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Abstract

In this paper we consider two party communication complexity when the input sizes
of the two players differ significantly, the “asymmetric” case. Most of previous work on
communication complexity only considers the total number of bits sent, but we study
tradeoffs between the number of bits the first player sends and the number of bits the
second sends. These types of questions are closely related to the complexity of static data
structure problems in the cell probe model.

We derive two generally applicable methods of proving lower bounds, and obtain several
applications. These applications include new lower bounds for data structures in the cell
probe model. Of particular interest is our “round elimination” lemma, which is interesting
also for the usual symmetric communication case. This lemma generalizes and abstracts
in a very clean form the “round reduction” techniques used in many previous lower bound
proofs.

1 Introduction

In Yao’s model of two-party communication [Yao79], the complexity of a protocol is the total
number of bits communicated between the two players. An additional complexity measure
sometimes considered is the number of rounds of messages. In most applications of communi-
cation complexity, it is sufficient to consider these two measures.

An exception is asymmetric communication problems where the input of one player (Alice)
contains much fewer bits than the input of the other player (Bob). A simple example is the
membership problem MEMN,l, where Alice gets x ∈ U = {0, . . . , N−1}, Bob gets y ⊆ U of size
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at most l, and the two players must decide if x ∈ y. It is easy to verify that the communication
complexity of the problem is dlogNe, and the trivial one round protocol, where Alice sends her
entire input to Bob, is optimal.

However, this does not tell us all there is to know about the game. What if Alice does not
send her entire input, but only, say,

√
logN bits? Will Bob have to send his entire input, or

will fewer bits do? In general, what is the necessary tradeoff between the number of bits Alice
sends Bob and the number of bits that Bob sends Alice? Standard lower bound techniques such
as the rank technique [MS82] and the “large monochrome submatrix technique” [Yao83] fail to
answer these questions. Some tradeoffs for specific functions have been obtained [Mil94, Mil95],
but no generally applicable method for showing them has previously appeared.

1.1 Asymmetric Communication and Data Structures

One motivation for studying asymmetric communication complexity is its application to data
structures in the cell probe model. The cell probe model, formulated by Yao [Yao81], is a model
for the complexity of static data structure problems. In a static data structure problem, we are
given a domain D of possible data, a domain Q of possible queries, and a map f : Q×D → A,
where f(x, y) is the answer to query x about data y. In the case of Boolean queries, we will
have A = {0, 1}, but we will sometimes consider non-Boolean queries as well. A solution with
parameters s, b and t, is a method of storing any y ∈ D as a data structure φ(y) in the memory
of a random access machine, using s memory cells, each containing b bits, so that any query in
Q can be answered by accessing at most t memory cells. We are interested in tradeoffs between
s, the size of the data structure, and t, the query time (the value of b being regarded as a
parameter of the model, usually O(log |Q|) or O(polylog |Q|)).

A familiar example is the dictionary problem where D is the set of subsets y ⊂ {0, . . . , N−1}
of a certain size, Q is the set {0, . . . , N − 1} and f(x, y) = 1 if and only if x ∈ y.

It was observed in [Mil94] that lower bounds for cell probe complexity can be derived using
communication complexity: For a static data structure problem, we consider the communi-
cation problem where Alice gets x ∈ Q, Bob gets y ∈ D, and they must determine f(x, y).
For the dictionary problem, the corresponding communication problem is thus MEMN,l. If
there is a solution to the data structure problem with parameters s, b and t, then there is a
protocol for the communication problem, with 2t rounds of communication, where Alice sends
log s bits in each of her messages and Bob sends b bits in each of his messages. For natural
data structure problems the number of bits |x| = log |Q| in the query is much smaller than
the number of bits |y| = log |D| required to represent the stored data, so the communication
problem is asymmetric. Earlier lower bounds for static data structures in the cell probe model
[Ajt88, Xia92] also fit into the communication complexity framework.

In section 2 we continue studying the relations between complexity in the cell probe model
and asymmetric communication complexity. We show that:

• When the number of rounds of communication is constant, the communication complexity
also provides upper bounds for cell probe complexity.

However, by a result in [Mil93], when the number of rounds of communication is not constant,
for almost all data structure problems (with natural choices of parameters) the cell probe com-
plexity is significantly (as much as exponentially) larger than the communication complexity.
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This may suggest that the asymmetric communication complexity approach is not the best
one for proving lower bounds in the cell probe model. However, our next result shows that
obtaining better lower bounds, using any method, may be very difficult. The best bounds
that can be obtained (and we do obtain) using communication complexity are t = Ω(n/ log s),
where n = log |Q|, and we show that much better lower bounds imply time-space tradeoffs for
branching programs, a long standing open problem (see e.g. [Weg87], pp. 423).

• If a function f : {0, 1}n × {0, 1}m → {0, 1} can be computed by polynomial size, read
O(1) times branching programs, then there is a data structure storing y ∈ {0, 1}m using
s = mO(1) cells each of size b ≥ logm so that any query x ∈ {0, 1}n can be answered in
t = O(n/(log b− log logm)) probes.

We go on to provide two generally applicable techniques for showing necessary tradeoffs
between the number of bits that Alice sends, the number of bits that Bob sends, and the
number of rounds of communication. We apply them to a variety of problems, some of them
motivated by cell probe complexity, others by their intrinsic interest.

Some notation: Let f : X × Y → {0, 1} be a communication problem.

An [a, b]-protocol for f is a protocol where the total number of bits that Alice sends Bob is
at most a and the total number of bits that Bob sends Alice is at most b.

A [t, a, b]A-protocol for f is a protocol where each of Alice’s messages contains at most a
bits and each of Bob’s messages contains at most b bits and at most t messages are sent, with
Alice sending the first message. A [t, a, b]B -protocol is defined similarly.

A randomized protocol for f is a public coin protocol P where for every x, y, Pr(P (x, y) =
f(x, y)) ≥ 2/3. It has one-sided error if f(x, y) = 0⇒ Pr(P (x, y) = 0) = 1.

1.2 The Richness Technique

Our first general technique, presented in section 3, is the use of the following richness lemma.
Identify f with the matrix M with Mx,y = f(x, y), i.e. index the rows by Alice’s possible
inputs, and the columns by Bob’s possible inputs. We say that a matrix (and a problem) is
(u, v)-rich if at least v columns contains at least u 1-entries.

Richness Lemma: Let f be a (u, v)-rich problem. If f has a randomized one-sided error
[a, b]-protocol, then f contains a submatrix of dimensions at least u/2a+2×v/2a+b+2 containing
only 1-entries.

We also present a version of the lemma applicable to two-sided error protocols. The lemma
is easy to prove and simple to use, and it enables us to give good lower bounds for several
problems.

• In the disjointness problem, Alice gets x ⊆ {0, . . . , N − 1} of size k, Bob gets y ⊆
{0, . . . , N − 1} of size l, and they must decide if x ∩ y = ∅. (The symmetric version of
this problem is, of course, well studied.) We prove that in any randomized one-sided
error [a, b] protocol either a = Ω(k) or b = Ω(l). Furthermore, if k < a < k log l, then
b ≥ l/2O(a/k) − a. We also provide non-trivial upper bounds.
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• The membership problem is the interesting special case where k = 1. In this case our
tradeoffs are particularly tight.

• In the span problem, Alice gets an n-dimensional vector x ∈ Z2
n, and Bob gets a subspace

y ⊆ Z2
n (represented, e.g., by a basis of k ≤ n vectors). They must decide whether x ∈ y.

We show that essentially no non-trivial protocol exists: in any randomized one-sided error
[a, b] protocol either a = Ω(n) or b = Ω(n2).

These communication complexity lower bounds have as direct corollaries lower bounds in the
cell probe model regarding data structures maintaining subsets of {0, . . . , N − 1}, or subspaces
of Z2

n, respectively.

1.3 The Round Elimination Lemma

Our second technique, presented in section 4, is a round-by-round “restriction” of the protocol.
These types of techniques lie at the heart of all previously known lower bounds for static
data structures [Ajt88, Xia92, Mil94, BF94], and several other lower bounds in communication
complexity [KW90, DGS84, HR88, NW93]. In each case they have been used in an ad-hoc way.
We obtain a very general lemma abstracting these types of techniques.

Given f , we define a new communication problem as follows: Alice gets m strings x1, ..., xm
and Bob gets a string y and an integer 1 ≤ i ≤ m. Their aim is to compute f(xi, y). Suppose
a protocol for this new problem is given, where Alice goes first, sending Bob a bits, where a
is much smaller than m. Intuitively, it would seem that since Alice does not know i, the first
round of communication can not be productive. We justify this intuition. Moreover, we show
that this is true even if Bob also gets copies of x1, ..., xi−1, a case which is needed in some
applications. Denote this problem by Pm(f).

Round Elimination Lemma: Let C = 99 and R = 4256. Suppose there is a randomized
[t, a, b]A-protocol for solving PRa(f). Then there is a randomized [t− 1, Ca,Cb]B-protocol for
solving f .

This lemma can be applied to a wide range of problems with the following kind of “self
reducibility’: Pm(f) (with given parameters) can be reduced to a single problem f (naturally
with larger parameters). In these cases we can use the lemma repeatedly, each time shaving off
another round of communication. We demonstrate the power of the lemma by easily deriving
several of the known lower bounds (though sometimes in a somewhat weaker form) and some
new lower bounds, both for data structure problems and for other communication complexity
problems. These include:

• Lower bounds for data structures for predecessor and parity prefix query problem in the
cell probe model. Such bounds were first proved in [Ajt88, Xia92, Mil94, BF94].

• The first lower bound for the two-dimensional reporting range query problem in the cell
probe model.

• The depth hierarchy for monotone constant depth circuits. This was first proved by
[KPPY84] and, using Karchmer-Wigderson games [KW90], is equivalent to a rounds
problem in communication complexity (see [NW93]), which we prove a lower bound for.
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• A round-communication tradeoff for the randomized complexity of the “greater than”
problem. (Alice and Bob each get an n-bit integer and they must decide which is greater.)
Such a tradeoff was first proved by Smirnov [Smi88].

2 Communication Complexity vs. Cell Probe Complexity

Communication complexity is the only known generally applicable method for showing lower
bounds on the cell probe complexity of static data structure problems. In this section we
discuss how powerful it is, and the likelihood of more powerful methods.

Let a data structure problem f on domains Q = {0, 1}n and D = {0, 1}m be given. How
large tradeoffs between structure size s and query time t can be shown?

In [Mil94] it was shown that the following communication complexity problem provides
lower bounds for the query time. Alice gets x ∈ Q, Bob gets y ∈ D, and they must determine
f(x, y).

Lemma 1 [Mil94] If there is solution to the data structure problem with parameters s, b and
t, then there is a [2t, dlog se, b]A-protocol for the communication problem.

We can provide a converse in the restricted case where the communication complexity protocol
has a constant number of rounds.

Lemma 2 If there is a [O(1), a, b] protocol for the communication problem then the data struc-
ture problem has a solution with parameters s = 2O(a), t = O(1), and b.

Proof: Suppose a [t, a, b]-protocol is given with t = O(1). For y ∈ D, define a data structure
φ(y) representing y as follows. Let v = (α1, α2, . . . , αi), i ≤ t be a possible sequence of messages
of Alice. For each such v, there is a cell (φ(S))v in the data structure. The cell contains the
message Bob would send after Alice’s i’th message, given that his input is y, and Alice’s i
first messages are as described by v. Note that the number of cells in the data structure is
2O(at) = 2O(a). Given the data structure, we can answer a query x in time O(t) by playing the
role of Alice with input x and reading Bob’s messages in the data structure.

2

An example of using Lemma 2 for constructing a data structure is given in Section 4.3.

A more general converse is, however, impossible. Using communication complexity, we can
at most show an Ω(n/ log s) lower bound on the query time, since in this number of rounds,
Alice can send her entire query to Bob when she sends log s bits in each round. However, there
are well known data structure problems where the best known upper bound on the query time
is much larger than n = log |Q|. A notoriously difficult example is the partial match query
problem where we must store a subset y ⊆ {0, 1}n, so that for any x ∈ {0, 1}n, the query
“∃z ∈ y∀i : xi ≤ zi?” can be answered. No solution is known with worst case query time
even polynomial in n when the structure size is polynomial, and it has been conjectured that
no such structure exists [Riv76]. Yet not only does communication complexity fail to provide
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bounds better than n/ log s, but for this problem, we only know how to show a
√

log n lower
bound when s is polynomial in m, using the techniques of section 4. Getting bounds for this
problem closer to n/ log s using communication complexity is an interesting open problem.

Counting arguments show that for most data structure problems the solution which stores
the non-redundant representation of the data and the query algorithm which reads all of it, is
in fact optimal:

Theorem 3 [Mil93] For a random data structure problem f : {0, 1}n × {0, 1}m → {0, 1} the
following holds with high probability: For any representation using s ≤ 2n−1/b cells of size b,
query time Ω(m/b) is necessary.

Note that with twice as much storage, 2n/b cells, the answer to every possible query could be
stored and constant query time would be possible.

Thus, for a random function there is a huge (as much as exponential) gap between cell probe
complexity and communication complexity. We don’t know any explicitly defined function with
a provable gap. Finding one is an interesting open problem. The following theorem tells us that
we are unlikely to get superlinear (in n) lower bounds for explicitly defined functions with the
current state of the art of complexity theory. Recall that it is still an open problem (believed
to be difficult) whether all of NP can be computed by polynomial size, read twice branching
programs (see e.g. [Weg87], pp. 423).

Theorem 4 If a function f : {0, 1}n × {0, 1}m → {0, 1}, n ≤ m, can be computed by
polynomial size, read O(1) times branching programs, then there is a data structure storing
y ∈ {0, 1}m using s = mO(1) cells of size b ≥ logm so that any query can be answered in time
t = O(n/(log b− log logm)).

Proof: Let us first show a data structure with a O(n) upper bound on the query time, and
thereafter show how to improve it to O(n/(log b− log logm)).

Given a branching program for f of size (n + m)O(1) = mO(1), and a data instance y ∈
{0, 1}m, eliminate all yi-variables in the branching program, leaving only query variables xi.
The size has not increased. We store a pointer structure representing this new branching
program. Since b ≥ logm, a pointer can be represented in a constant number of cells..

Given a query x, we simulate the stored branching program on x. Since the branching
program reads each variable only a constant number of times, the query time is O(n).

We now present the improved version. If b = 2r logm, we can in a constant number of cells
represent a binary tree of depth r with pointers to branching program locations in the nodes
and indices of xi-variables on the edges. For each branching program location, we make such a
cell, representing the program for the next r steps. This speeds up simulation of the program
with a factor r.

2
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3 The Richness Technique

3.1 The Richness Lemma

Given a communication problem f : X × Y → {0, 1}, we identify f with the M with Mx,y =
f(x, y), i.e. we index the rows by Alice’s possible inputs, and the columns by Bob’s possible
inputs. We say that a matrix (and a problem) is (u, v)-rich if at least v columns contain at
least u 1-entries.

Lemma 5 Let f be a (u, v)-rich problem. If f has a randomized one-sided error [a, b]-protocol,
then f contains a submatrix of dimensions at least u/2a+2×v/2a+b+2 containing only 1-entries.

Proof: We first show the following, slightly stronger statement for deterministic protocols:

• Let f be a (u, v)-rich problem. If f has a deterministic [a, b]-protocol, then f contains a
submatrix of dimensions at least u/2a × v/2a+b containing only 1-entries.

The proof is by induction in a + b. If a + b = 0, no communication takes place, so f must
constant, and, since it is (u, v)-rich, we must have |X| ≥ u, |Y | ≥ v and f(x, y) = 1 for all x, y.

For the induction step, assume first that Alice sends the first bit in the protocol. Let X0

be the inputs for which she sends 0, and X1 be the inputs for which she sends 1. Let f0 be the
restriction of f to X0 × Y and let f1 be the restriction of f to X1 × Y . By a simple averaging
argument either f0 or f1 is (u/2, v/2)-rich. Assume WLOG that it is f0. Now, f0 has an
[a−1, b]-protocol, so by the induction hypothesis, f0 contains a 1-matrix of dimensions at least
(u/2)/2a−1 × (v/2)/2a−1+b which is what we are looking for.

Assume next that Bob sends the first bit, and let Y0, Y1, f0, and f1 be defined analogously.
Either f0 or f1 is (u, v/2) rich so either f0 or f1 contains by the induction hypothesis a 1-
matrix of dimensions u/2a × (v/2)/2a+b−1 which is what we are looking for. This completes
the induction.

Now assume a randomized one-sided error protocol for f is given. By fixing the random
coin tosses made by the protocol, we can convert it into a deterministic protocol computing a
function f ′ with the following properties:

• f(x, y) = 0⇒ f ′(x, y) = 0

• f ′ is (u/4, v/4)-rich.

By applying the deterministic version of the lemma to f ′, we are done.

2

Lemma 5 only shows lower bounds for one-sided error protocols. The following version of the
lemma works for randomized protocols with two-sided error, but applies to a smaller range of
problems. The lemma and its proof are very similar to a lemma for symmetric communication
complexity by Yao [Yao83].

For finite sets S, T , the density of S in T is |S ∩ T |/|T |. A communication problem f :
X × Y → {0, 1} is α-dense if the density of {(x, y)|f(x, y) = 1} in X × Y is at least α.
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Lemma 6 Let α, ε > 0. Let f : X × Y → {0, 1} be an α-dense problem. If f has a random-
ized (two-sided error) [a, b]-protocol, then there is a submatrix M of f of dimensions at least
|X|/2O(a) × |Y |/2O(a+b) so that the density of 0-entries in M is at most ε (the constants in the
big-O’s depending on α and ε only).

Proof: Given a randomized protocol, repeat it O(1) times to get the error probability lower
than δ where 2δ

α−δ = ε.

By Yao’s version of the von Neuman minmax theorem [Yao77], we can find a deterministic
protocol with the same parameters which errs on a fraction of at most δ of X × Y .

Let f ′ be the function computed by this protocol. The possible histories of the commu-
nication protocol induces a partition of the matrix Mf ′ into disjoint submatrices. Consider
the submatrices for which the two players answer 1. The union of these submatrices (i.e.
{(x, y)|f ′(x, y) = 1}) has density at least α − δ in Mf . Furthermore, the set of pairs (x, y)
for which f(x, y) = 0 has density at most δ

α−δ in {(x, y)|f ′(x, y) = 1}. Consider the set S of

1-submatrices in which the density of such pairs is at most 2δ
α−δ = ε . The union S ′ of these

submatrices has density at least α−δ
2 .

It follows that a fraction of at least α−δ
4 of the columns of f ′ each contains a fraction of at

least α−δ
4 members of S ′.

Now, by an induction similar to the one in Lemma 5, we can find a submatrix M of f ′, so
that at least α−δ

4 |X|/2O(a) columns of M contains at least α−δ
4 |Y |/2O(a+b) entries from S ′.

Moreover, the way the induction works implies that M itself is a matrix induced by a
communication history, so it must be a matrix in S of dimensions at least α−δ

4 |X|/2O(a) ×
α−δ

4 |Y |/2O(a+b) ≥ |X|/2O(a) × |Y |/2O(a+b).

2

3.2 The membership problem

Let MEMN be the unrestricted membership problem, where Alice gets x ∈ {0, 1, . . . , N − 1}
and Bob gets some subset y ⊆ {0, 1, . . . , N − 1} with no restriction on the size of y and the
two players must output 0 if x 6∈ y and 1 if x ∈ y. Clearly, for any a, MEMN (for N a power
of two) has a deterministic [a + 1, N/2a]-protocol, where first Alice sends Bob the first a bits
of her input x, then, for each z ∈ {0, 1, . . . , N − 1} with the same prefix as x, Bob tells Alice
if z ∈ y, and finally Alice tells Bob the answer. We show that this is almost optimal, even for
two sided error protocols.

Theorem 7 For any randomized protocol [a, b]-protocol for MEMN , b ≥ N/2O(a)

Proof: If a ≥ logN/2, there is nothing to show, so assume a < logN/2. Suppose we can find
a submatrix X1 × Y1 of MEMN of dimensions at least r × s with a fraction of at most ε ≤ 1

8
0-entries. At least s/2 of the columns of X1 × Y1 contains a fraction of at most 2ε 0-entries.
Suppose a column contains exactly i zeroes. The set y ⊆ {0, 1, 2, . . . , N − 1} corresponding to
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this column is the disjoint union of a subset of X1 of size r− i and a subset of {0, 1, 2, . . . , N −
1} −X1. Thus, we must have

s/2 ≤
2εr∑

i=0

(
r

i

)
2N−r ≤ 2N−δr

where δ is a positive constant depending on ε.

Since MEMN is 1
2 -dense, we have by Lemma 6, that we can find an r × s matrix with an

ε-fraction 0-entries, where r = N/2O(a) and s = 2N−O(a+b). Combining, we get

2N−δ(N/2
O(a)) = 2N−δr ≥ s/2 = 2N−O(a+b)

so a+ b ≥ N/2O(a) and since a < logN/2, we have b ≥ N/2O(a).

2

We now consider the more complex problem MEMN,l where Alice gets x ∈ {0, 1, . . . , N−1},
Bob gets y ⊆ {0, 1, . . . , N−1} of size at most l, and they must output 1 if x ∈ y, and 0 otherwise.
Assume for convenience that N and l are powers of two, and that l ≤ N/2. Let us first look
at some upper bounds. Between the extreme behaviors of the [1, l logN ]-protocol, where Bob
sends his entire input to Alice, and the [logN, 1]-protocol where Alice sends his entire input to
Bob, we have the following protocols.

Theorem 8 The non-membership problem has the following protocols:

1. For a ≤ log l, a [2a,O(l logN/2a)]-protocol, and for a ≥ log l, an [2a,O(logN + 2(a −
log l))]-protocol.

2. For all a ≤ log l, a randomized one sided error [O(a), O(l/2a)]-protocol.

Proof: Deterministic Protocol: The protocol is based on perfect hashing [FKS84] and is
thus an example of implicitly using Lemma 1 to give upper bound for communication problems
rather than lower bounds for data structure problems.

First consider a ≤ log l. Before the protocol starts, the two players agree on a prime p
between N and 2N − 1. Consider the family of hashfunctions

hk(x) = (kx mod p) mod 22a−1.

Bob chooses k so that the number of collisions of hk on his set y is minimized. As shown in
[FKS84], he can choose one so that the total number of collisions is at most O(l2/22a). He
sends it to Alice, who hashes her input and sends the result to Bob, who sends Alice all those
elements in his set y with the same hash value. Note that if r elements have the same hash
value, then the number of collisions is greater than (r2), so he sends at most O(l/2a) elements.
Finally, Alice tells Bob if her input is among them.

For a ≥ log l, if Alice has x and Bob has y, the two players do the following. Alice first
sends Bob the first 2(a− log l) bits of her input. She lets x′ be the reminding logN−2(a− log l)
bits of her input and Bob lets y′ be the elements of y which has the prefix that Alice sends.
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They then perform the [2 log l, O(l(logN −2a−2 log l)/2log l)] = [2 log l, O(logN −2(a− log l))]
protocol just described on x′ and y′.

Randomized Protocol: This is just a special case of the randomized protocol for Theorem
10).

2

All of the above protocols are constant round. We now use the richness lemma to show
lower bounds.

Theorem 9 If MEMN,l has a one-sided error [a, b]-protocol, with a log l then 2a(a + b) =
Ω(l(logN − log l)). If its negation has a one-sided error [a, b]-protocol, then 2a(a + b) = Ω(l),
provided l ≤ N/2.

Proof: Assume without loss of generality that N and l are powers of two and that a < log l−2.

The MEMN,l-membership function is (l, (Nl ))-rich, so by the richness lemma, we can find a
1-submatrix of dimensions at least l/2a+2×(Nl )/2a+b+2. Note, however, that if the membership
matrix contains a 1-rectangle of dimensions r × s, then (N−rl−r ) ≥ s so

(
N−l/2a+2

l−l/2a+2 ) ≥ (Nl )/2a+b+2 ⇒
2a+b+2 ≥ (Nl )/(

N−l/2a+2

l−l/2a+2 )

Note that for any integer t, we have
(
N

l

)
/

(
N − t
l − t

)
=
N(N − 1) · · · (N − t+ 1)

l(l − 1) · · · (l − t+ 1)

and since N
l <

N−1
l−1 < · · · < N−t+1

l−t+1 , we have

(
N

l

)
/

(
N − t
l − t

)
> (

N

l
)t

Thus, continuing the implications above, we get

2a+b+2 ≥ (N/l)l/2
a+2 ⇒

log 2a+b+2 ≥ log((N/l)l/2
a+2

) ⇒
(a+ b+ 2) ≥ l/2a+2 log(N/l) ⇒

2a+2(a+ b+ 2) ≥ l(logN − log l)

as desired.

The negation of MEMN,l is (N − l, (Nl )) rich, so by the richness lemma, we can find a
1-submatrix of dimensions (N − l)/2a+2 × (Nl )/2a+b+2. But if the non-membership matrix
contains a 1-submatrix of dimensions r × s, then (N−rl ) ≥ s, so

(
N− N−l

2a+2

l ) ≥ (Nl )/2a+b+2 ⇒
2a+b+2 ≥ (Nl )/(

N− N−l
2a+2

l )

10



Note that for any integer t, we have

(
N

l

)
/

(
N − t
l

)
=

N(N − 1) · · · (N − l + 1)

(N − t)(N − t− 1) · · · (N − t− l + 1)

and since N
N−t <

N−1
N−t−1 < · · · < N−l+1

N−t−l+1 , we have

(
N

l

)
/

(
N − t
l

)
> (

N

N − t)
l.

Thus, continuing the implications above, we get

2a+b+2 ≥ ( N
N− N−l

2a+2

)l ⇒
a+ b+ 2 ≥ l log( N

N− N−l
2a+2

) ⇒
a+ b+ 2 ≥ l log(1 + 1

2a+2 ) ⇒
2a(a+ b) = Ω(l)

2

The deterministic upper bounds and the lower bounds for one-side error protocols are tight
in the following sense: There are constants c, c′ > 0 so that for l ≤ N 1−ε and a ≤ log l,
b = l logN/2ca is sufficient and b = l logN/2c

′a is not sufficient. The bounds for randomized
one-sided error protocols for non-membership are tight in a stronger sense: There are constants
c, c′ > 0, so that for any l ≤ n/2 and a, b = l/2ca is sufficient and b = l/2c

′a is not sufficient.

3.3 The Disjointness Problem

An obvious generalization of the membership problem is the disjointness problem DISJN,k,l, k <
l < N/2, where Alice gets x ⊆ {0, . . . , N − 1} of size k, Bob gets y ⊆ {0, . . . , n − 1} of size l,
and they decide if x∩ y = ∅. The symmetric version of this problem is, of course, well studied.
We give an upper and a lower bound. As yet, the tradeoffs are not completely understood.

Theorem 10 DISJN,k,l, k < l < N/2 has a one-sided error randomized [O(a), O(l/2a/k)]-
protocol for all values of k ≤ a ≤ k log l, and a one-sided error randomized [O(a), O(l log(k/a))]-
protocol for all values of 1 ≤ a ≤ k.

Proof: We use an adaptation of a protocol due to Hastad and Wigderson (unpublished). First
let us consider the a = Θ(k) case. Here the public coin flips will denote a sequence of random
subsets R1...Ri... of {0, . . . , N − 1}. Each round Alice will send to Bob the next i such that
x ⊆ Ri, Bob will update his set y ← y ∩ Ri, and will send to Alice j − i for the next j such
that y ⊆ Rj (the new y), and then Alice will update x ← x ∩ Rj . If at any point during the
protocol x or y become empty then the original sets were disjoint. The expected number of
bits sent by Alice (resp. Bob) in each round is the current size of x (resp. y). If x and y are
disjoint then the expected size of both x and y decreases by a factor of exactly 2 each round.
Thus the total expected number of bits sent by Alice (resp. Bob) is still O(k) (resp. O(l)). If

11



x and y do not become empty after so many bits have been sent then, with high probability, x
and y were not disjoint to begin with.

If a ≥ k then Alice starts by sending Bob the first a/k indices i for which x ⊆ Ri. This
allows Bob to reduce the size of hist set y (assuming that it is disjoint from x) by an expected
factor of exactly 2a/k. Then they continue with the previous protocol. If a ≤ k then Bob starts
by sending Alice log(k/a) indices i for which y ⊆ Ri, reducing the size of x to O(a) with high
probability, assuming the sets were disjoint.

2

Theorem 11 Let k ≤ l < N/2. If the disjointness problem has a randomized one-sided error
[a, b]-protocol, then either a = Ω(k) or b = Ω(l). Moreover, for a > k, b = Ω(l/2a/k − a)

Proof: The disjointness function is ((N−lk ), (Nl ))-rich, so by Lemma 5, we can find a 1-rectangle
of dimensions at least (N−lk )/2a × (Nl )/2a+b. Let the rows be indexed by the sets x1, x2, . . . , xr
and let the columns be indexed by the sets y1, y2, . . . , ys. We then have that xi∩yj = ∅ for all i, j.
Consider the set x = ∪jxj . Since every xj is a subset of x of size k and there are least (Nl )/2a+b

different xj ’s, we must have
(|x|
k

) ≥ (Nl
)
/2a+b. Let t = (N − l)/2a/k . Since

(t
k

)
<
(N−l
k

)
/2a, we

must have |x| = | ∪xi| > t and therefore | ∪ yi| < N − t. Thus, we must have (Nl )/2a+b >
(N−t

l

)

and therefore 2a+b >
(N
l

)
/
(N−t

l

)
> ( N

N−t )
l > (1+ t/N)l = (1+(N− l)/2a/kN)l ≥ (1+2−a/k−1)l.

The conclusion follows.

2

It would be interesting to give good lower bounds for two sided error protocols solving
disjointness.

3.4 The Span Problem

The membership and disjointness problems exhibit a smooth tradeoff between the number of
bits that Alice sends Bob and the number of bits that Bob sends Alice. Using the richness
technique, we can show that this is not the case for the problem SPAN, where Alice gets
x ∈ Z2

n, Bob gets a vector subspace y ⊆ Z2
n, (the subspace may be represented by a basis of

k ≤ n vectors, thus requiring O(n2) bits) and they must decide whether x ∈ y.

Theorem 12 In any [a, b] one-sided error randomized protocol for SPAN either a = Ω(n) or
b = Ω(n2).

Proof: For the proof let us assume that y is of dimension exactly n/2, and is given by its basis.

Using Lemma 5, it suffices to show

1. SPAN is (2n/2, 2n
2/4)-rich, and

2. SPAN does not contain a 1-monochromatic submatrix of dimensions 2n/3 × 2n
2/6.

12



For 1, notice that every subspace of Zn2 of dimension exactly n/2 contains exactly 2n/2 vectors,
and that there are greater than 2n

2/4 subspaces of dimension n/2. To see this, we count the
number of ways to choose a basis for such a space (i.e., to choose n/2 independent vectors).
There are 2n − 1 possibilities to choose the first basis element (different from ~0), 2n − 2 to
choose the second, 2n − 4 to choose the third etc. Also note that each basis is chosen this way
n
2 ! times. Hence the number of bases is

∏n/2−1
i=0 (2n − 2i)/n2 !. Now, each subspace has a lot of

bases. By a similar argument, their number is
∏n/2−1
i=0 (2n/2 − 2i)/n2 !. Hence the total number

of subspaces is:

∏n/2−1
i=0 (2n − 2i)

∏n/2−1
i=0 (2n/2 − 2i)

=

n/2−1∏

i=0

2n − 2i

2n/2 − 2i
≥

n/2−1∏

i=0

2n/2 = 2n
2/4.

For 2, consider a 1-rectangle with at least 2n/3 rows. Note that any 2n/3 vectors span a subspace
of Zn2 of dimension n/3 and that, by a similar argument to the one presented above, the number
of subspaces of dimension n/2 that contain a given subspace of dimension n/3 is

∏n/6−1
i=0 (2n − 2n/3+i)

∏n/6−1
i=0 (2n/2 − 2n/3+i)

=

n/6−1∏

i=0

2n − 2n/3+i

2n/2 − 2n/3+i
≤

n/6−1∏

i=0

2n = 2n
2/6,

as needed.

2

4 The Round Elimination Technique

4.1 Round Elimination Lemma

Let f(x, y) be a communication problem on domain X×Y . Let Pm(f) be the following problem:
Alice gets m strings x1, ..., xm ∈ X; Bob gets an integer i ∈ {1..m}, a string y ∈ Y and a copy
of the strings x1, ..., xi−1. Their aim is to compute f(xi, y).

Lemma 13 (Round elimination lemma) Let ε, δ > 0 be given so that δ ≤ 1
100 ε

2(− ln ε
8)−1

and let m ≥ 20(a ln 2 + ln 5)ε−1. Suppose there is a randomized [t, a, b]A-protocol with error
probability δ for solving Pm(f). Then there is a randomized [t − 1, a, b]B-protocol with error
probability ε for solving f .

Remarks:

1. The above lemma is interesting even in the case where Bob does not get copies of
x1, ..., xi−1; we need the stronger version as stated for our purposes.

2. Is the increase in error probability necessary? With a smaller increase, some of the lower
bounds which follow from the lemma would be improved.

3. The lemma applies to randomized two-sided error computation. It would be interesting
to get a similar theorem for deterministic computation.
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Proof: Assume a randomized protocol for Pm(f) with error probability δ. For any distribution
D on X × Y we will construct a deterministic t− 1 round algorithm for f that errs on at most
ε/2 of the inputs weighted according to the distribution D. A randomized algorithm for f with
error probability ε follows from Yao’s version of the von Neuman minmax theorem [Yao77].

Let I = {1, . . . ,m}. Define a distribution D∗ on Xm×I×Y as follows: For each 1 ≤ j ≤ m
we choose (independently) (xj , yj) according to distribution D, and we choose i uniformly at
random in I. We set y = yi (and throw away all other yj’s).

Let A be a deterministic algorithm for Pm(f) that errs on a fraction of at most δ of the
input weighted by distributionD∗ (such an algorithm exists by the easy direction of the minmax
theorem).

Define S to be the set of (〈x1, . . . , xm〉 , i) for which

Pr
D∗

[A errs | 〈x1, . . . , xm〉 , i] ≤
ε

4
.

Consider the set R of x = 〈x1, . . . , xm〉 for which (x, i) ∈ S for at least 1 − 5δε−1 of
the possible values of i. Using the Markov inequality we see that PrDm(R̄) ≤ 4

5 and hence
PrDm(R) ≥ 1

5 .

Since Alice sends a bits in her first message, she partitions R into at most 2a sets, let T be
the subset of R that has maximum weight, its weight is at least PrDm(T ) ≥ PrDm (R)

2a ≥ 1
5·2a .

We now claim

• There exists i ∈ I, q1, q2, . . . , qi−1 ∈ X, and a set G ⊆ X with the following properties,

1. PrD(G) ≥ ε
4

2. For any x ∈ G, we can find xi+1, xi+2, . . . , xm, so that 〈q1, . . . , qi−1, x, xi+1, . . . , xm〉 ∈
T and (〈q1, . . . , qi−1, x, xi+1, . . . , xm〉 , i) ∈ S.

Before we prove this claim, we show that it implies our lemma. Here is a t− 1 round algorithm
for f on inputs x and y:

• Alice, given x, constructs an input for A as follows: If x ∈ G then she picks a sequence
x that starts with with q1, . . . , qi−1, x such that x ∈ T and (x, i) ∈ S. Such a sequence
exists by the definition. If x /∈ G then she picks an arbitrary sequence.

• Bob, given y, constructs his input for A as follows: i is already defined, xj = qj for all
j < i, y is given to him.

• The two players run the algorithm A but skipping the first round of communication,
instead assuming that the first message Alice sent was the one yielding T .

The probability that the algorithm errs when (x, y) are chosen according to D is given by
PrD[ error ] ≤ PrD[x /∈ G] + PrD[ error |x ∈ G]. The first term is bounded from above by ε

4 ,
and to bound the second term we observe that for x ∈ G, the sequence (x, i) is in S, so the
probability of error for a random y, given x is at most ε

4 . Thus the total probability of error is
at most ε/2, as desired.
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i := 1
T1 := T
do

T 1
i := {x ∈ Ti|(x, i) ∈ S}
T 0
i := {x ∈ Ti|(x, i) 6∈ S}

if Pr(T 0
i |Ti) ≥ ε

8 then

Fix qi so that Pr(xi = qi|x ∈ T 0
i ) is maximized.

Ti+1 := {x ∈ T 0
i |xi = qi}

elseif PrD(x|∃xi+1, . . . , xn : (q1, . . . , qi−1, x, xi+1, . . . , xn) ∈ T 1
i ) ≥ ε

4 then

halt, {(q1, . . . , qi−1)} is the sought after vector
else

Fix qi so that Pr(xi = qi|x ∈ T 1
i ) is maximized.

Ti+1 := {x ∈ T 1
i |xi = qi}

{PrDm−i(Ti+1) ≥ PrDm−i+1(Ti) ∗ 1− ε
8

1− ε
4
}

endif

i := i+ 1
od

Figure 1: Procedure for finding i and 〈q1, q2, . . . , qi−1〉

We now prove the claim, by showing that the procedure in Figure 1 is guaranteed to find i
and 〈q1, q2, . . . , qi−1〉 with the correct properties. Assume to the contrary that it fails.

In the i’th iteration the procedure has found q = (q1, q2, . . . , qi−1) and a subset Ti of Xm−i+1

with the property that q · Ti ⊆ T . It is easily checked that for all values of i, Ti has positive
density, i.e. it is not empty. We now show that the first clause in the if-statement can be
satisfied in at most (5δε−1)m iterations. Suppose after i iterations it has been satisfied in
more. Then for all values x in q · Ti, for at least a 5δε−1 fraction of the values in I, (x, i) is
not in S. By the definition of R of which T and hence q · Ti is a subset, this means that Ti is
in fact empty, a contradiction. This means that

Pr
D

(Tm) ≥ Pr
Dm

(T ) · ( ε
8

)(5δε−1)m · (1− ε
8

1− ε
4

)(1−5δε−1)m

≥ 1

5 · 2a [(
ε

8
)5δε−1

(1 +
ε

8
)1−5δε−1

]m

≥ e−(ln 2)a−ln 5+[5δε−1 ln( ε
8

)+(1−5δε−1) ln(1+ ε
8

)]m

≥ e−(ln 2)a−ln 5+[− ε
20

+ ε
9

]m

> 1,

a contradiction.

2

For our applications, it is convenient to have a version of the round elimination lemma with a
fixed error probability of 1/3.
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Lemma 14 (Round elimination lemma, fixed error probability) Let C = 99 and R =
4256. Suppose there is a randomized [t, a, b]A-protocol with error probability 1/3 for solving
PRa(f). Then there is a randomized [t, Ca,Cb]B-protocol with error probability 1/3 for solving
f .

Remark: Intuitively, the values of C and R seem much higher than necessary. Indeed, we
don’t know if R = 2 and C = 1 is sufficient. If so, some of the lower bounds which follow
could be improved. A counterexample showing that R = 2 and C = 1 does not yield a valid
statement for either randomized or deterministic protocols would also be of interest.

Proof: Repeat the protocol 99 times in parallel and take majority of the results. It is easily
checked that this reduces the error probability to less than 1

100 (1/3)2(− ln(1/24))−1. Now apply
Lemma 13 on the repeated protocol.

2

4.2 Predecessor query problems

Ajtai [Ajt88] gave a lower bound for the problem of storing a subset y ⊆ U = {0, . . . , 2n − 1}
so that for any x ∈ U , the predecessor query “What is max{z ∈ y|z ≤ x}” can be answered
efficiently. His proof is quite complicated. We reprove his lower bound quite easily using the
round elimination lemma.

In fact, we show the lower bound for the prefix parity problem of storing a subset y ⊆ U so
that for any x ∈ U , the query “What is |{z ∈ y|z ≤ x}| mod 2?” can be answered efficiently. It
is not difficult to see that this problem reduces to the predecessor problem: Given a solution to
the predecessor problem, we simply combine it with a perfect hash table containing, for each
element z in the set y to be stored, z’s rank in y. Thus, lower bounds for the prefix parity
problem also hold for the predecessor problem.

By Lemma 1, we should consider the communication problem PARn,l where Alice gets
x ∈ U , Bob gets y ⊆ U of size at most l and the players must determine |{z ∈ y|z ≤ x}| mod 2 =
|y ∩ [0, x]| mod 2.

Theorem 15 Let any c > 1 be given. For a sufficiently large n, let l = 2(log n)2
, a = (log n)3, b =

nc, t =
√

log n/10. Then PARn,l does not have an [t, a, b]-protocol.

Proof: For a communication problem f , let Pm(f) be defined as Pm(f) but with the roles
of Alice and Bob reversed. The round elimination lemma enables us to reduce instances of
PAR to Pm(PAR) or Pm(PAR), eliminating one round. We also need to reduce instances of
Pm(PAR) or Pm(PAR) to PAR. The following two reductions take care of that:

Suppose that m divides n. A communication protocol for PARn,l can be used as a protocol
for Pm(PARn/m,l) as follows: Alice, given x1, . . . , xm, computes the concatenation x̂ = x1 ·
x2 · · · · xm. Bob, given y, i, and x1, . . . , xi−1, computes ŷ = {(x1 · x2 · · · · xi−1 · u · 0n−

in
m |u ∈ y}.

Since |ŷ ∩ [0, x̂]| = |y ∩ [0, xi]|, they get the correct result by simulating the PARn,l protocol on
inputs x̂, ŷ.
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Suppose m is a power of two which divides l. A communication protocol for PARn,l can be
used as a protocol for Pm(PARn−logm−1,l/m) as follows: Alice, given a n− logm+ 1 bit string
x and i, computes x′ = [i− 1] · 0 · x, where [i− 1] denotes the binary notation of i− 1 (which
contains logm bits). Bob, given y1, y2, . . . , ym, where each yj is a subset of the n− logm− 1
bit strings, first embeds each yj in the set of n − logm bit strings by prefixing the elements
by a 0. Then, for each j, he adds the string 1n−logm to the set yj if it has an odd number of
elements. This ensures that the total number of elements in each yj is even. Then he computes
ŷj = { [j − 1] · u, | u ∈ yj } and ŷ = ∪mj=1ŷj. Since |ŷ ∩ [0, x̂]| ≡ |yi ∩ [0, x]| (mod 2), they get
the correct result by simulating the PARn,l protocol on inputs x̂, ŷ.

We are now ready for the main part of our proof. Given a protocol for PARn,l, we use
the first reduction above to get a [t, a, b]A-protocol for PRa(PARb n

Ra
c, l). We use the round

elimination lemma to get a [t− 1, Ca,Cb]B-protocol for

PARb n
Ra
c, l.

The second reduction above gives us a [t− 1, Ca,Cb]B-protocol for

PCRb(PARb n
Ra
c−dlog(CRb)e−1, b l

CRb
c).

Using the round elimination lemma again, we get a [t− 2, C 2a,C2b]A-protocol for

PARb n
Ra
c−dlog(CRb)e−1, b l

CRb
c.

By doing these two round eliminations repeatedly, and combining with the fact that there is
clearly no [0, a′, b′]- protocol for PARnΩ(1),lΩ(1) for any a′, b′, we are done.

2

Using Lemma 1, we get the lower bounds for the data structure problems as immediate corol-
laries.

Corollary 16 In any solution to the prefix parity (and the predecessor) problem, if (n|y|)O(1)

cells, each containing logO(1) |U | bits are used to store the set y, query time is at least Ω(
√

log log |U |)
as a function of |U | and at least Ω(log1/3 |y|) as a function of |y|.

The corresponding best known upper bounds are O(log log |U |) using compressed van Emde
Boas trees [Wil83] and O(log1/2 |y|) using fusion trees [FW93] or packed B-trees [And95].

Ajtai’s paper contains the Ω(
√

log log |U | lower bound for the predecessor problem. Xiao
[Xia92] and, independently, Beame and Fich [BF94] improved this to
Ω(log log |U |/ log log log |U |). The round elimination lemma does not seem to be powerful
enough to give this improved lower bound (but if the factor C in the lemma was replaced
by 1, it would be).
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4.3 Range query problems

In this section we analyze 1- and 2- dimensional reporting range query problems using commu-
nication complexity.

Let U = {0, . . . , 2n − 1} and let r ∈ {1, 2}. The r-dimensional reporting range query
problem is as follows: Given a data set y ⊆ U r, construct a static data structure using at most
s memory cells, each containing b = O(n) bits, so that for any interval x = [x1, x2] (for r = 1)
or box x = [x1, x2]× [z1, z2] (for r = 2) we can answer the query “What is x ∩ y?” efficiently.

We consider solutions with query time of the form t = O(t0 + k), where k is the number of
points reported, i.e. k = |x ∩ y|. We want to minimize t0 while keeping s reasonably small.

We show two bounds: An O(1) upper bound on t0 for reporting queries in the one-
dimensional case with s = O(n|y|), and an Ω((log |y|)1/3) lower bound on t0 for 2-dimensional
queries for r > 1 when s = (n|y|)O(1).

Previously, lower bound for reporting range queries were only given in structured models
of computations, namely the pointer machine model [Cha90] and the layered partition model
[AS95].

For the upper bound, we first consider the simpler problem, where we merely have to
return some element of x ∩ y if one exists. We find it most convenient to express the upper
bound in terms of communication complexity and use Lemma 2. This yields the space bound
s = O((n|y|)O(1)), which we will afterward optimize to O(n|y|). We need a protocol for the
communication problem RQn,l, where Alice gets an interval [x1, x2], Bob gets a set y ⊆ U of
size at most l and the players must agree on an element in [x1, x2] ∩ y if one exists.

Theorem 17 RQn,l has an [O(1), log n+O(log l), n]-protocol.

Proof: Identify x1 and x2 with their binary representation, and let i ∈ {0, . . . , n − 1} be the
most significant bit where x1 and x2 differ, and let w be their common prefix of length i. Since
x1 < x2, we have x1,(i+1) = 0 and x2,(i+1) = 1. We can write [x1, x2] = [x1, z − 1] ∪ [z, x2],
where z = w10n−i−1. Our protocol determines if [x1, x2]∩ y 6= ∅ and returns an element if it is
not, by doing the same task on [x1, z− 1]∩ y and [z, x2]∩ y. We only describe the second part,
the first is similar.

Alice sends i to Bob. They now determine if there an element in y starting with the
prefix w1. This is done by running the deterministic [O(log l), O(log n)]-membership protocol
(Theorem 8) with Alice’s input being w and Bob’s input being the set of i bit-prefixes of his
set. If there isn’t such an element [z, x2]∩y is empty. Otherwise, the membership protocol also
tells Bob exactly what w is, and he can send Alice the smallest element in y with prefix w1.
Alice then checks if x2 is smaller than this element, in which case [z, x2]∩y is empty, otherwise
the element sent to Alice by Bob is returned by the protocol. This completes the protocol.

2

Using Lemma 2, this yields a data structure using space s = O((n|y|)O(1)) for storing a set
y, and a constant time algorithm which on input [x1, x2] returns a member of y ∩ [x1, x2], if
such an element exist. By inspecting the data structure, we see that it really consists of n+ 1
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dictionaries, D0, D1, . . . , Dn, with Di associating a set of size ≤ |y| of strings of length i with
elements of y. By implementing each dictionary using the linear space, constant query time
solution of [FKS84], we get an O(n|y|) space solution.

We now generalize this to reporting queries. We augment the data structure above with an
ordered, doubly linked list containing all the elements of y and a linear space, constant time
dictionary, associating for each element x ∈ y, a pointer to x’s copy in the list. When a query
[x1, x2] we use the data structure above to find an element x ∈ y ∩ [x1, x2] if such an element
exists. Using the dictionary, we then find x in the doubly linked list, and can now report all
elements in y ∩ [x1, x2] in linear time by tracing the list in both directions.

Our lower bound shows that the 2-dimensional problem is more difficult than the 1-
dimensional one:

Theorem 18 In any solution to the 2-dimensional reporting range query problem with query
time t0 + O(k), if (n|y|)O(1) cells, each containing logO(1) |U | bits are used to store y, then
t0 ≥ Ω(log1/3 |y|).

Proof: The proof is a reduction from the prefix parity problem. Given a subset y = {y1, y2, .., ym}
of U , we want to encode it so we can answer queries ”What is |y∩ [1, x]| mod 2?” Assume with-
out loss of generality that m is even.

Given a solution to the reporting range query problem, we construct the data structure
corresponding to the following subset ŷ of U 2:

ŷ = {(y2j−1, n− y2j + 1)|1 ≤ j ≤ m/2}

Now, |y ∩ [0, i]| is odd if and only if ŷ ∩ ([0, i]× [0, n− i]) contains 1 element and |y ∩ [0, i]|
is even if and only if ŷ ∩ ([0, i] × [0, n− i]) is empty. We can find out which is the case in time
t0 +O(1). The lower bound now follows from Corollary 16.

2

The corresponding best known upper bound is O(
√

log |y|) using fusion trees [FW93] or
packed B-trees [And95].

4.4 The “Greater Than” Problem

The GTn function is defined as follows: Alice and Bob each gets an n-bit integer, x and y, resp.,
and they must decide whether x > y. It is easy to see that the deterministic communication
complexity of GTn is linear, and it is known that the randomized complexity is O(log n) [Ni93].
The upper bound requires O(log n) rounds of communication, and it is not hard to obtain a
k-round protocol using O(n1/k log n) bits of communication. Smirnov [Smi88] shows that this
is close to optimal, and Yao (unpublished) improves Smirnov’s bounds slightly. We can easily
rederive the lower bound (in a somewhat weaker form) from the round elimination lemma.

Theorem 19 Let C = 99. There does not exist a randomized [k, n1/kC−k, n1/kC−k]-protocol
for GTn.
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Proof: The proof is by induction on k. We will show that a [k, n1/kC−k, n1/kC−k] protocol
for GTn implies a similar one for Pn1/k(GTn′), for n′ = n(k−1)/k. Using the round elimination
lemma this implies a [k−1, n1/kC−(k−1), n1/kC−(k−1)] protocol for GTn′ . This is a contradiction
to the induction hypothesis since n1/k = n′1/(k−1).

Here is the required reduction: To solve Pn1/k(GTn′) using a protocol for GTn, Alice con-
structs an n-bit integer x̂, by concatenating x1, ..., xm. Bob constructs an n-bit integer ŷ by
concatenating x1, ..., xi−1, y and another (n1/k − i)n′ one bits. One can easily verify that x̂ > ŷ
iff xi > y.

2

4.5 Depth Hierarchy for Monotone AC0

Let Tn
k be the boolean function on nk variables defined inductively as follows: Tn

0(x) = x,
for odd k, Tn

k is the OR of n copies of Tn
k−1, and for even k, Tn

k is the AND of n copies of
Tn

k−1. Each of the copies is a disjoint set of variables. Thus Tn
k is defined by an AND/OR

tree of fan-in n and depth k.

It is clear that Tn
k can be computed by a monotone depth k formula of size N = nk,

with the bottom gates being OR gates. In [KPPY84] it is proved that monotone depth k
circuits with bottom gates being AND gates require exponential size to compute Tn

k. This
lower bound is equivalent to a lower bound in communication complexity using the equivalence
due to [KW90], (see also [NW93]). Our lemma allows us to re-derive this lower bound (in a
somewhat weaker form).

Theorem 20 [KPPY84] Let C = 99. Any monotone depth k formula with bottom gates being
AND gates requires size Ω(nC−k) = Ω(N1/kC−k) size to compute Tn

k.

Comment: An exponential lower bound for depth k circuits directly follows by the straight
forward simulation of depth k circuits by depth k formulae.

Proof: Let fn
k be the communication problem associated with the monotone formula com-

plexity of Tn
k ([KW90], see also [NW93]). (Here Alice is the AND player – holding a maxterm

of Tn
k.) We will prove by induction on k that fn

k does not have [k, nC−k, nC−k]A protocols
(we assume k is even, the odd case is simply dual). This clearly suffices to prove the theorem.

Inspection of fn
k reveals that it is completely equivalent to Pn(fn

k−1), only that Bob does
not also get copies of the first i− 1 strings of Alice. Using the round elimination lemma we see
that a [k, nC−k, nC−k]A protocol for fn

k implies a [k − 1, nC−(k−1), nC−(k−1)]B protocol for
fn
k−1, which by induction does not exist.

2

Acknowledgment

We would like to thank Eyal Kushilevitz for assistance on the writeup of Theorem 12.

20



References

[And95] A. Andersson. Sublogarithmic searching without multiplications. In Proc. FOCS
’95, to appear.

[AS95] A. Andersson, K. Swanson. On the Difficulty of Range Searching. In Proc. 4th
International Workshop on Algorithms and Data Structures (WADS) (1995) 473–
481.

[Ajt88] M. Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Com-
binatorica, 8:235–247, 1988.

[BF94] P. Beame, F. Fich, personal communication.

[Cha90] B. Chazelle. Lower bounds for orthogonal range searching, I: the reporting case. J.
Ass. Comp. Mach., 37:200–212, 1990.

[DGS84] P. Duris, Z. Galil, G. Schnitger. Lower Bounds of Communication Complexity. In
Proc. 16th ACM Symposium on Theory of Computing (STOC) (1984) 81-91.

[FKS84] M.L. Fredman, J. Komlòs, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. Ass. Comp. Mach., 31:538–544, 1984.

[FW93] M.L. Fredman, D. Willard. Surpassing the information theoretic bound with fusion
trees. J. Comput. System Sci., 47:424–436, 1993.

[HR88] B. Halstenberg, R. Reischuk: On Different Modes of Communication. In Proc. 20th
ACM Symposium on Theory of Computing (STOC) (1988) 162-172.

[KW90] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3:255–265, 1990.

[KPPY84] M. Klawe, W.J. Paul, N. Pippenger, M. Yannakakis: On Monotone Formulae with
Restricted Depth In Proc. 16th ACM Symposium on Theory of Computing (STOC)
(1984) 480–487.

[MS82] K. Mehlhorn and E. M. Schmidt. Las Vegas is better than determinism in VLSI and
distributed computing. In Proc. 14th ACM Symposium on Theory of Computing
(STOC) (1982) 330–337.

[Mil93] P.B. Miltersen. The bit probe complexity measure revisited. In Proc. 10th Symp.
on Theoretical Aspects of Computer Science (STACS) (1993) 662–671.

[Mil94] P.B. Miltersen. Lower bounds for union-split-find related problems on random
access machines. In Proc. 26th ACM Symposium on Theory of Computing (STOC)
(1994) 625–634.

[Mil95] P.B. Miltersen. On the cell probe complexity of polynomial evaluation. Theoretical
Computer Science, 143:167–174, 1995.

[Ni93] N. Nisan. The communication complexity of threshold gates. In Proc. of “Combi-
natorics, Paul Erdos is Eighty”, (1993) 301–315.

21



[NW93] N. Nisan and A. Wigderson. Rounds in Communication Complexity revisited. SIAM
J. Comp., 22:1, 211–219, 1993.

[Riv76] R. Rivest. Partial-Match Retrieval Algorithms. SIAM J. Comp., 5:19–50, 1976.

[Smi88] D.V. Smirnov, Shannon’s information methods for lower bounds for probabilistic
communication complexity. Master’s Thesis, Moscow University, 1988.

[Weg87] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner series in Com-
puter Science, 1987.

[Wil83] D.E. Willard. Log-logarithmic worst case range queries are possible in space θ(n).
Inform. Process. Lett., 17:81–84, 1983.

[Xia92] B. Xiao. New bounds in cell probe model. PhD thesis, UC San Diego, 1992.

[Yao77] A.C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proc. 18th IEEE Symposium on Foundations of Computer Science (FOCS) (1977)
222–227.

[Yao79] A.C. Yao. Some complexity questions related to distributive computing. In Proc.
11th ACM Symposium on Theory of Computing (STOC), (1979) 209–213.

[Yao81] A.C. Yao. Should tables be sorted? J. Ass. Comp. Mach., 28:615–628, 1981.

[Yao83] A.C. Yao. Lower bounds by probabilistic arguments. In Proc. 24th IEEE Symposium
on Foundations of Computer Science (FOCS) (1983) 420–428.

22


