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Abstract— A canonical decentralized optimal control problem
with quadratic cost criteria can be cast as an LQR problem
in which the stabilizing controller is restricted to lie in a
constraint set. We characterize a wide class of systems and
constraint sets for which the canonical problem is tractable. We
employ the notion of operator algebras to study the structural
properties of the canonical problem. Examples of some widely
used operator algebras in the context of distributed control
include the subspace of infinite and finite dimensional spatially
decaying operators, lower (or upper) triangular matrices, and
circulant matrices. For a given operator algebra, we prove
that if the trajectory of the solution of an operator differential
equation starts inside the operator algebra, it will remain inside
for all times. Using this result, we show that if the constraint
set is an operator algebra, the canonical problem is solvable
and equivalent to the standard LQR problem without the
information constraint.

I. INTRODUCTION

One of the initial inspirations of decentralized optimal
control can be traced back to team decision theory. A team
comprises of many members each of whom takes decisions
about something different, but linked to each other through
a common single goal or payoff. The team problem is to
maximize the entire profit or minimize the payoff. The theory
of “teams” and decentralized organizations motivated by
Economics was first formulated by Marschak [1], more than
half a century ago. Perhaps, the first connection between
team theory and control theory was made by Radner [2] in
1962, where he derived a sufficient condition under which
a linear controller can achieve the minimal quadratic cost
for a linear system. Prior to the seminal result of Ho and
Chu [3] in 1972, all the results in this area were mainly
limited to static teams [2], [4], where information is only
the function of some random variable but is independent of
what other team players have done. Ho and Chu studied
the Linear Quadratic Gaussian (LQG) team problem with
nested information structure and showed that the optimal
LQG controller is linear.
In this setting, a canonical decentralized optimal control
problem involving linear quadratic (LQ) criteria can be cast
as an LQR (or LQG) problem in which the stabilizing
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controller is restricted to lie in a particular subspace S. This
subspace of admissible controllers is often referred to as
the information constraint [5]. For a general linear system
and subspace S there is no known tractable algorithm for
computing the optimum. In fact, certain cases have been
shown to be intractable [6], [7]. It is also known that in
presence of information constraints, the cost function is no
longer convex in the controller variables [8], [9].

Despite some successes, a general theory of optimal
control for linear systems with information (sparsity) con-
straints on the optimal feedback law is lacking. This is not
surprising, as it is well known that very simple-looking linear
quadratic stochastic optimal control problems with sparsity
or decentralization constraints on the feedback structure can
have complicated nonlinear optimal solutions [8].

In the context of spatially distributed control systems,
there is an abundance of results where optimal and robust
control theory is used to analyze and synthesize spatially
distributed dynamical systems with sparsity constraints. In
particular, Fagnani and Willems [10], [11] showed that
stability of linear dynamical plants with certain symmetries
can be accomplished with controllers that have the same
symmetry. In [12], the authors studied optimal control of
linear spatially-invariant systems with quadratic performance
criteria and showed that the resulting optimal controllers
have an inherent spatial locality similar to the underlying
system. In other words, optimal controllers for spatially-
invariant systems are spatially invariant themselves. Another
related result is that of [13], where the problem of distributed
controller design with a “funnel causality” constraint is
shown to be a convex problem, provided that the plant has a
similar funnel-causality structure, and the propagation speed
in the controller is at least as fast as those in the plant. In their
recent work, Rotkowitz and Lall [5] introduced the notion
of quadratic invariance for the constraint set S . Roughly
speaking, quadratic invariance relates the plant to the con-
straint set through a simple algebraic condition. Using this
notion, the authors show that the problem of finding optimal
controllers (in an input-output setting) for an information
constraint set that has the quadratic invariance property can
be cast as a convex optimization problem, although the
resulting controller might have a very high order. It turns
out that many (but not all) tractable decentralized optimal
control problems satisfy the quadratic invariance property. In
[14], the spatial structure of the optimal control of spatially
distributed dynamical systems with linear quadratic (LQ)
performance criteria and arbitrary interconnection topologies
was studies. By introducing the notion of spatially decaying
(SD) operators [15], the authors showed that the space of
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SD operators form a Banach algebra and that solutions
of Lyapunov and Riccati equations for spatially decaying
systems are themselves SD. It was shown that for a wide
class of infinite-dimensional spatially distributed dynamical
systems the canonical problem is equivalent to the standard
LQR problem without the information constraint when S is
the Banach algebra of SD operators.

The goal of this paper is to analyze the structural prop-
erties of the canonical problem for a broader range of
systems with infinite and finite dimensions. Our goal here
is to prove that the canonical problem is equivalent to the
standard LQR problem if the information constraint set S is
an operator algebra. Simply put, an operator algebra is a set
of continuous linear operators on a topological vector space
such as a Banach space, which is typically required to be
closed in a specified operator topology. Examples of operator
algebras that play important roles in cooperative control and
networked control problems include the Banach algebra of
infinite-dimensional spatially decaying (SD) operators, the
subspace of finite-dimensional spatially decaying operators,
the subspace of lower (or upper) triangular matrices, and
the subspace of circulant matrices. We study the structural
properties of solutions of first-order operator differential
equations. Specifically, we prove that if the underlying
operator algebra is invariant (see theorem 4.3 for details)
and the initial condition lies inside the operator algebra then
trajectory of the solution of the operator differential equation
stays inside the operators algebra for all times. Using this
result, we consider systems whose state-space operators
belong to an operator algebra and prove that solution of
Sylvester equation and the unique solution of Lyapunov and
algebraic Riccati equations (ARE) corresponding to these
systems indeed lie in the operator algebra.

The implication of these result is that if the information
constraint set S in the canonical problem is an operator
algebra and that the state-space operators of the system
as well as the weighting operators in the quadratic cost
functional belong to S , then the optimal feedback law also
belong to S . In other words, the information constraint LQR
problem is equivalent to the standard LQR problem.

This paper is organized as follows: We introduce the
notation and mathematical preliminaries in Section II. The
canonical decentralized optimal control problem is discussed
in Section III. In IV, we introduce the notion of operator
algebra and present our main results on the structure of
solutions to an operator differential equations. Then using
tools from IV, we study the structural properties of the
canonical problem in section V. Our concluding remarks are
presented in Section VI.

II. MATHEMATICAL PRELIMINARIES

R denotes the set of real numbers, R+ the set of positive
real numbers, Z the set of integer numbers, and N the set of
natural numbers. The inner product on Rn is denoted by 〈 , 〉
with corresponding norm ‖x‖ =

√
〈x, x〉 for all x ∈ Rn. For

notational simplicity, the matrix norm induced by ‖ .‖ is also
denoted by ‖ .‖. A subset G of Nd or Rd is referred to as
the spatial domain if it consists of countably many d-tuples
i = (i1, . . . , id).

Definition 2.1: A distance function on a discrete topology
with a set of nodes G is defined as a single-valued function
dis : G × G → R+ which has the following properties for
all k, i, j ∈ G:

(1) dis(k, i) = 0 iff k = i .
(2) dis(k, i) = dis(i, k).
(3) dis(k, i) ≤ dis(k, j) + dis(j, i).

The Banach space `p(G) for 1 ≤ p < ∞ is defined as the
set of all sequences x = (xi)i∈G in which xi ∈ Rn

i for some
ni ≥ 1 satisfying

∑

i∈G
‖xi‖p < ∞,

and endowed with the norm

‖x‖p
p :=

∑

i∈G
‖xi‖p.

The Banach space `∞(G) denotes the set of all bounded
sequences endowed with the norm

‖x‖∞ := sup
i∈G

‖xi‖.

Throughout the paper, we will use the shorthand notation `p

for `p(G). The space `2 is a Hilbert space with inner product

〈x, y〉 :=
∑

i∈G
〈xi, yi〉,

for all x, y ∈ `2. An operator A : `p → `p is bounded if it
has a finite induced norm, i.e., the following quantity

‖A‖p,p := sup
‖x‖p=1

‖Ax‖p, (1)

is bounded. The set of all bounded linear operators of `p into
`p is denoted by B(`p). The identity operator is denoted by
I . An operator A ∈ B(`p) has an algebraic inverse if it has
an inverse A−1 in B(`p).

Definition 2.2: The adjoint operator of A ∈ B(`2) is the
operator A∗ in B(`2) such that

〈Ax, y〉 = 〈x,A∗y〉 ,
for all x, y ∈ `2.
An operator A is self-adjoint if A = A∗.

Definition 2.3: An operator A ∈ B(`2) is positive defi-
nite, shown as A Â 0 , if there exists a number α > 0 such
that

〈x,Ax〉 > α ‖x‖22,
for all nonzero x ∈ `2.
Throughout this paper we are interested in linear operators
A : `p → `p which have a matrix representation.

The set of all functions from D ⊆ R into R is a vector
space F over R. For χ′ , χ′′ ∈ F , the notation χ′ ¹ χ′′

will be used to mean the pointwise inequality χ′(x) ≤ χ′′(x)
for all x ∈ D. A family of seminorms on F is defined as
{‖ .‖T | T ∈ R+} in which

‖χ‖T := sup
x≤T

|χ(x)|,

for all χ ∈ F . The topology generated by all open ‖ .‖T -
balls is called the topology generated by the family of
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seminorms. Continuity of a function χ in this topology is
equivalent to continuity in every seminorm in the family [5].

III. A CANONICAL DECENTRALIZED OPTIMAL
CONTROL PROBLEM

In this section, we discuss the optimal control of spatially
distributed linear systems. Spatially distributed dynamical
systems are a general class of systems comprised of a
countably large, possibly infinite, number of subsystems
coupled either through their dynamics or through a common
objective, shared cooperatively with other subsystems to
achieve a global task.

As discussed earlier, a canonical decentralized optimal
control problem with a quadratic performance criteria can
be formulated in the following form:

minimize
K

∫ ∞

0

〈ψ, Qψ〉+ 〈u,Ru〉 dt (2)

subject to:
d

dt
ψ = Aψ + Bu (3)

u = Kψ (4)
K ∈ S, (5)

with initial condition ψ(0) = ψ0. The state and input
variables are denoted by ψ = (ψk)k∈G and u = (uk)k∈G,
respectively. The state-space operators A,B and the weight-
ing operators Q º 0 and R Â 0 are assumed to be constant
functions of time and linear from `2 to itself. We assume
the existence and uniqueness of solutions of the system
defined by (3) (cf. [16] for more details). In the canonical
problem, the goal is to find a state feedback operator K
that minimizes the quadratic cost functional (2) and satisfies
the constraint (5). The subspace of admissible controllers
S is often referred to as the information constraint [5].
For a general linear system and subspace S there is no
known tractable algorithm for computing the optimum. In
some cases, the canonical problem may not have a solution.
In other words, the optimal feedback policy could be a
nonlinear function of the state variables [8]. In Section V,
we will prove that if S exhibits some specific topological
and algebraical structures, the canonical problem (2)-(5)
is solvable and equivalent to the standard LQR problem,
without the information constraint 5. In the following section,
we will expound how to impose sufficient mathematical
structures on the constraint set S to enable for a thorough
analysis of the canonical problem.

IV. OPERATOR ALGEBRA

The concept of an operator algebra was introduced in a
1913 book by Riesz, where he studied the algebra of bounded
operators on the Hilbert space `2. An operator algebra is a set
of continuous linear operators on a topological vector space
such as a Banach space, which is typically required to be
closed in a specified operator topology. In this paper, operator
algebra is employed to develop a mathematical framework to
analyze spatially distributed dynamical systems. Using this
framework, results that are applicable to a wide class of such
systems are proved. In this paper, we refer to the notion of
operator algebra in the following sense.

Definition 4.1: A vector space of bounded linear operators
S is called operator algebra if it is closed in the norm
topology of operators, I ∈ S , and for every A,B ∈ S ,

(i) A + B ∈ S .
(ii) AB ∈ S .

The closedness of S implies that for a convergent sequence
An → A (in the sense of the norm topology) as n →∞, if
An ∈ S for all n ≥ 0, then A ∈ S .

A. Examples of Operator Algebras
There are many instances in the context of spatially

distributed control systems where the space of matrices
stemmed from analysis of various types of couplings form
operator algebras. In the following, we illustrate some of
these examples.

1) Infinite-Dimensional Spatially Decaying Operators

In the following, we will briefly review some of the
definitions and results from [14].

Definition 4.2: A nondecreasing continuous function
χ : R+ → [1,∞) is called a coupling characteristic function
if χ(0) = 1 and χ(x + y) ≤ χ(x) χ(y) for all x, y ∈ R+.

In order to be able to characterize rates of decay we define
a one-parameter family of coupling characteristic functions
as follows.

Definition 4.3: A one-parameter family of coupling char-
acteristic functions C is defined to be an ordered set of all
coupling characteristic functions χα for α ∈ R+ such that

(i) χ0(x) = 1 for all x ∈ R+.
(ii) χα(x)χβ(x) = χα+β(x) for all x ∈ R+.
(iii) For α ≤ β, relation χα ¹ χβ holds.
(iv) χα is a continuous function of α in topology

generated by all ‖.‖T .

Suppose that a parameterized family of coupling character-
istic functions C is given. For all coupling characteristic
function χα ∈ C , we assume that the following condition
holds

sup
k∈G

∑

i∈G
χα(dis(k, i))−1 < ∞.

The class of spatially decaying (SD) operators with respect
to C with decay margin τ > 0 is defined as follows

S∞τ (C ) := {A : |||A|||(C ,τ) < ∞},
where the operator norm is defined as

|||A|||(C ,τ) := max

{
sup

α∈[0,τ)

sup
k∈G

∑

i∈G
‖Aki‖χα(dis(k, i)),

sup
α∈[0,τ)

sup
i∈G

∑

k∈G
‖Aki‖χα(dis(k, i))

}
,

and χα ∈ C for all 0 ≤ α < τ . For a given family
of coupling characteristic function, the corresponding class
of SD operators can be characterized. In the sequel, some
important types of SD operators are given:
• The class of exponentially decaying operators where

χα(x) = eαx.
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• The class of algebraically decaying operators where
χα(x) = (1 + λx)α for some λ > 0.

• The class of banded operators that are SD with respect
to all types of coupling characteristic functions.

An important example of exponentially decaying operators is
the class of translation invariant operators defined on group
(Z,+) (see [14] for more details).

Theorem 4.1: Given a one-parameter family of coupling
characteristic functions C and τ > 0, the operator space
S∞τ (C ) forms a Banach Algebra with respect to |||.|||(C ,τ)
under the operator composition operation.

Proof: We refer to [14] for a proof.

According to definition 4.1, a Banach algebra is also an
operator algebra. We emphasize that the applications of
SD operators in modeling various types of couplings in
networked dynamical systems cover a wide class of such
systems ( see [14], [17] for further details).

2) Finite-Dimensional Spatially Decaying Operators

According to the definition, all finite-dimensional matri-
ces automatically satisfy the membership condition of the
Banach algebra S∞τ (C ). Therefore, in the finite-dimensional
case, theorem 4.1 can not be applied directly. However, the
results can be extended to finite-dimensional operators by
appropriately adjusting the notion of an SD operator to the
finite dimensional case as follows. Suppose that a spatial
domain G with cardinality N < ∞ and a parameterized
family of coupling characteristic functions C are given.

Definition 4.4: The subspace of spatially decaying matri-
ces SN

τ (C ) with decay margin τ > 0 is defined to be the set
of all matrices A for which there exist constants C,C ′ > 0
and 0 < α < τ such that each block submatrix of A satisfies

‖Aki‖ ≤ C χα(dis(k, i))−1,

for all k, i ∈ G. The number α is referred to as the decay
rate of matrix A.

Intuitively, a matrix is spatially decaying, if the size of each
blocks decays faster than inverse of a coupling characteristic
function.

Theorem 4.2: The subspace of spatially decaying matrices
SN

τ (C ) form an operator algebra under the matrix composi-
tion operation.

Proof: Given A ∈ SN
τ (C ) with decay rate 0 < α < τ

and B ∈ SN
τ (C ) with decay rate 0 < β < τ , we have

‖Aki + Bki‖ ≤ ‖Aki‖+ ‖Bki‖
≤ CAχα(dis(k, i))−1 + CBχβ(dis(k, i))−1

≤ C χγ(dis(k, i))−1, (6)

where γ = min(α, β) and C is a number greater than CA +
CB . This shows that A + B ∈ SN

τ (C ). In the next step,

consider the (k, i) block submatrix of AB, we have

‖
∑

j∈G
AkjBji‖ ≤

∑

j∈G
‖Akj‖‖Bji‖

≤ CACB

∑

j∈G
χα(dis(k, j))−1χβ(dis(j, i))−1

≤ C χγ(dis(k, i))−1. (7)

In inequality (7), if α = β, the decay rate γ is a positive
number less than α. Otherwise, γ = min(α, β). This proves
that AB ∈ SN

τ (C ). Finally, given a convergent sequence
An → A as n →∞ with property An ∈ SN

τ (C ) for all n ≥
0. It is straightforward to show that A ∈ SN

τ (C ). Therefore,
SN

τ (C ) is an operator algebra.

Note that SN
τ (C ) is closed under the multiplication of

finite number of matrices.

3) Lower and Upper Triangular Matrices

The subspace of all Nm×Nm lower triangular matrices
consists of all matrices of the following structure

A =




? 0 0 · · · 0
? ? 0 0 · · · 0
? ? ? 0 · · · 0
? ? ? ? · · · 0
...

. . .
. . .

...
? ? ? ? ? ?




,

where the symbol ? represents a m × m. The formal
representation of a lower triangular matrix A is as follows

Aki =
{

? if k ≥ i
0 if k < i

.

Similarly, the subspace of all Nm × Nm upper triangular
matrices consists of all matrices of the following structure

A =




? ? ? ? · · · ?
0 ? ? ? · · · ?
0 0 ? ? · · · ?
0 0 ? · · · ?
...

. . .
. . .

...
0 0 0 · · · 0 ?




.

The formal representation of the upper triangular matrix A
is

Aki =
{

? if k ≤ i
0 if k > i

.

Proposition 4.1: The subspace of lower (or upper) trian-
gular matrices with the same dimensions form an operator
algebra under the matrix composition operation.

4) Circulant Matrices

An Nm×Nm circulant matrix has the following form
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A =




A0 AN−1 · · · A2 A1

A1 A0 AN−1 · · · A2

... A1 A0
. . . . . .

AN−2
. . .

. . . AN−1

AN−1 AN−2 · · · A1 A0




,

where Ak ∈ Rm×m for all k ∈ {1, ..., N}. This class
of matrices can be used to represent the coupling between
subsystems in a networked dynamic system whose structure
has a ring topology.

Proposition 4.2: The subspace of all circulant matrices
with the same dimensions form an operator algebra under
the matrix composition operation.

Indeed, the set of all circulant matrices form a commuta-
tive algebra, since for any two given circulant matrices A and
B, the sum A + B is circulant, the product AB is circulant,
and AB = BA.

B. Closure Under Inversion

The following result is from [17] and it shows that under
some mild assumptions, an operator algebra could be closed
under inversion operation. We assume that assumption 5.1
holds.

Lemma 4.1: Suppose that S is an operator algebra and
A ∈ S has an algebraic inverse on B(`2). Then A−1 ∈ S .

C. Operator Differential Equations

The main result of this paper is presented in theorem
4.3 and it provides a unified approach to study structural
properties of solutions of a wide range of operator differ-
ential equations that normally arise in analysis of spatially
distributed control systems. Examples of such operator dif-
ferential equations include operator Sylvester and Riccati
differential equations.

Lemma 4.2: Let S be an operator algebra and F : [a, b] →
B(`p) a continuous map where a < b are some real numbers.
If F (t) ∈ S for all t ∈ [a, b], then

∫ b

a

F (t)dt ∈ S.

Theorem 4.3: Suppose that S is an operator algebra and
map F : R×B(`p) → B(`p) is continuous on R. Assume
that under appropriate conditions the following initial value
problem

d

dt
X(t) = F (t,X(t)) , X(0) = X0, (8)

has a unique solution. If
(i) S is F -invariant,
(ii) X0 ∈ S ,

then X(t) ∈ S for all t ≥ 0 where X(t) is the unique
solution of problem (8).

Proof: We use fixed-point iteration (also called Picard
iteration) method to prove our claim. Define

T0(t) = X0,

and

Tn(t) = X0 +
∫ t

0

F (σ, Tn−1(σ)) dσ. (9)

According to assumption (ii), it follows that T0(t) ∈ S for
all t ≥ 0. Assumption (i) implies that F (t, T0(t)) ∈ S for all
t ≥ 0. By applying lemma 4.2 and induction on n, one can
conclude from equation (9) that Tn(t) ∈ S for all n ≥ 1 and
t ≥ 0. By applying the Banach fixed point theorem, one can
show that the infinite series of Tn is uniformly convergent.
Define the uniform norm as follows

‖X‖unif := sup { ‖X(t)‖p,p | t ∈ R+}.
Thus, we have Tn → X as n → ∞ in the sense of the
uniform norm. The limit X is the unique solution of problem
(8). The closedness property of S ensures that X(t) ∈ S for
all t ≥ 0.

Example 4.1: An immediate application of theorem 4.3 is
to study the structural properties of the solution of Sylvester
differential equations of the form

d

dt
X(t) = A(t)X(t)+X(t)B(t)+Q(t) , X(0) = X0, (10)

where the coefficient A(t), B(t), Q(t), and the unknown
X(t) are complex matrices of appropriate dimensions. The
Sylvester differential equation appears in several applications
such as large-space flexible structures [18], jump linear
systems [19], control of linear systems with non-Markovian
modal changes [20], or when one uses semi-discretization
techniques to solve scalar partial differential equations [21].
Let assume that S be an operator algebra and that
A(t), B(t), Q(t) ∈ S for all t ≥ 0 as well as X0 ∈ S .
It is straightforward to verify that S is invariant under the
following map

F (t,X) = A(t)X + XB(t) + Q(t).

According to theorem 4.3, it follows that X(t) ∈ S for all
t ≥ 0. For instance, if we assume that S is the operator
algebra of lower triangular matrices, then the solution of the
Sylvester differential equation X(t) is also lower triangular
for all t ≥ 0. This result might be useful in developing
numerical methods to solve equation (10).

V. ANALYSIS OF THE CANONICAL PROBLEM

In this section, we study the structural properties of the
canonical decentralized optimal control problem (2)-(5). We
show that the canonical problem (2)-(5) is equivalent to the
standard LQR problem if we assume that the information
constraint set S is an operator algebra along with the
following assumption.

Assumption 5.1: If X ∈ S , then X∗ ∈ S .

A. Lyapunov Equation

Consider the operator Lyapunov equation

A∗P + PA + Q = 0, (11)

where A is the infinitesimal generator of an exponentially
stable C0-semigroup on `2 and Q º 0.
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Theorem 5.1: Suppose that S is an operator algebra. If
A, Q ∈ S, then the unique positive definite solution of
Lyapunov equation (11) satisfies P ∈ S .

Proof: The unique solution of Lyapunov equation (11)
is the unique equilibrium point of the following operator
differential equation

d

dt
P (t) = A∗P (t) + P (t)A + Q, (12)

with initial value P (0) = Q. By using closure under addition
and multiplication of S , one can verify that A∗X+XA+Q ∈
S whenever X ∈ S. According to theorem 4.3, it follows
that P (t) ∈ S for all t ≥ 0. On the other hand, we know
that P (t) → P as t →∞ in `2-norm (see [16]). The closure
property of S implies that P ∈ S .

B. Riccati Equation

The canonical decentralized optimal control problem (2)-
(5) without the information constraint K ∈ S is the standard
LQR problem. It is well-known that the associated optimal
feedback law to the standard LQR problem is given by

K = −R−1B∗P , (13)

where P is the unique solution of the Riccati equation

A∗P + PA + Q− PBR−1B∗P = 0, (14)

and we assume that all standard LQR assumptions hold
for (14) to have a unique solution. Note that in all of the
examples of operator algebras we discussed in subsection
IV-A, it can be shown that the operator algebras are also
closed under inversion operation (see [14] and [17] for a
complete discussion). Thus, without loss of generality we
may assume that S is closed under inversion operation.

In the canonical problem (2)-(5) if we assume that
A, B,Q, R ∈ S , we will only need to prove that P ∈ S
in order to show that K ∈ S . The following theorem shows
that this is indeed the case.

Theorem 5.2: Consider the canonical problem (2)-(5).
Suppose that S is an operator algebra. If A, B,Q, R ∈ S ,
then the unique positive definite solution of Riccati equation
(14) satisfies P ∈ S .

Proof: Consider the following operator Riccati differ-
ential equation

d

dt
P (t) = A∗P (t) + P (t)A + Q− P (t)BR−1B∗P (t),

with P (0) = 0. We denote the unique solution of this Riccati
differential equation in the class of strongly continuous, self-
adjoint operators in B(`2) by the one-parameter family of
operator-valued function P (t) for t ≥ 0. By using our
assumptions and closure properties of S , if X ∈ S , then

A∗X + XA + Q−XBR−1B∗X ∈ S.

Therefore, one can conclude from theorem 4.3 that P (t) ∈ S
for all t ≥ 0. On the other hand, the nonnegative operator
P , the unique solution of ARE, is the strong limit of P (t)
on `2 as t →∞ (see theorem 6.2.4 of [16]). Using the fact
that S is closed, one concludes that P ∈ S .

Remark 5.1: Among all examples of operator algebras
presented in subsection IV-A, the subspaces of lower and
upper triangular matrices do not satisfy the assumption 5.1.

VI. CONCLUSION

The goal of this paper was to offer a rigorous mathematical
framework for analysis and synthesis of spatially distributed
control systems. Specifically, we studied structural properties
of optimal control of spatially distributed dynamical systems
with linear quadratic criteria (such as LQR or LQG) where
the stabilizing controller was restricted to lie in a constraint
set. For a general linear system and constraint set, there is no
known tractable algorithm to find the optimum. We applied
tools from operator theory such as the notion of operator
algebra to specify a wide class of systems and constraint
sets for which the constrained optimal control problem is
equivalent to the corresponding unconstrained problem.
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