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Abstract

A fundamental result of Büchi states that the set of monadic second-order formulas true in the structure
(Nat,<) is decidable. A natural question is: what monadic predicates (sets) can be added to (Nat,<) while
preserving decidability? Elgot and Rabin found many interesting predicates P for which the monadic theory
of 〈Nat,<, P〉 is decidable. The Elgot and Rabin automata theoretical method has been generalized and
sharpened over the years and their results were extended to a variety of unary predicates. We give a sufficient
and necessary model-theoretical condition for the decidability of the monadic theory of (Nat,<, P1, ..., Pn). We
reformulate this condition in an algebraic framework and show that a sufficient condition proposed previously
by O. Carton and W. Thomas is actually necessary. A crucial argument in the proof is that monadic second-
order logic has the selection and the uniformization properties over the extensions of (Nat,<) by monadic
predicates. We provide a self-contained proof of this result.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we provide necessary and sufficient conditions for the decidability of monadic
(second-order) theory of expansions of the linear order of the naturals ω by unary predicates.

� This is the extended version of the talk presented at Logic Colloquium 2005 [10].
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The fundamental work of Büchi [1] shows that the monadic theory of ω = 〈Nat,<〉 is decidable.
Even before the decidability of the monadic theory of ω has been proved, it was shown that the
expansions of ω by “interesting” functions have undecidable monadic theory. In particular, the
monadic theory of 〈Nat,<, +〉 and the monadic theory of 〈Nat,<, �x.2 × x〉 are undecidable [12,18].
Therefore, most efforts to find decidable expansions of ω deal with expansions of ω by monadic
predicates.

It is clear that if M = 〈Nat,<, P1, . . . , Pn〉 is an expansion of ω by definable predicates, then the
monadic theory of M is decidable. However, only very simple monadic predicates are definable in
ω. It is well known that a monadic predicate S is definable in ω iff it is ultimately periodic, i.e., there
are m, d ∈ Nat such that for all i > m: i ∈ S iff i + d ∈ S.

In order to prove decidability of the monadic theory of ω, Büchi introduced finite automata over
ω-words. He provided a computable reduction from formulas to finite automata. More precisely,
he proved that for every monadic formula ϕ(X ) with a free second-order monadic variable X there
is a finite automaton A such that a monadic predicate P satisfies ϕ(X ) if and only if A accepts the
characteristicω-word uP associated with P (the ith letter of uP is 1 if i ∈ P and it is 0 if i �∈ P). Hence,

the monadic theory of 〈Nat,<, P〉 is decidable iff for the corresponding ω-string uP the following
decision problem is decidable

(AccuP
): Given an automaton A, does A accepts uP?

Elgot and Rabin [6] found many interesting predicates P for which the problem AccuP
and hence

the monadic theory of 〈Nat,<, P〉 are decidable. Among these predicates are the set of facto-
rial numbers {n! : n ∈ Nat}, the sets of kth powers {nk : n ∈ Nat} and the sets {kn : n ∈ Nat} (for
k ∈ Nat).

The Elgot and Rabin automata theoretical method has been generalized and sharpened over the
years and their results were extended to a variety of unary predicates (see e.g., [5,15,16,13,3,4]).

In [3,4] a class of effectively profinitely ultimately periodic predicates was introduced by Catron
and Thomas. Many examples of effectively profinitely ultimately periodic predicates were pro-
vided. Catron and Thomas used an algebraic (semigroup) approach to show that for every effec-
tively profinitely ultimately periodic predicate P the corresponding problem AccuP

is decidable.

Consequently, they derived that if P is an effectively profinitely ultimately periodic predicate then
the monadic theory of 〈Nat,<, P〉 is decidable. We show that this is a necessary condition for the
decidability of the monadic theory of 〈Nat,<, P〉.

Unlike previous proofs of the decidability of monadic expansions of ω our proof is based on
model theoretical methods developed by Shelah [14].

Let M = 〈Nat,<, P〉, where P is a unary predicate. For an interval [i, j), we denote by M[i,j) the
substructure ofM over the set {k : i � k < j}. Structures are said to be ≡k -equivalent if they satisfy
the same monadic second-order sentences of the quantifier depth at most k . A subset S = {s1 <
s2 < · · · < si < · · ·} of Nat is said to be k-homogeneous for M = 〈Nat,<, P〉 if S is infinite and
M[si ,si′ ) ≡k M[sj ,sj′ ) for all pairs i < i′ and j < j′. A set S is said to be homogeneous forM if for every

k the set Sk = S ∩ {n : n � sk} is k-homogeneous.
Our main technical result is the following necessary and sufficient condition for the decidability

of M = 〈Nat,<, P〉:
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Theorem A. The monadic theory ofM = 〈Nat,<, P〉 is decidable if and only if P is recursive and there
is a recursive set S which is homogeneous for M .

We also provide necessary and sufficient algebraic conditions for the decidability of M =
〈Nat,<, P〉. An ω-sequence ai is said to be ultimately constant with lag l if ai = aj for i, j > l.

Let M = 〈Nat,<, P〉 and let uP = a0a1 . . . be the characteristic ω-word over {0, 1} associated

with P . For an infinite set S = {s1 < s2 < · · · < si < · · ·} ⊆ Nat define an ω-sequence wi = w
S
i =

asiasi+1asi+2 . . . asi+1−1 of finite words over alphabet {0, 1}. A set S ⊆ Nat is ultimately constant for
M if for every finite semigroup G and for every morphism h from the semigroup of finite non-
empty words over {0, 1} into G the sequence {h(wi)}i∈Nat is ultimately constant. A set S is effectively
ultimately constant for M if S is recursive and ultimately constant for M and there is a recursive
function which for every finite semigroup G and morphism h computes a lag of the ultimately
constant sequence {h(wi)}i∈Nat .

Theorem B. The monadic theory ofM = 〈Nat,<, P〉 is decidable if and only if P is recursive and there
is a set which is effectively ultimately constant for M .

The “only if” direction is a difficult part of Theorems A and B; the “if” direction of these theorems
is easy.

The paper is organized as follows. In Section 2, we fix notations and terminology. In Section 3,
elements of the composition method are presented. Though our use of the composition method is
not very deep, it is unlikely that these results would have been found in the automata theoretical
framework. In Section 4, we give a proof of Theorem A. In Section 5, we reformulate this theorem in
the algebraic framework and we prove Theorem B. The algebraic condition of Theorem B is a special
case of Carton–Thomas condition shown to be sufficient for decidability [3,4]; hence, we obtain
that the monadic theory of M = 〈Nat,<, P〉 is decidable if and only if P is effectively profinitely
ultimately periodic. A negative answer to a question raised in [3] is also provided here. Section 6
compares our results with the Semenov theorem [13] which provides another necessary and sufficient
condition for the decidability of the monadic theory of M . We also state here the generalization
of our results to other logics [11]. A proof of Theorem 17 is given in the Appendix. This theorem
is closely related to the uniformizatiion property for 〈Nat,<〉, which was stated without proof in
[9]. The Appendix also compares the uniformization property with the Church uniformization
problem.

2. Preliminaries

2.1. Notations and terminology

We use k , l,m, n, i for natural numbers; Nat for the set of natural numbers and capital bold letters
P, S, R for subsets of Nat. We identify subsets of a set A and the corresponding unary (monadic)
predicates on A. We use standard notations for ordinals, e.g., ω is the order type of natural numbers.
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As usual in set theory, a natural number n can be viewed as a linear order, namely the initial segment
({0, . . ., n− 1},<) of the standard ordering of natural numbers.

The set of non-empty finite words (strings) over an alphabet � is denoted by �+; the semigroup
of finite non-empty words over � with the concatenation operation will be also denoted by �+;
this semigroup is the free semigroup generated by �, i.e., every function from � into a semigroup G
can be extended in a unique way to a morphism from �+ into G .

There exists a one-one correspondence between the set of all ω-strings over the alphabet {0, 1}n
and the set of all n-tuples 〈P1, . . . , Pn〉 of unary predicates over the set of natural numbers. With
an n-tuple 〈P1, . . . , Pn〉 of unary predicates over Nat, we associate the ω-string a0a1 . . . ak . . . over
alphabet {0, 1}n defined by ak =def 〈bk1 , . . . , bkn〉 where bki is 1 if P i(k) holds and bki is 0
otherwise.

Similarly, there is a one-one correspondence between the set of all strings of length m over the
alphabet {0, 1}n and the set of all n-tuples 〈P1, . . . , Pn〉 of unary predicates over the set {0, . . . ,m− 1}.

A linearly ordered set will be called a chain. A chain with n monadic predicates over its domain
will be called an n-labelled chain; whenever n is clear from the context an n-labelled chain will be
called a labelled chain.

We will sometimes identify an n-labelled chain M = 〈Nat,<, P1, . . . , Pn〉 with the ω-string over
the alphabet {0, 1}n which corresponds to the n-tuples 〈P1, . . . , Pn〉; this ω-string will be called the
characteristic ω-string (or ω-word) of M . Similarly, we will identify finite n-labelled chains with
corresponding strings over {0, 1}n.

We use standard notations for intervals, e.g., [a, b) denotes the set {c : a � c < b}. For a labelled
chain M and its interval [a, b) we denote by M[a,b) the substructure of M over [a, b); we denote by
M<a the substructure of M over the interval {c : c < a}.

2.2. Monadic logic of order

The syntax of the monadic second-order logic of order—MLO has in its vocabulary individual
(first order) variables t0, t1, . . ., monadic second-order variables X0,X1, . . ., monadic predicate names
P0, P1 . . . and one binary relation < (the order).

Atomic formulas are of the form X(t), P(t), t1 < t2 and t1 = t2. Well-formed formulas of the
monadic logicMLO are obtained from atomic formulas using Boolean connectives ¬, ∨, ∧, → and
the first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and ∀X . The quantifier
depth of a formula ϕ is denoted by qd(ϕ).

A structure forMLO isM = 〈A,<, PM1 , . . . , PMn 〉,where<M is a linearorderoverAandPM1 , . . . , PMn
areone-placepredicates (sets)whichare the interpretationsof themonadicpredicatenamesP1, . . . , Pn
in the structure M . Such a structure is called an n-labelled chain, or for brevity simply a chain.

We shall not repeat the standard inductive definition saying when a formula is satisfied. We recall
the notation:

M , �1, . . . �k; S1, . . . , Sm |= ϕ(t1, . . . , tk;X1, . . . ,Xm)

which we also abbreviate to M |= ϕ[�1, . . . , �k; S1, . . . , Sm], where M is a structure, �1, . . . , �k are
elements ofM , S1, . . . , Sm are unary predicates (i.e., sets) over the domain ofM , ϕ is a formula and
t1, . . . , tk;X1, . . . ,Xm include all the free variables of ϕ.
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We use standard abbreviations, e.g., we write X ⊆ X ′ for ∀t. X(t) → X ′(t); we write X = X ′ for
∀t. X(t) ↔ X ′(t); symbols “∃�1” and “∃!” stands for “there is at most one” and “there is a unique”.

LetM = 〈A,<, PM1 , . . . , PMn 〉 be a labelled chain and �(X ) be a formula. We say that a set S ⊆ A

is definable by �(X ) in M if M |= �[S] and M |= ∃!X�(X ). We say that a set S ⊆ A is definable (in
M ) if it is definable by a MLO formula.

The monadic theory of a labelled chain M is the set of all MLO sentences which hold in M .
We will deal with decidability questions for the monadic theory of expansions of ω by monadic

predicates (i.e., of structures of the formM = 〈Nat,<, P1, . . . , Pn〉).
We say that a chain M = 〈Nat,<, P1, . . . , Pn〉 is recursive if all P i are recursive subsets of Nat.

3. Elements of composition method

Composition theorems are tools which reduce sentences about some compound structure to
sentences about its parts. A seminal example of such a result is the Feferman–Vaught Theorem [7]
which reduces the first-order theory of generalized products to the first-order theory of its factors
and the monadic second-order theory of index structure.

Shelah [14] used the composition theorem for linear orders as one of the main tools for obtaining
very strong decidability results for the monadic theory of linear orders.

In this section, definitions and theorems which will be used later are collected. They are adapta-
tions of more general results proved by Shelah [14]. The proofs of the theorems stated here can be
easily extracted from the results in [14] or from surveys by Gurevich [8] and Thomas [17].

3.1. ≡k -equivalence

We use the notation ≡k to say that two labelled chains cannot be distinguished by an MLO
sentence of quantifier depth k . More precisely, let M and M ′ be two n-labelled chains. We write
M ≡k M ′ if and only if for every sentence ϕ with qd(ϕ) � k we have M |= ϕ iff M ′ |= ϕ.

Theorem 1.

(1) For every n and every k , the relation ≡k defines finitely many equivalence classes �1, �2, . . . , �m
over the set of all n-labelled chains.

(2) For each equivalence class �i there is a MLO sentence �i with qd(�i) � k which characterizes
it; i.e.,M ∈ �i iffM |= �i.Moreover, there is an algorithm which for every k and n computes the
set Charkn of the characteristic sentences for ≡k over the n-labelled chains.

(3) Every MLO sentence ϕ in the signature 〈<, P1, . . . , Pn〉 with qd(ϕ) � k is equivalent to a (finite)
disjunction of characteristic sentences from Charkn . Moreover, there is an algorithm which for
every sentence ϕ computes a finite set D of characteristic sentences such that ϕ is equivalent to
the disjunction of all the sentences from D.

3.2. Lexicographical sum

Definition 2. (Lexicographic sum) Let Ind = 〈I ,<Ind 〉 be a chain and letMi = 〈Ai,<Mi , PMi1 , . . . , PMin 〉
for i ∈ I be a family of (disjoint) n-labelled chains. The lexicographic sum of Mi =
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〈Ai,<Mi , PMi1 , . . . , PMin 〉 with respect to the chain Ind (notation
∑
i∈Ind Mi) is the n-labelled chain

M = 〈A,<, P1, . . . , Pn〉, where

(1) A = ∪i∈IAi and
(2) An element � ∈ Ai precedes �′ ∈ Aj in M if i precedes j in Ind or i = j and � precedes �′ in Ai.
(3) For l = 1, . . . , n, an element � ∈ Pl if � ∈ PMil for some i ∈ I.

We refer to Mi as the summand chains and to Ind as the indices chain of
∑
i∈Ind Mi . We write

M0 +M1 for
∑
i∈{0,1}Mi .

Theorem 3 (Composition theorem for chains). Let Ind = 〈I ,<Ind 〉 be a chain and let Mi (i ∈ I) and
M ′
i (i ∈ I) be two families of n-labelled chains such that Mi ≡k M ′

i for all i ∈ I. Then,
∑
i∈Ind Mi is

≡k -equivalent to
∑
i∈Ind M ′

i.

This theorem implies the following corollary:

Corollary 4.

(1) For every n and k there is a function
⊕
n,k from Charkn × Charkn into Charkn such that for all

characteristic sentences�1,�2,�3 ∈ Charkn and for all n-labelled chainsM1 andM2 such thatM1 |= �1
and M2 |= �2 the following equivalence holds:

�3 = ⊕
n,k(�1,�2) if and only if M1 +M2 |= �3.

(2) For every n and k there is a function
⊗ω
n,k from Charkn into Charkn such that for every characteristic

sentences �1,�2 ∈ Charkn and for every family Mi (i ∈ Nat) of n-labelled chains such that Mi |= �1
for every i, the following equivalence holds:

�2 = ⊗ω
n,k(�1) if and only if

( ∑
i∈ω Mi

)
|= �2.

Observe that M1 + (M2 +M3) is isomorphic to (M1 +M2)+M). Therefore,
⊕
n,k is associative and

〈Charkn ,
⊕
n,k〉 is a semigroup.

Note that for every n and k the domain and the range of the functions
⊕
n,k and

⊗ω
n,k are finite.

Our proofs will often rely on the following theorem of Shelah.

Theorem 5. The functions �n�k
⊕
n,k and �n�k

⊗ω
n,k are recursive.

4. Homogeneous sets

In this section, we state and prove our main technical result—Theorem 8— which provides
necessary and sufficient conditions for the decidability of the monadic (second-order) theory of
M = 〈Nat,<, P1, . . . , Pn〉. We start with definitions.

Definition 6 (k-homogeneous sets). A set R = {r1 < r2 < · · · < ri < · · ·} ⊆ Nat is k-homogeneous for
M = 〈Nat,<, P1, . . . , Pn〉 if R is infinite and for all i < i′ and j < j′ the substructures of M over
intervals [ri, ri′) and [rj , rj′) are ≡k -equivalent.

Definition 7 (homogeneous sets). A set R = {r1 < r2 < · · · < ri < · · ·} is homogeneous for M =
〈Nat,<, P1, . . . , Pn〉 if for all m ∈ Nat the set {rm < rm+1 < · · ·} is m-homogeneous.
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In other words, a set R = {r1 < r2 < · · ·} is homogeneous for M if for all m ∈ Nat and for
all i, j � m and all i′ > i and j′ > j the substructures of M over intervals [ri, ri′) and [rj , rj′)
are ≡m-equivalent.

Assume that P is periodic with a period d , i.e., ∀i(i ∈ P) ↔ (i + d ∈ P). Then, every periodic set
with a period kd is homogeneous for 〈Nat,<, P〉.

Now we are ready to state our main technical result:

Theorem 8. The monadic theory ofM = 〈Nat,<, P1, . . . , Pn〉 is decidable if and only ifM is recursive
and there is a recursive homogeneous set for M.

The “if” direction of this theorem is easy and is proved in Theorem 10. The “only if” direction is
more difficult and it is proved in Theorem 11.

Remark 9. Instead of homogeneous sets one can consider weakly homogeneous sets. A set R =
{r1 < r2 < · · · < ri < · · ·} is weakly homogeneous for M = 〈Nat,<, P1, . . . , Pn〉 if it is infinite and
for all m ∈ Nat and for all i, j � m the substructures of M over intervals [ri, ri+1) and [rj , rj+1) are
≡m-equivalent. Theorem 8 as well as all the results stated in this paper hold when “homogeneous”
is replaced by “weakly homogeneous.” Moreover, the proofs require only minor modifications.

Theorem 10. IfM = 〈Nat,<, P1, . . . , Pn〉 is recursive and there is a recursive homogeneous set forM ,
then the monadic theory of M is decidable.

Proof. Assume that R = {r1 < r2 < · · ·} is a recursive set which is homogeneous for M. Assume
given a sentence ϕ of quantifier depth k. In order to verify whether ϕ holds in M we first find a
characteristic sentence � ∈ Charkn of M , i.e., � ∈ Charkn such that M |= �.

Let M<rk and M[rk ,rk+1) be the substructure of M over the interval [0, rk) and [rk , rk+1),
respectively. The structures M<rk and M[rk ,rk+1) are finite and computable from (the decision
algorithm for) M and R, therefore we can compute the characteristic sentences �, � from the
(finite) set of sentences Charkn such that M<rk |= � and M[rk ,rk+1) |= �. By Corollary 4(2) and
the fact that R is homogeneous we obtain that 	 = ⊗ω(�) is the characteristic sentence of
the substructure M[rk ,∞) of M over [rk , ∞). Hence, by Corollary 4(1), � = �

⊕
	 is the char-

acteristic sentence of M. Moreover, by Theorem 5, � is computable from � and 	, therefore
it is computable from M and R.

By Theorem 1(3), we can compute D ⊆ Charkn such that ϕ is equivalent to the disjunction of the
sentences from D. Finally, M |= ϕ if and only if � ∈ D.

This completes the description of our algorithm for the monadic theory ofM. �
Actually, our proof of Theorem 10 shows that the monadic theory ofM = 〈Nat,<, P1, . . . , Pn〉 is

recursive relative to P1, . . . , Pn, R, where R is any set homogeneous for M . Similar assertions hold
for many results stated in this paper, but to avoid a tiresome exposition they will not be mentioned.

In the rest of this section we are going to prove the following theorem (more difficult direction
of Theorem 8):

Theorem 11. If the monadic theory of M = 〈Nat,<, P1, . . . , Pn〉 is decidable, then M is recursive and
there is a recursive homogeneous set for M.

First observe:
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Lemma 12. Every set S ⊆ Nat definable inM = 〈Nat,<, P1, . . . , Pn〉 is recursive relative to the monadic
theory of M. In particular, if the monadic theory of M = 〈Nat,<, P1, . . . , Pn〉 is decidable and a set S
is definable, then S is recursive.

Proof. For every natural number nwe compute a formula ϕn(t)which defines n in ω = 〈Nat,<〉, i.e.,
ω |= ϕn[m] iff m = n.

Let S be a set definable by a formula �(X ).
In order to decide whether n is in S we can check whether ∃t∃Xϕn(t) ∧ �(X ) ∧ X(t) holds in M.

�
Definition 13 (�-colored sets). Let � be an MLO sentence and let M = 〈Nat,<, P1, . . . , Pn〉 be a
labelled chain. A subset R of Nat is �-colored for M if for all i, j ∈ R, � holds in the substructure
of M over the interval [i, j).
Observe that R is ≡k -homogeneous for M iff R is infinite and �-colored for some � ∈ Charkn .
Lemma 14.

(1) For every MLO sentence � there is a formula col�(X ) such that for every labelled chain
M = 〈Nat,<, P1, . . . , Pn〉:
M |= col� [S] if and only if S is an infinite �-colored set.

(2) For every n and k there is a formula Hom n
k(X ) such that for every n-labelled chain M

M |= Hom n
k [S] if and only if S is k-homogeneous for M.

Proof. (1) is immediate; (2) follows from (1) and the observation that R is ≡k -homogeneous for M
iff R is infinite and �-colored for some � ∈ Charkn . �

Whenever n is clear from the context, we will write “Hom k” for “Hom n
k”.

Lemma 15. For every n-labelled chainM = 〈Nat,<, P1, . . . , Pn〉 and every k ,every infinite set contains
a subset which is ≡k -homogeneous for M.

Proof. Let V ⊆ Nat be an infinite set. Let Col be a function which assigns to every pair v1 < v2 of
elements from V a sentence in Charkn as follows:

Col(v1, v2) = �i iff M[v1,v2) |= �i.

Recall that Charkn is finite. Hence, by the Ramsey theorem, there exist �i ∈ Charkn and an infinite
�i-colored subset S of V. Therefore, S is k-homogeneous infinite subset of V. �

As a consequence of Lemma 15 we obtain that there is a ≡k -homogeneous set forM . Moreover,
by Lemma 14(2), the family of all ≡k -homogeneous sets for M is definable by Hom k (X). We are
going to show that if the monadic theory ofM is decidable, then there is a recursive k-homogeneous
set for M . In order to prove it we will show that there is a definable ≡k -homogeneous set and
therefore by Lemma 12 this set is recursive.
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First, we need the following definition and theorem.

Definition 16 (selector). �(X ) is a selector for �(X ) over a classC of n-labelled chains iff the following
conditions hold:

(1) C |= ∃�1X �(X ).

(2) C |= ∀X (
�(X ) → �(X )

)
.

(3) C |= (∃Y �(Y )) → (∃X �(X )).

Here and below “∃�1” stands for “there is at most one”. We say that �(X ) is a selector
for �(X ) over a chain M = 〈Nat,<, P1, . . . , Pn〉 if �(X ) is a selector for �(X ) over the class
{M }.
Theorem 17 (computability of selector). There is an algorithm that for every formula �(X ) constructs a
formula�(X ) such that�(X ) is a selector for�(X ) over the classC = {〈Nat,<, P1, . . . , Pn〉 : P i ⊆ Nat}
of labelled chains.

Proof. This theorem follows from [9]; its proof will be given in the Appendix. �
Now we are ready to prove Theorem 11. We are going to construct a sequence�0(X ),�1(X ),�2(X ),

· · · ,�i(X ), · · · of formulas such that for all i ∈ Nat andM = 〈Nat,<, P1, . . . , Pn〉 the following con-
ditions hold:

(A) M |= ∃!X �i(X ).
(B) M |= ∀XY (

�i(X ) ∧ �i+1(Y )
) → Y ⊆ X .

(C) The set Ui definable by �i(X ) in M is i-homogeneous for M.

Basis. Let �0(X ) be ∀tX(t).
Inductive step. i � i + 1. Let �i+1(X ) be a selector for ∃Y (

Hom i+1(X ) ∧ �i(Y ) ∧ X ⊆ Y
)
.

NoteM |= ∃�1X�i(X ) holds because �i(X ) are selectors. By the induction on i it is easy to derive
from Lemma 15 that there is an infinite set Ui that satisfies �i(X ) inM . Therefore, (A) above holds.
From the definition of �i, it immediately follows that (B) and (C) hold.

Now we are ready to finish the proof of Theorem 11. Assume that the monadic theory of M is
decidable. Then, by Lemma 12, all Ui defined above are recursive; by (B) and (C), we have that
Ui+1 ⊆ Ui and Ui is i homogeneous for all i. Therefore, the set U defined as

U = {ai : ai is the ith element of Ui for i ∈ Nat}

is infinite, recursive and homogeneous forM .
Hence, we proved that if the monadic theory of M is decidable, then there is a recursive homo-

geneous set for M .

Remark 18. For our proof we need a theorem much weaker than Theorem 17. We only used
the following: if the monadic theory of M is decidable then there is an algorithm that for
every formula �(X ) constructs a formula �(X ) such that �(X ) is a selector for �(X ) over
M.



A. Rabinovich / Information and Computation 205 (2007) 870–889 879

5. Algebraic conditions for decidability

The purpose of this section is to provide necessary and sufficient algebraic conditions for the
decidability of the monadic theory ofM = 〈Nat,<, P1, . . . , Pn〉.

Recall that an ω-sequence ai is said to be ultimately constant with lag l if ai = aj for i, j > l.
For M = 〈Nat,<, P1, . . . , Pn〉 and an infinite set S = {s1 < s2 < · · · < si < · · ·} ⊆ Nat define an

ω-sequence wi = w
S
i of finite words over the alphabet {0, 1}n, which correspond to the substructures

M[si ,si+1) ofM (see Subsection 2.1): the length of wi is li = si+1 − si and for j < li: the jth letter of wi
is 〈b1, . . . , bm, . . . , bn〉, where bm is 1 if si + j ∈ Pm, and bm is 0, otherwise.

A set S ⊆ Nat is ultimately constant forM if for every finite semigroup G and for every morphism
h from the semigroup of finite non-empty words over� = {0, 1}n into G the sequence {h(wi)}i∈Nat is
ultimately constant. A set S is effectively ultimately constant forM if S is recursive and ultimately
constant forM and there is a recursive function which for every finite semigroup G and morphism
h : �+ → G computes a lag of the ultimately constant sequence {h(wi)}i∈Nat .
Theorem 19. The monadic theory ofM = 〈Nat,<, P1, . . . , Pn〉 is decidable if and only ifM is recursive
and there is effectively ultimately constant set for M.

The “only if” direction of Theorem 19 immediately follows from Theorem 8 and Lemma 20(2); the
“if” direction immediately follows from Lemma 21.

In the next lemma, we identify words and the corresponding labelled chains.

Lemma 20.

(1) For every n, l ∈ Nat there is k ∈ Nat such that:
for all finite non-empty words u and v over� = {0, 1}n and for every semigroup G of size at most
l and every morphism h : �+ → G if u ≡k v then h(u) = h(v).

Moreover, k is computable from n and l.
(2) If a recursive set S is homogeneous for M , then S is effectively ultimately constant for M.

Proof. Observe that for every finite semigroup G , an element a ∈ G and a morphism h : �+ → G
one can construct an MLO sentence 
G,a,h such that for every word u ∈ �+

u |= 
G,a,h if and only if h(u) = a.

For every l ∈ Nat let kl,n be defined as the maximum of quantifier ranks of 
G,a,h over the semigroups
G of size at most l, elements a ∈ G and morphisms h : �+ → G .

Observe that the function �n�l. kl,n is recursive. Observe also that for words u1, u2:

if u1 ≡kl,n u2 then h(u1) = h(u2)

for every semigroup G of size � l and every morphism h : �+ → G .

Lemma 20(1) follows from these two observations. Lemma 20(2) is an immediate consequence of
Lemma 20(1). �
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Lemma 21. If M = 〈Nat,<, P1, . . . , Pn〉 is recursive and there is a set which is effectively ultimately
constant for M , then the monadic theory of M is decidable.

Proof. The proof is similar to the proof of Theorem 10.
Assume that R = {r1 < r2 < · · ·} is a (recursive) set which is effectively ultimately constant for

M. Given a sentence ϕ of quantifier depth k. In order to verify whether ϕ holds inM we first find a
characteristic sentence � ∈ Charkn of M , i.e., � ∈ Charkn such that M |= �.

Let � = {0, 1}n.Define �k : � → Charkn as follows: �k(〈b1, . . . , bn〉) = � , if � is the characteristic
sentence of the one element chain 〈{0},<, P1, . . . , Pn〉, where 0 ∈ P i if bi is 1 and 0 �∈ P i otherwise.
(In other words, �k(a) = � iff � is the characteristic sentence of the chains that corresponds to the
letter a = 〈b1, . . . , bn〉.) Let hk : �+ → Charkn be the (unique) morphism which extends �k.

From Corollary 4(1) it follows that for every string u ∈ �+ : if hk(u) = � , then � is the character-
istic sentence of the labelled chain which corresponds to u.

Let ui (for i ∈ Nat) be the string that corresponds to M[ri ,ri+1)—the substructure of M over the
interval [ri, ri+1), respectively.

Since R is effectively ultimately constant, we can compute l ∈ Nat and � ∈ Charkn such that
hk(ui) = � for all i > l. By Corollary 4(2) we obtain that 	 = ⊗ω(�) is the characteristic sentence
of the substructure M[rl,∞) of M over [rl, ∞). Let v be the string that corresponds to the substruc-
ture of M over the interval [0, rl); note that � defined as hk(v) is the characteristic sentence of this
substructure.Hence, by Corollary 4(1), � = �

⊕
	 is the characteristic sentence ofM.Moreover, by

Theorem 5, � is computable from � and 	.
By Theorem 1(3), we can compute D ⊆ Charkn such that ϕ is equivalent to the disjunction of the

sentences from D. Finally, � ∈ D if and only if M |= ϕ.

This completes the description of our algorithm for the monadic theory ofM. �
We conclude this section with a discussion on a class of effectively profinitely ultimately pe-

riodic structures which was introduced by Carton and Thomas. In [3,4] numerous examples of
effectively profinitely ultimately periodic structures were provided and it was shown that if M =
〈Nat,<, P1, . . . , Pn〉 is effectively profinitely ultimately periodic, then the monadic theory of M is
decidable. The algebraic condition of Theorem 19 is a special case of the effectively profinitely
ultimately periodic condition. Hence, we derive that the effectively profinitely ultimately periodic
condition is a necessary condition for the decidability of the monadic theory ofM .

Let as recall that an ω-sequence ai is said to be ultimately periodic with lag l and period d if
ai = ai+d for i > l.

For M = 〈Nat,<, P1, . . . , Pn〉 and an infinite set S = {s1 < s2 < · · · < si < · · ·} ⊆ Nat define an

ω-sequence wi = w
S
i of finite words over the alphabet {0, 1}n which correspond to the substructures

M[si ,si+1) of M (see Section 2.1).
A set S ⊆ Nat is ultimately periodic forM if it is infinite and for every finite semigroup G and for

every morphisms h from the semigroup of finite non-empty words over {0, 1}n into G the sequence
{h(wi)}i∈Nat is ultimately periodic. A set S is effectively ultimately periodic for M if S is recursive
and ultimately periodic forM and there is a recursive function which for every finite semigroup G
and morphism h computes a lag and a period of the ultimately periodic sequence {h(wi)}i∈Nat . Note
that if S is an effectively ultimately constant set for M , then it is effectively ultimately periodic for
M .
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A labelled chain M = 〈Nat,<, P1, . . . , Pn〉 is effectively profinitely ultimately periodic if M is
recursive and there is a set S which is effectively ultimately periodic for M .

Theorem 22. The monadic theory ofM = 〈Nat,<, P1, . . . , Pn〉 is decidable if and only ifM is effectively
profinite ultimately periodic.

Proof. The “only if” part: assume that the monadic theory ofM is decidable. By Theorem 19,M is
recursive and there is effectively ultimately constant set forM. Every effectively ultimately constant
set is effectively ultimately periodic (with period one). Hence, M is effectively profinite ultimately
periodic.

The “if” part: this direction was proved in [3]. A proof similar to the proofs of Theorems 10 and
21 can also be easily obtained. �

Carton and Thomas asked in [3], whether the monadic theory of 〈Nat,<, P1, P2〉 is decid-
able if it is known that 〈Nat,<, P1〉 and 〈Nat,<, P2〉 are effectively profinitely ultimately pe-
riodic.

The negative answer to this question can be obtained as follows. Semenov [13] constructed
P1 and P2 such that the monadic theories of 〈Nat,<, P1〉 and 〈Nat,<, P2〉 are decidable, yet the
monadic theory of 〈Nat,<, P1, P2〉 is undecidable. Hence, by Theorem 22 it follows that 〈Nat,<, P1〉
and 〈Nat,<, P2〉 are effectively profinitely ultimately periodic and 〈Nat,<, P1, P2〉 has undecidable
monadic theory.

6. Related works and further results

We proved that the following conditions are equivalent:

(1) M = 〈Nat,<, P1, . . . , Pn〉 is recursive and effectively ultimately constant.
(2) M = 〈Nat,<, P1, . . . , Pn〉 is recursive and there is a recursive homogeneous set for M .
(3) The monadic theory of M = 〈Nat,<, P1, . . . , Pn〉 is decidable.

The equivalence (1) ⇔ (2) is easy. The implication (2) ⇒ (3) is easy as well. The difficult part of our
proof was the implication (3) ⇒ (2).

In [13], Semenov provided another necessary and sufficient condition for the decidability of the
monadic theory of M . The Semenov theorem states that (3) is equivalent to

(4) There is an algorithm that for every regular expression E finds whether every suffix of the
ω-word u = a1a2 . . . which corresponds to M contains a word from the language L definable
by E or returns n such that no word from L occurs in the nth suffix anan+1 . . . of u.

The implication (3) ⇒ (4) is an easy part of the Semenov theorem. The difficult part is the implication
(4) ⇒ (3).

In [11] we extended the results of this paper and obtained alternative proofs. We provided a
Ramsey type condition which is equivalent to the four conditions above and generalized results of
this paper to a class of logics for which the composition theorem holds.
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For two k-characteristic sentences �, � of n-labelled chains, consider the following condition:

Hom�,� :
There is a k-homogeneous set H = {h0 < h1 < . . .} such that � is the characteristic sentence of
M [0, h0) and � is the characteristic sentence of M [h0, h1).

We proved in [11] that each of the conditions (1)–(4) above are equivalent to the following condition:

RecRamsey(M):
There is a recursive function assigning to each k a pair of k-characteristic sentences �, � such that
Hom�,� holds in M .

Now we illustrate the extension of our results to the first-order monadic logic of order.
This logic is defined like MLO , but the quantifications over monadic variables are not al-
lowed.

We use the notation ≡FOk to say that two labelled chains cannot be distinguished by an first-order
MLO sentence of quantifier depth k . More precisely, let M and M ′ be two n-labelled chains. We
writeM ≡FOk M ′ if and only if for every first-orderMLO sentence ϕ with qd(ϕ) � k we haveM |= ϕ

iff M ′ |= ϕ.
All the results of Section 3 hold when ≡k is replaced by ≡FOk . In particular, for every k and n

there are first-order characteristic sentences for the ≡FOk -equivalence classes over n-labelled chains.
The notions of first-order k-homogeneous set for M and of first-order homogeneous set for M are
defined like in Definitions 6 and 7.

It was proved in [11] that the following conditions are equivalent:

First-order Decidability. The first-order monadic theory of
M = 〈Nat,<, P1, . . . , Pn〉 is decidable.

First-order RecHom. M = 〈Nat,<, P1, . . . , Pn〉 is recursive and there is a recursive first-order ho-
mogeneous set for M .

First-order RecRamsey(M). There is a recursive function assigning to each k a pair of first-order
k-characteristic sentences �, � such that Hom�,� holds in M .
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Appendix A

The first subsection of appendix discusses the relationship between selectors, the uniformization
property and the Church uniformization problem. The second subsection is independent from the
first and contains a proof of Theorem 17.



A. Rabinovich / Information and Computation 205 (2007) 870–889 883

A.1. Selector, uniformization and the Church uniformization problem

In Definition 16, it was defined when �(X ) is a selector for �(X ) over a class of structures. For a
sequence of variable X̄ one can define in a similar way when �(X̄ ) is a selector for �(X̄ ) over a class
of structures.

Lemma 23. Let C be a class of structures. Assume that every formula �(X ) has a selector over C. Then
every formula �(X1, . . . ,Xn) has a selector over C.

Proof. By induction on n. The base case is just the assumption of the lemma.
Inductive step: n �→ n+ 1.Assume that every formula with n free variables has a selector over C.
Let �(X1, . . . ,Xn+1) be a formula. Let �n+1(X1, . . . ,Xn) be defined as ∃Xn+1�. By the inductive as-

sumption �n+1 has a selector�n+1(X1, . . . ,Xn)overC.Let �(Xn+1)be defined as ∃X1∃X2 . . . ∃Xn(�n+1 ∧
�). By our assumption �(Xn+1) has a selector 	(Xn+1) over C.

It is easy to verify that �n+1(X1, . . . ,Xn) ∧ 	(Xn+1) is a selector for � over C . �
Note that in the above lemma it was not assumed that C is a class of labelled chains. Observe

also that the reduction used in the proof is effective. Therefore, Theorem 17 and Lemma 23 imply.

Theorem 24 (computability of selector). There is an algorithm that for every formula �(X1, . . . ,Xn) con-
structs a formula �(X1, . . . ,Xn) such that � is a selector for � over the class C = {〈Nat,<, P1, . . . , Pn〉 :
P i ⊆ Nat} of labelled chains.

Let us recall now the uniformization problem also known as the Rabin uniformization problem.

Definition 25 (Uniformization). �(X̄ , Ȳ ) uniformizes �(X̄ , Ȳ ) over a class C of n-chains iff the fol-
lowing conditions hold:

(1) C |= ∀Ȳ ∃�1X̄ �(X̄ , Ȳ ).
(2) C |= ∀Ȳ ∀X̄ (

�(X̄ , Ȳ ) → �(X̄ , Ȳ )
)
.

(3) C |= ∀Ȳ
((∃Z̄�(Z̄ , Ȳ )

) → (∃X̄ �(X̄ , Ȳ )
))
.

Here and below X̄ , Ȳ and Z̄ stand for sequences of monadic variables.
A class C of structures has the uniformization property if for every formula �(X̄ , Ȳ ) there exists

a formula �(X̄ , Ȳ ) which uniformizes �(X̄ , Ȳ ) over C .
The following observation is immediate

Observation 26. Let C be a class of structures and let E = {A : A is an expansion of a structure in
C by monadic predicates}. Then

(1) C has the uniformization property iff E has the uniformization property.
(2) C has the uniformization property iff for every �(X ) there is a selector over E (see Definition

16).

Lifsches and Shelah (cf. Corollary 6.4 [9]) proved the following theorem:

Theorem 27. An ordinal � has the uniformization property iff � < ωω.
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Moreover, from the proof of [9] an algorithm which for every ordinal � < ωω and every formula �
constructs a formula that uniformizes � over � can be extracted.

These results imply Theorem 17. The proof of the “if” direction of Theorem 27 in [9] consists
of three parts: (1) The proof that the class of finite ordinals has the uniformization property; (2)
The proof that ω has the uniformization property; (3) The proof that if ordinals � and  have the
uniformization property, then the ordinals �+  and �×  have the uniformization property.

The Lifsches and Shelah proof thatω has the uniformization property (the base of the induction)
consists of just five characters—“By [2]”. However, in [2] the Church uniformization problem is
considered and it is proved to be decidable. Unfortunately, we could not show that either decidability
of the Church uniformization problem or the proof given in [2] imply that ω has the uniformization
property. In the next subsection we provide a direct proof of Theorem 17 (which implies the assertion
that ω has the uniformization property).

Below, we recall the Church uniformization problem in order to emphasize its difference from
the uniformization property of ω.

A function F from the set P (ω) of all monadic predicates overNat into P (ω) is called retrospective
if for every n ∈ Nat whenever X1 and X2 coincide on the interval [0, n] then their images F (X1) and
F (X2) coincide on the interval [0, n]. A function is retrospective iff it can be computed by an (may
be infinite state) input–output deterministic automaton.

The Church Uniformization Problem: Given a formula �(X , Y ). Check whether there is a retro-
spective function F which uniformizes �(X , Y ), i.e., ∀X(�(X , F(X )).

It was proved in [2] that the Church uniformization problem is decidable. Moreover, the following
theorem holds:

Theorem 28. There is an algorithm which for every �(X , Y ) checks whether there is a retrospective
function which uniformizes �(X , Y ) and if so, outputs a formula �(X , Y ) which defines a retrospective
function F which uniformizes �(X , Y ); moreover, F is computable by a finite state deterministic input–
output automaton A and there is an algorithm that constructs A from �.

A.2. Proof of Theorem 17

First recall the following theorem of Lifsches and Shelah (cf. Fact 6.2 in [9]):

Theorem 29 (computability of selector over the class of finite chains). There is an algorithm that for
every formula �(X ) constructs a formula �(X ) such that �(X ) is a selector for �(X ) over the class of
finite chains.

Proof. Below WO(X , Y ) denotes the formula

∃t(¬X(t) ∧ Y(t) ∧ ∀t′(t′ < t → (X(t′) ↔ Y(t′)
))
.

For every finite chain M the formula WO(X , Y ) defines a well order on the set of all monadic
predicates over M. Hence, �(X ) ∧ ∀Y (

�(Y ) → (WO(X , Y ) ∨ X = Y )
)

uniformizes �(X ) over the
class of finite labelled chains. �

Note that the relation definable by WO(X , Y ) on the set of all monadic predicates over Nat is not
a well-order. It is unlikely that there is any definable well order on this (uncountable) set.
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We will also use the following simple Lemma.

Lemma 30. Assume that

(1) �i(Z) is a selector for Ai(Z) (for i = 1, . . . ,m) over a class C and
(2) C |= B(Z) ↔ ( ∨mi=1 Ai(Z)

)
.

Then

m∨

i=1



�i(Z) ∧



i−1∧

j=1

∀Z¬Aj(Z)








is a selector for B(Z) over C.

In order to prove Theorem 17, we are going to present the selection algorithm. (Below we often
denote by P both a predicate name and its interpretation.)

A.2.0.1. Selection algorithm

Instance: A formula �(Z , P1, . . . , Pn).
Task: Find a selector �(Z , P1, . . . , Pn) for �(Z , P1, . . . , Pn) over the class of chains Cn = {〈Nat,
<, P1, . . . , Pn〉 : Pi ⊆ Nat}.

Step 1. Let k be the quantifier depth of � and let

Charkn+1 = {�1(Z , P1, . . . , Pn), . . . , �l(Z , P1, . . . , Pn)}

be the set of characteristic sentences for ≡k over the class of n+ 1-labelled chains.
Step 2. For �(Z , P1, . . . , Pn), � ′(Z , P1, . . . , Pn) ∈ Charkn+1 let A� ,� ′(X ,Z , P1, . . . , Pn) be a formula such
that for every n+ 1-labelled chain M = 〈Nat,<,Z , P1, . . . , Pn〉

M |= A� ,� ′(S,Z , P1, . . . , Pn) iff the following conditions hold

(1) S is a cofinal subset of Nat \ {0} which is � ′-colored for M and
(2) � is the characteristic sentence of the subchainM[0,x1), where x1 is the minimal element of S.

Compute:

• a selector �� ,� ′(X , P1, . . . , Pn) for ∃ZA� ,� ′(X ,Z , P1, . . . , Pn) over the class Cn = {〈Nat,<, P1, . . . , Pn〉 :
Pi ⊆ Nat} of n-labelled chains.

• a selector �� ,� ′(Z , P1, . . . , Pn) for ∃XA� ,� ′(X ,Z , P1, . . . , Pn) over the class Cn = {〈Nat,<, P1, . . . , Pn〉 :
Pi ⊆ Nat} of n-labelled chain.
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Step 3. Compute D1 ⊆ Charkn+1 such that

�(Z , P1, . . . , Pn) ↔
∨

j∈D1

�j(Z , P1, . . . , Pn) (A.1)

Compute D2 ⊆ Charkn+1 × Charkn+1 such that

�(Z , P1, . . . , Pn) ↔
∨

〈� ,� ′〉∈D2

∃XA� ,� ′(X ,Z , P1, . . . , Pn) (A.2)

Step 4. Compute a selector �(Z , P1, . . . , Pn) for
∨

〈� ,� ′〉∈D2
∃XA� ,� ′(X ,Z , P1, . . . , Pn) over the classCn =

{〈Nat,<, P1, . . . , Pn〉 : Pi ⊆ Nat} of n-labelled chains.

The correctness of the algorithm is immediate by Step 4 and Eq. (A.2).
Below we will show how each step can be algorithmically implemented.

A.2.0.2. Implementation of Step 1

This step of the selection algorithm can be implemented by Theorem 1.

A.2.0.3. Implementation of Step 2

Throughout the proof of this step we sometimes do not display Z , P1, . . . , Pn and write “A� ,� ′(X )”
or “A� ,� ′(X ,Z)” for “A� ,� ′(X ,Z , P1, . . . , Pn)”; we also will treat a free variable Z as a predicate name.

First we are going to show how to write the formulas A� ,� ′(X ).
For every sentence � we denote by �<(t) the formula obtained by replacing all first-order quan-

tifiers “∀v” or “∃v” in � by their relativized versions “(∀v)v<t” and “(∃v)v<t” which are shorthand
for “∀v v < t → . . .” and “∃v v < t ∧ . . .”, where t is a fresh variable. For every labelled chain M

M |= �<[a] iff M<a |= � , (A.3)

where M<a is the substructure of M over the elements less than a.
Let first(t,X ) be a formula that says that t is the minimal element of X .
For characteristic sentences � , � ′ ∈ Charkn+1 let A� ,� ′(X ) be defined as the conjunction of col� ′(X )

(see Lemma 14), ∀t∃t′(t < t′ ∧ t′ ∈ X ) and

∃t
(
(∃t′t′ < t) ∧ (

first(t,X ) ∧ �<(t))
)
.

For every set S = {s1 < s2 < . . .} ⊆ Nat:

M |= A� ,� ′ [S] iff (S is an infinite � ′-colored set and M<s1 |= �) (A.4)
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A selector�� ,� ′(X , P1, . . . , Pn) for ∃ZA� ,� ′(X ,Z , P1, . . . , Pn) over the classCn = {〈Nat,<, P1, . . . , Pn〉 :
Pi ⊆ Nat} can be defined as the conjunction of ∃ZA� ,� ′(X ,Z) and of the formula which says:

for every Y which satisfies ∃ZA� ,� ′(Y ,Z) and for every t, whenever Y and X coincide on
the interval [0, t) and Y contains t then X contains t.

Let us show that �� ,� ′(X ) is a selector for ∃ZA� ,� ′(X ,Z), i.e., that all the requirements of the
Definition 16 are fulfilled over the class Cn.

The second conjunct ensures that there is at most one X that satisfies �� ,� ′(X ).
Hence, the first requirement of Definition 16 holds. The second requirement holds because

∃ZA� ,� ′(X ,Z) is the first conjunct in the definition of �� ,� ′(X ).
Finally, assume that 〈Nat,<, P1, . . . , Pn〉 |= ∃X ∃ZA� ,� ′(X ,Z). In order to show that the last re-

quirement of Definition 16 holds, we will show that there is a set R = {r1 < r2 < · · ·} which satisfies
�� ,� ′(X ) in 〈Nat,<, P1, . . . , Pn〉. Define

(1) R1 = {m : 〈Nat,<, Z0, P1, . . . , Pn〉<m |= �(Z , P1, . . . , Pn) for some Z0 andm is the minimal element
of an infinite subset of Nat \ {0}, which is � ′-colored for 〈Nat,<, Z0, P1, . . . , Pn〉}. Let r1 be the
minimal element of R1 and let Z0 be any set used for the inclusion of r1 in R1.

(2) For i > 0 let Ri+1 = {
m : for some Zi ⊆ Nat,m is the i + 1th element of an infinite set S ⊆ Nat \

{0}, which is � ′-colored for 〈Nat,<, Zi, P1, . . . , Pn〉 and the first i elements of S are {r1, . . . , ri}
}
.

Let ri+1 be the minimal element of Ri+1 and let Zi be any set used for the inclusion of ri+1 in
Ri+1.

Let us verify that 〈Nat,<, P1, . . . , Pn〉 |= �� ,� ′ [R]. The only non-immediate part is to show that
〈Nat,<, P1, . . . , Pn〉 |= ∃ZA� ,� ′(R,Z).

Define M0 as 〈Nat,<, Z0, P1, . . . , Pn〉[0,r1) and for i > 0 define Mi as 〈Nat,<, Zi, P1, . . . , Pn〉[ri ,ri+1).
Note that � is the characteristic sentence ofM0 and � ′ is the characteristic sentence ofMi for i > 0.

Observe also that � ′ = � ′ ⊕
n+1,k �

′. Indeed let a1, a2, a2 be the first three elements of the � ′-colored
set for M ′ = 〈Nat,<, Z0, P1, . . . , Pn〉. The substructures of M ′ over the intervals [a1, a2), [a2, a3) and
[a1, a3) have the same characteristic sentence � ′. But the last substructure is the sum of the first two
substructures. Therefore, � ′ = � ′ ⊕

n+1,k �
′.

Let M = 〈Nat,<, Z, P1, . . . , Pn〉 be
∑
i∈ω Mi—the lexicographical sum of Mi over ω. Note that∑

j∈m Mi+j is the substructure of M over [ri, ri+m) for m > 0 and all i. Its characteristic sentence is
� ′ ⊕

n+1,k �
′ · · · ⊕n+1,k �

′ (m summands); hence, by the above observation its characteristic sentence
is equal to � ′ and therefore, R is � ′-colored for M . Together with the observation that � is the
characteristic sentence of M0 = M[0,r1), this implies that M |= A� ,� ′(R,Z).

Therefore, �� ,� ′(X ) is a selector for ∃ZA� ,� ′(X ,Z).
Note that from the above definition of R it follows that

if R is defined by �� ,� ′(X ) in 〈Nat,<, P1, . . . , Pn〉 then

〈Nat,<, P1, . . . , Pn〉[0,r1) |= ∃Z�(Z , P1, . . . , Pn)

and
〈Nat,<, P1, . . . , Pn〉[ri ,ri+i) |= ∃Z� ′(Z , P1, . . . , Pn) for i > 0.
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Let 	�(Z , P1, . . . , Pn) and 	� ′(Z , P1, . . . , Pn) be selectors for �(Z , P1, . . . , Pn) and � ′(Z , P1, . . . , Pn) over
the class of finite labelled chains (these selectors exist by Theorem 29).

A selector �� ,� ′(Z , P1, . . . , Pn) for ∃XA� ,� ′(X ,Z , P1, . . . , Pn) can be defined by the following instruc-
tions:

(1) Select R = {r1 < r2 < · · ·} by �� ,� ′(X , P1, . . . , Pn).
(2) LetZbe selectedby 	�(Z , P1, . . . , Pn)on the subchainover the interval [0, r1)andby 	� ′(Z , P1, . . . , Pn)

on the subchain over the intervals [ri, ri+1) for i > 0.

This definition can be easily formalized by a formula in the monadic logic.
It is clear that if 〈Nat,<, P1, . . . , Pn〉 |= ∃Z∃X A� ,� ′(X ,Z , P1, . . . , Pn), then there is a unique Zwhich

is chosen by the above instructions.
Let us demonstrate that the set Z, selected as above, satisfies ∃X A� ,� ′(X ,Z , P1, . . . , Pn). Indeed,

let R and Z be sets which are selected in 〈Nat,<, P1, . . . , Pn〉 by the above instructions. Let M =
〈Nat,<, Z, P1, . . . , Pn〉. Then� ′ is the characteristic sentenceofM[ri ,ri+1) for i > 0. Since� ′ = � ′ ⊕

n+1,k �
′,

we obtain that � ′ is the characteristic sentence ofM[ri ,rj) for all j > i > 0. Therefore, R is � ′-colored
for M . By the choice of Z on the interval [0, r1), � is the characteristic sentence of M[0,r1); there-
fore, 〈Nat,<, R, Z, P1, . . . , Pn〉 |= A� ,� ′(X ,Z , P1, . . . , Pn). Hence, Z satisfies ∃XA� ,� ′(X ,Z , P1, . . . , Pn) in
〈Nat,<, P1, . . . , Pn〉.

This completes the proof that �� ,� ′(Z) is a selector for ∃XA� ,� ′(X ,Z).

A.2.0.4. Implementation of Step 3

D1 can be easily computed by Theorem 1.
Let D2 = {〈� , � ′〉 :

(
�

⊕
n+1,k

( ⊗ω
n+1,k �

′)
)

∈ D1}. The set D2 can be easily computed by
Theorem 5.

We have to show that the following formula holds

∀Z


�(Z , P1, . . . , Pn) ↔
∨

〈� ,� ′〉∈D2

∃XA� ,� ′(X ,Z , P1, . . . , Pn)



 . (A.5)

Let us show first the implication from left to right. Assume that M = 〈Nat,<, Z, P1, . . . , Pn〉 |=
�(Z , P1, . . . , Pn). By Lemma 15, there is an infinite set R = {r1 < r2 < · · ·} ⊆ Nat \ {0} which is ho-
mogeneous for M . Let � be the characteristic sentence of M[0,r1) and � ′ be the color of R in M .
Then

M |= ∃XA� ,� ′(X ,Z , P1, . . . , Pn). (A.6)

Note that � ′ is the characteristic sentence of M[ri ,ri+1) for i > 0. Hence,
⊗ω
n+1,k �

′ is the charac-
teristic sentence of M[r1,∞) and �

⊕
n+1,k

( ⊗ω
n+1,k �

′) is the characteristic sentence of M . Since
M |= �(Z , P1, . . . , Pn), it follows that �

⊕
n+1,k

( ⊗ω
n+1,k �

′) → � and therefore 〈� , � ′〉 ∈ D2. Together
with Eq. (A.6) this shows that the implication from left to right in Eq. (A.6) holds.

The implication from right to left easy follows from the definitions ofD2 andA� ,� ′(X ,Z , P1, . . . , Pn).
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A.2.0.5. Implementation of Step 4

In step 2 we constructed selectors �� ,� ′(Z , P1, . . . , Pn) for ∃XA� ,� ′(X ,Z , P1, . . . , Pn). In step 3 we
found D2 such that Eq. (A.2) holds. Therefore, by Lemma 30 we can construct a selector for
�(Z , P1, . . . , Pn).

This completes our proof of Theorem 17.
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