter-free distance function
between time sequences. The latter suggested a clever way of approximating
the Kolmogorov complexity with the Lempel-Ziv compression length.

2.2.4 Other applications

The MDL and compression view points have been applied to other settings
too such as graph partitioning. For example, in the cross-associations method
(Chakrabarti et al. 2004) the goal was to partition a graph into a “natural”
number of communities. The number k of such communities was estimated by
compression. In a nut-shell, the idea was to try to compress the adjacency matrix,
by re-arranging the columns and rows, and by partitioning the matrix in so many
row- and column-groups, so that the resulting rectangles are homogeneous and
can be easily compressed.

How about forecasting? Is it also related to compression? The answer is
‘yes’: typical forecasting methods try to find repeating patterns in the past and
extrapolate them in the future. For example, ARIMA assumes that there are
linear correlations. In fact, ARIMA has been used to compress voice, with great
success, under the name of Linear Predictive Coding (LPC) (Rabiner and Juang
1993).

3 Points of argument

There are several subtle points that are related to compression, Kolmogorov
complexity, and the use of these for data mining. Here, they are presented in
the form of questions and answers.

Question 1 (Lossless, or lossy compression?) Several methods, like the JPEG
image compression, are lossy. Can we extend the above arguments to lossy
compression?
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Answer: Yes. Any lossy compression scheme can be turned into lossless if we
encode the differences between model and reality. The sum of bytes for the
lossy compression, plus the bytes for the deltas, fully agrees with the minimum
description length (MDL) approach.

Question 2 How do we encode integers in a lossless fashion?

Answer: One scheme is the Elias codes (Elias 1975), or some other form of
self-delimiting integer encoding (see Bentley et al. 1986 or Zobel et al. 1992 for
more recent applications) A quick reminder is as follows: to encode, for exam-
ple (5)10, we need to encode it in binary (101)2, and also to encode its length,
in unary: 000, giving eventually 000 101 (without the middle blank, which is
only shown for illustration). Thus (8)10 becomes 00001000. In general, the i-th
integer needs O(log i) bits to be encoded, fully agreeing with our intuition that
short numbers are easier to describe.

Question 3 How do we encode floats?

Answer: We try to avoid them—we turn them to integers (e.g., we turn
1.03 dollars into 103 cents), and encode them as discussed before. This is a very
subtle point: A randomly chosen real number in the range (0, 1) is incompress-
ible with high probability! Thus, if we try to compress floating point numbers,
we may run into paradoxes, since we are probably trying to compress many
noise-like digits.

Question 4 (Occam’s razor?) A simple model might not always be the best1: For
example, consider 1 million 2-d points uniformly distributed in the unit square.
Assuming that no two of them have the same x value, we can fit a sinusoid
through all of them if the frequency is high enough and the amplitude and phase
are appropriately chosen. Although it is a simple model (just a sinusoid), it is not
suitable for generalization.

Answer: The compression-based counter-argument is as follows: if the points
are indeed random within the unit square, then it is true that we will need only
one number for the frequency of the above sinusoid. However, this frequency
will be so high, that it will be too expensive to write down its digits! In short, it
will have high Kolmogorov complexity. A simpler example would be to try to fit
a polynomial; yes, it will fit, and it will describe our points in a single polynomial,
but its degree will need to be about one million. Thus, it will be cheaper to just
list the one million points.

4 Practitioner’s guide—Searching for good models

The results on Kolmogorov complexity are negative, in the sense that we will
never be able to automate the process of compression and subsequently of data

1 We are thankful to Prof. Geoff Webb for bringing up this ingenious argument.
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mining. Are there some positive aspects to it? And, in general, what should we
do as practitioners, given that perfection is elusive?

We believe that there are two major conclusions from the Kolmogorov com-
plexity viewpoint:

• The first is that the compression viewpoint will help us design parameter-
free data mining algorithms for clustering, classification, distance function
design, as we listed earlier.

• The second point is that data mining will always be an art, looking for good
models—the better the model, the better our compression. Thus, we may
never know whether our model is the best (even if it indeed is!), but we will
know whether we are the best so far: we simply have to count the number
of bytes that our compression-based scheme achieves against the bytes of
the competition.

The second point is subtle, and we would like to elaborate on it.

4.1 Searching for good models—Kleiber’s law

In a simplified setting, consider points along a line, as in Fig. 3. These points
are generated artificially, but the goal is to mimic the behavior of metabolic
rate (vertical axis) as a function of the body mass (horizontal axis) for several
animal species. Unsurprisingly, the larger the animal, the higher the metabolic
rate.

If our only model is a mixture of flat lines, (Fig. 3(a)) we can do a reasonable
job compressing it. In fact, this is exactly what several regression systems, like
CART (Breiman et al. 1984), will do. However, a careful and trained person
would probably try a piece-wise linear approximation, which seems like a bet-
ter model for this case (Fig. 3(b)): Small animals, say, with mass less than or
equal to 30, are well described by a sloping line, while larger animals are well
described by a line with smaller slope. Apparently, the metabolic rate slows
down for larger animals.

And an even more careful, trained biologist, might try a power law, or equiv-
alently, a linear approximation after taking the logarithms of both axes. It turns
out that for the case of mass versus metabolic rate, this is probably the best
model (see Fig. 3(c)). The line fits well in log log scales with a slope of 3/4, that
is

y = x3/4 (3)

This observation is well established in biology, and is refered to as Kleiber’s law.
Figure 4 shows some real data, with several species, from (Mackenzie 1999),

or http://universe-review.ca/R10-35-metabolic.htm. The law is indeed well
obeyed and there is a reasonable explanation for this. Smaller animals dissi-
pate heat in a different rate because their ratio of body volume (≈ O(r3) to
body surface (≈ O(r2)) changes with the body length r, and thus their metabolic
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Fig. 3 Importance of good model: (a) piece-wise flat approximation, like the typical regression
tree, (b) piece-wise linear approximation, and (c) linear approximation in log-log scales
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Fig. 4 Kleiber’s law: R = M3/4. Metabolic rate R versus organism body mass M in log-log scales:
(a) animal species; (b) cells

rate is different. In fact, there are many related laws in biology where the fourth
root appears often.

Our point is that with better models, we can do better compression. The art
is to find these better models without going through an exhaustive search over
the space of possible models and parameters for a given dataset.

4.2 Searching for good models - fractals

Looking for better models can be very tricky and subtle. Here we describe an
example that is based on fractals and self-similarity. Consider a cloud of points
according to the Sierpinski triangle (one of the most famous fractals) shown in



On data mining, compression, and Kolmogorov complexity 17

t2t1

t3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

"sierpinski.out"

(a)

(b)

Fig. 5 The Sierpinski triangle: (a) its recursive definition and (b) some sample points from it

Fig. 5. Figure 5(a) shows its recursive definition, which results in an infinite set
of points, and Fig. 5(b) shows a finite sample of 5,000 points of the Sierpinski
triangle. Suppose we want to do data mining, to find clusters, and to compress it.
How many clusters are there? 3? 9? 5,000? The question is to find a good model,
and clearly, Gaussians, spheres, and k-means are not suitable. The reason is that
the triangle consists of three miniature replicas of itself, with the replicas having
holes in their middles, recursively down to infinitesimal scales. How should we
compress it and cluster it?

Intuitively, its Kolmogorov complexity should be low, since we manage to
describe it in a few English sentences. Barnsley and his colleagues (Barnsley
and Sloan 1988; Barnsley 1988) developed the ingenious method of “Iterated
function systems”, and indeed manage to generate such triangles as well as any
other self-similar shapes with a one-page long program 2 and about 20 parame-
ters. The IFS method shows that we only need to describe the three contracting
transformations that turn the original Sierpinski triangle into its 3 miniature
versions (t1, t2, t3, in Figure 5(a), middle). These three transformations each
need six (rational) numbers, and that is enough to describe and construct, the
Sierpinski triangle, as well as any finite or infinite sample of its points. The
details are too long and involved to describe here (please refer to the original
paper (Barnsley and Sloan 1988) or the corresponding book (Barnsley 1988)).

Without getting into much detail, a conjecture is that a cloud of points
with higher fractal dimension will be harder to compress (i.e., the model that

2 For a ‘C’ version of their program, visit www.cs.cmu.edu/c̃hristos/SRC/ifs.tar
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describes it will be more complex) than a cloud of points with lower fractal
dimension (Kumaraswamy et al. 2004). In other words, the fractal dimension of
a dataset seems related to its Kolmogorov complexity.

5 Conclusions

We argued that several core aspects of Data Mining, like classification, cluster-
ing, forecasting, outlier detection, are all essentially related to compression. The
negative result is that optimal compression is undecidable, being equivalent to
the estimation of Kolmogorov complexity.

However, from the practical point of view, there are also positive aspects and
guidelines we can derive from it:

• Compression for parameter free data mining: The compression view point
(MDL etc) leads to elegant, parameter-free solutions to clustering, graph
partitioning, distance-function design, etc.

• Data Mining will always be an art, and specifically, the art for looking for bet-
ter models. We are shooting for optimal (or near-optimal) compression of
the given dataset, under a set of assumptions/models; the better the model,
the better the compression! The big question is what are good models that
we should try to fit: Gaussians, Poisson, Pareto, fractals, power laws, or
something else yet to be discovered.

Thus, data mining will never become boring or automated. And the search
for better models will always be fun, especially in our time, that we have two
wonderful coincidences: (a) unprecedented volumes of real data to look into
and (b) unprecedented storage and computing power to try several models.
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