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Abstract. Probabilistic Büchi automata (PBA) are finite-state accep-
tors for infinite words where all choices are resolved by fixed distributions
and where the accepted language is defined by the requirement that the
measure of the accepting runs is positive. The main contribution of this
paper is a complementation operator for PBA and a discussion on several
algorithmic problems for PBA. All interesting problems, such as checking
emptiness or equivalence for PBA or checking whether a finite transition
system satisfies a PBA-specification, turn out to be undecidable. An
important consequence of these results are several undecidability results
for stochastic games with incomplete information, modelled by partially-
observable Markov decision processes and ω-regular winning objectives.
Furthermore, we discuss an alternative semantics for PBA where it is
required that almost all runs for an accepted word are accepting, which
turns out to be less powerful, but has a decidable emptiness problem.

Probabilistic ω-automata have been introduced in [BG05] as probabilistic ac-
ceptors for languages over infinite words. The central idea of these models is
to resolve all choices by fixed probabilistic distributions and to define the ac-
cepted language as the set of infinite words where the probability measure of
the accepting runs (according to, e.g., a Büchi, Rabin or Streett acceptance
condition) is positive. In the paper [BG05], we mainly concentrated on expres-
siveness and efficiency and showed that the class of languages that are recog-
nizable by a probabilistic Büchi automaton (PBA) strictly subsumes the class
of ω-regular languages (i.e., PBA are more expressive than their nondetermin-
istic counterparts) and agrees with the class of languages that can be accepted
by a probabilistic Rabin or Streett automaton (PRA/PSA). Furthermore, there
are ω-regular languages that have PBA of polynomial size, while any NBA has
at least exponentially many states. Another aspect that makes probabilistic ω-
automata interesting is the observation that the verification problem “given a
finite Markov chain M and an ω-regular language L for the undesired behaviors,
check whether the undesired behaviors have zero measure in M” can be answered
with a PBA-representation of L by means of a simple product-construction and
graph-based methods, while the methods known for a representation of L by a
standard Büchi automaton (alternating or nondeterministic) are more complex
since they rely on some kind of powerset construction [Var85,CY95,BRV04].
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The purpose of this paper is to study algorithmic problems for PBA in more
detail and to provide answers to several questions that were left open in [BG05].
Our main results are:

(1) a complementation operator for PBA
(2) the fact that the language accepted by a PBA might depend on the precise

transition probabilities
(3) the undecidability of the emptiness problem for PBA, and various related

problems
(4) the decidability of the emptiness problem for PBA with a (non-standard)

almost-sure semantics

To provide a complementation operator for PBA we use a technique that re-
sembles the complementation of nondeterministic Büchi automata by means of
Safra’s algorithm [Saf88] and relies on (i) a transformation of a given PBA P
into an equivalent PRA PR that accepts each infinite word with probability 0
or 1, (ii) the complementation of the Rabin acceptance condition in PR to obtain
a PSA PS for the complement language and (iii) a transformation of PS into an
equivalent PBA by means of techniques presented in [BG05].

At a first glance, the undecidability of the emptiness problem for PBA might
not be astonishing given the undecidability of the emptiness problem for Rabin’s
probabilistic finite automata (PFA) [Rab63,Paz71]. However, PFA are equipped
with a positive threshold for the acceptance probability, while the acccepted
language of a PBA just requires positive acceptance probability (which is not
of interest for PFA as for finite words the criterion “positive acceptance prob-
ability” agrees with the existence of an accepting run). In fact, (2) and (3) are
surprising since for the verification of finite probabilistic systems (Markov chains
or Markov decision processes) against ω-regular properties, the precise transition
probabilities are irrelevant and a simple graph analysis suffices, as long as one
is interested in qualitative questions [HSP83,Var85,CY95].

The undecidability of the emptiness problem has several important conse-
quences. First, together with the effectiveness of complementation, it implies
that all interesting algorithmic problems for PBA (such as checking emptiness,
universality or equivalence) as well as all relevant verification problems for finite-
state nondeterministic systems (with or without probabilism) where the desired
or undesired behaviors are specified by a PBA are undecidable. Second, several
undecidability results can be established for stochastic games with incomplete in-
formation. More precisely, we show the undecidability of the questions whether
there exists an observation-based strategy such that a Büchi condition holds with
positive probability or whether there is an observation-based strategy such that
a coBüchi condition holds almost surely. This even holds for stochastic games
with a single nondeterministic player, modelled by partially observable Markov
decision processes (POMDP) which can be seen as a generalization of PBA.
Although several undecidability results have been established for POMDPs and
quantitative properties [MHC03,GD07], we are not aware of any other undecid-
ability result for POMDPs and qualitative properties. Our results might be of
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interest to several research communities as POMDPs are widely used in vari-
ous applications like elevator controlling, autonomous robot planning, network
toubleshooting or health care policymaking (see [Cas98] for a survey).

We finally discuss an alternative semantics for PBA which defines the accepted
language of a PBA by the requirement that almost all runs are accepting. PBA
with the almost-sure semantics turn out to be less powerful than PBA with the
standard semantics, but checking emptiness is decidable for them. In contrast to
the above undecidability results for POMDPs, we provide a decision algorithm
for the almost-sure (repeated) reachability problem for POMDPs, that is, given
a POMDP M and a state set F , check whether there is an observation-based
strategy for M that ensures to visit F (infinitely often) with probability 1.
This extends former results on the decidability of special cases of the qualitative
model checking problem for POMDPs [dA99] where the confinement problem
(which asks whether an invariant can hold with positive probability) has been
addressed.

Organization of the paper Section 1 briefly recalls the basic definitions of prob-
abilistic Büchi automata and (partially observable) Markov decision processes.
The complementation of PBA is described in Section 2. Several undecidability
results for PBA (as well as POMDPs) are given in Section 3. An alternative
semantics for PBA is introduced and studied in Section 4. Section 5 concludes
the paper.

1 Preliminaries

Throughout the paper, we assume familiarity with formal languages and non-
deterministic automata over finite and infinite words, see e.g. [Tho90, PP04,
GTW02]. We just recall the main concepts of probabilistic ω-automata with
Büchi or other acceptance conditions and (partially observable) Markov deci-
sion processes. For further details we refer respectively to [BG05] and [Put94].

Probabilistic Büchi automata (PBA) can be seen as nondeterministic Büchi
automata where the nondeterminism is resolved by a probabilistic choice: for
any state q and letter a ∈ Σ either q does not have any a-successor or there
is a probability distribution for the a-successors of q. Formally, a PBA over
the alphabet Σ is a tuple P = (Q, δ, μ, F ) where Q is a finite state space,
δ : Q×Σ ×Q → [0, 1] the transition probability function such that for all q ∈ Q
and a ∈ Σ,

∑

p∈Q

δ(q, a, p) ∈ {0, 1},

μ the initial distribution, i.e., μ is a function Q → [0, 1] with
∑

q∈Q μ(q) = 1,
and F ⊆ Q the set of accepting states. The states q ∈ Q where μ(q) > 0 are
called initial. A run for an infinite word w = a1a2 . . . ∈ Σω is an infinite sequence
π = p0, p1, p2, . . . of states in Q such that p0 is initial and pi+1 ∈ δ(pi, ai+1) =
{q : δ(pi, ai+1, q) > 0} for all i ≥ 0. Inf(π) denotes the set of states that are
visited infinitely often in π. Run π is called accepting if Inf(π)∩F �= ∅. Given an
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infinite input word w ∈ Σω, the behavior of P is given by the infinite Markov
chain that is obtained by unfolding P into a tree using w as a “scheduling
policy”. We can therefore apply standard concepts for Markov chains (σ-algebra
on the infinite paths and probability measure [KSK66,Kul95, Ste94]) to define
the acceptance probability of w in P , denoted PrP(w) or briefly Pr(w), by the
probability measure of the set of accepting runs for w in P . The accepted language
of P is then defined as

L(P) =
{
w ∈ Σω | PrP(w) > 0

}
.

The language of a PBA P might be different from the language of the NBA that
is obtained from P by ignoring the probabilities. However, DBA and NBA that
are deterministic in limit [Var85, CY95] can be viewed as special instances of
PBA (arbitrary probabilities in ]0, 1] can be attached to the edges). Since each
NBA can be transformed into an equivalent one that is deterministic in limit
[Var85,CY95], each ω-regular language can be represented by a PBA. However,
there are PBA that accept non-ω-regular languages. For example, the PBA Pλ

depicted in Fig. 1 with 0 < λ < 1 accepts the following non-ω-regular language:

L(Pλ) =
{
ak1bak2bak3b . . . | k1, k2, k3, . . . ∈ N≥1 s.t.

∞∏

i=1
(1 − λki) > 0

}
.

Here and in the rest of the paper, we depict accepting states by boxes.

q r

a, 1 − λ

b, 1

a, λ a, 1

Fig. 1. PBA Pλ with 0 < λ < 1

Similarly, probabilistic Rabin and Streett automata (PRA and PSA, respec-
tively) are defined as tuples P = (Q, δ, μ,Acc) where Q, δ and μ are as above,
and Acc is a finite set of pairs (H, K) with H, K ⊆ Q. The accepted language of
a PRA or PSA is defined as for PBA, but with an adapted notion of accepting
runs. A run π = p0, p1, p2 . . . is accepting in a PRA if there is a pair (H, K) ∈ Acc
such that Inf(π) ⊆ H and Inf(π) ∩ K �= ∅, whereas it is accepting in a PSA if
for all pairs (H, K) ∈ Acc either Inf(π) ∩ H = ∅ or Inf(π) ∩ K �= ∅. Note that
any PRA or PSA P can be transformed into an equivalent PBA whose size is
polynomially bounded in the size of P [BG05].

A Markov decision process (MDP) is a tuple M = (Q,Act, δ, μ) where Q is a
finite set a states, δ : Q × Act × Q → [0, 1] a transition probability function and
μ an initial distribution. The behaviour of an MDP is determined by a device,
the scheduler, that resolves the nondeterministic choices: a scheduler for M is
any (history-dependent) function that selects an action for the current state i.e.,
a function U : S∗ → Act such that U(s0 . . . sn) = α implies δ(sn, α, t) > 0 for
some state t.
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A partially observable MDP (POMDP) is a pair (M, ∼) consisting of an MDP
and an equivalence relation ∼ ⊆ Q × Q over the states of M such that for all
states s, t ∈ Q, if s ∼ t then the sets of actions enabled in s and t are equal.
Given a POMDP (M, ∼), an observation-based scheduler U is a scheduler for the
underlying MDP M that is consistent with ∼, i.e. which satisfies U(s0s1 . . . sn) =
U(t0t1 . . . tm) if n = m and si ∼ ti for 0 ≤ i ≤ m.

Given a total PBA P (a PBA that has transitions for each pair of a state
and input letter) and the trivial equivalence relation ∼ = Q × Q, the pair (P ,
∼) forms a POMDP, where an observation-based scheduler represents an input
word for the PBA P (here Act = Σ).

2 Complementation of PBA

The question whether the class of languages recognizable by PBA is closed under
complementation was left open in [BG05]. We show here that for each PBA P
there exists a PBA that accepts the complement of L(P). Before providing a
complementation operator for PBA, we consider the PBA P̃λ in Fig. 2 which
accepts the following language (see appendix):

L̃λ =
{
ak1bak2bak3b . . . | k1, k2, k3 . . . ∈ N≥1 s.t.

∞∏

i=1

(1 − λki) = 0
}
.

L̃λ is thus roughly the complement of the language accepted by the PBA Pλ

shown in Fig. 1. More precisely, it holds that L̃λ = (a+b)ω \ L(Pλ). Hence, P̃λ

combined with a PBA for (a + b)∗aω, b(a + b)ω and (a + b)∗bb(a + b)ω yields a
PBA that recognizes the complement of L(Pλ).

p2 p1

pF p0

b, 1
a, λ

a, 1−λ

a, 1−λ

b, 1
a, 1−λ

a, λ

a, λ a, 1

Fig. 2. PBA P̃λ with 0 < λ < 1

Theorem 1. For each PBA P there exists a PBA P ′ of size O(exp(|P|) such
that L(P ′) = Σω \ L(P). Moreover, P ′ can be effectively constructed from P.
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Proof (sketch). The idea for the complementation of a given PBA P is to provide
the following series of transformations

PBA P (1)
=⇒ 0/1-PRA PR with L(PR) = L(P)
(2)
=⇒ 0/1-PSA PS with L(PS) = Σω \ L(PR)
(3)
=⇒ PBA P with L(P) = L(PS)

where 0/1-PRA denotes a PRA with PrPR(w) ∈ {0, 1} for each word w ∈ Σω.
Step (2) is obvious as it relies on the duality of Rabin and Streett acceptance. In
step (3), we may use the polynomial transformation from PSA to PBA presented
in [BG05]. The most interesting part is step (1), which has some similarities
with Safra’s determinization algorithm for NBA and also relies on some kind
of powerset construction. However, we argue that the probabilistic setting is
slighty simpler: instead of organizing the potential accepting runs in Safra trees,
we may deal with up to n independent sample runs (where n is the number of
states in P) that are representative for all potential accepting runs. The idea
is to represent the current states of the sample runs by tuples 〈p1, . . . , pk〉 of
pairwise distinct states in P . Whenever two sample runs meet at some point,
say the next states p′1 and p′2 in the first two sample runs agree, then they are
merged, which requires a shift operation for the other sample runs and yields a
tuple of the form 〈p′1, p′3, . . . , p′k, . . . , r, . . .〉 where pi → p′i stands for the move
in the i-th sample run. Additionally, new sample runs are generated in case
the original PBA P can be in an accepting state r /∈ {p′1, . . . , p′k}. The Rabin
condition serves to express the condition that at least one of the sample runs
enters the set F of accepting states in P infinitely often and is a proper run in
P (i.e., is affected by the shift operations only finitely many times). The details
of this construction are complicated and omitted here. ��

3 Undecidability Results

A natural question that arises with automata is whether the accepted language
of a given automaton is empty. The decidability of this problem for PBAs was
open, since in [BG05] the emptiness problem was only treated for uniform PBA,
a subclass of PBA, which are as expressive as ω-regular languages. It was shown
there that checking emptiness is decidable for uniform PBAs and that the prob-
lem, given a uniform PBA P , whether L(P) �= ∅ is NP-hard. The decidability
followed from a transformation of a uniform PBA into an equivalent NSA. For
the full class of PBA we present the following result.

Theorem 2. The emptiness problem for PBA is undecidable.

Our proof for Theorem 2 given below relies on a reduction from a variant of
the emptiness problem for PFA, using the fact that modifying the transition
probabilities can affect the accepted language of a PBA. To see this last point,
we consider again the PBA represented in Fig. 1 and show that:
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Proposition 3. For 0 < λ < 1
2 < η < 1, L(Pλ) �= L(Pη).

Recall that L(Pλ) = {ak1bak2b · · · |
∏

i≥1(1 − λki) > 0}. Proposition 3 is an
immediate consequence of the following lemma (using n = 2):

Lemma 4. For each n ∈ N≥2 there exists a sequence (ki)i≥1 such that
∏

i≥1(1 − λki) > 0 if and only if λ < 1
n .

Proof. Given n ∈ N≥2, we define the sequence (ki)i≥1 in the following way: the
first n elements are set to 1, then the n2 following elements are set to 2, the n3

next elements set to 3, etc. The sequence (ki)i≥1 is non-decreasing, and defined
by plateaux of increasing values and exponentially increasing length. We show
that

∏
i(1 − λki) is positive if and only if λ < 1

n . To see this, we consider the
series

∑
i log(1−xki) which converges if and only if

∏
i(1−xki) is positive. Now,∑

i log(1 − xki) =
∑

i ni log(1 − xi) by definition of the sequence (ki), and the
latter series behaves as −

∑
i nixi (i.e. either both converge, or both diverge)

since log(1− ε) ∼ε�→0 −ε. Hence
∑

i ni log(1−xi) < ∞ if and only if x < 1
n , and∏

i(1 − λki) > 0 if and only if λ < 1
n which proofs the claim. ��

The emptiness problem for PFA is known to be undecidable [Rab63,Paz71]. We
use here a variant of this result, due to Madani et al [MHC03]:

Theorem 5 (Undecidability result for PFA, [MHC03]). The following
problem is undecidable: Given a constant 0 < ε < 1 and a PFA that either
accepts some string with probability at least 1 − ε or accepts all strings with
probability at most ε, decide which is the case.

To provide an undecidability proof of the emptiness problem for PBA (The-
orem 2), we reduce the variant of the emptiness problem for PFA recalled in
Theorem 5 to the intersection problem for PBA which takes as input two PBA
P1 and P2 and asks whether L(P1) ∩ L(P2) is empty. As PBA are closed under
intersection ( [BG05]), this will complete the proof for Theorem 2.

Let R be a PFA over some alphabet Σ and 0 < ε < 1
2 as in Theorem 5,

i.e. such that either there exists some word w accepted by R with probability
strictly greater than 1 − ε, or all words are accepted with probability less than
ε. For w ∈ Σ∗, let PrR(w) denote the probability that the word w is accepted
by R. From the PFA R and the constant ε we derive two PBA P1 and P2 such
that

L>ε(R) = ∅ if and only if L(P1) ∩ L(P2) = ∅,

where L>ε(R) = {w ∈ Σ∗ | PrR(w) > ε}. The alphabet for both P1 and P2
arise from the alphabet Σ of R by adding new symbols � and $, that is, P1
and P2 are PBA over the alphabet Σ′ = Σ ∪ {�, $}. The rough idea is to use
the somehow complementary acceptance behaviour of the automata Pλ and P̃λ

(see Fig. 1 and 2). The automata P1 and P2 are designed to read words of the
form w1

1�w
1
2� · · · w1

k1
$$w2

1�w
2
2� · · · w2

k2
$$ · · · where wj

i ∈ Σ∗. Roughly speaking,
P1 will mimick the automaton Pλ and P2 will mimick P̃λ, where reading a word
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wj
i � in P1 (resp. P2) corresponds to reading a single letter a in Pλ (resp. P̃λ).

Recall that Pλ and P̃λ accept infinite words of the form ak1bak2b . . . (depending
on the ki). The two $-symbols serve as a separator for P1 and P2, just like
the letter b does for Pλ and P̃λ. Thus, the number of �-symbols between the
(j − 1)st and the jth occurence of $$ (and therefore the number of words wj

i )
corresponds to the value of kj . Automaton P1 evolves from automaton Pλ by
replacing each of its two states q, r by a copy of the PFA R. The transitions
for the �-symbol will be defined, such that after reading a word wj

i � in the copy
of R that corresponds to the state q (recall that this corresponds to reading
a single letter a in Pλ in state q) the automaton P1 is still in this copy of R
with probability 1 − PrR(wj

i ) and has moved to the other copy with probability
PrR(wj

i ), similar to the behaviour of automaton Pλ upon reading the letter a in
state q (it stays in q with probability λ and moves to r with probability 1 − λ).
The structure of P1 and P2 is shown in Fig. 3 and 4, respectively.

s0

p
f

R

s0

p
f

R

�, 1
�, 1 �, 1

�, 1

F $, 1
$, 1

$, 1

$, 1

Fig. 3. PBA P1

PBA P1 is composed of two copies of the PFA R (respresented in dashed
lines) augmented with new edges using the additional symbols � and $. For
simplicity, we represented only one initial and one final state from R, called
s0 and f respectively. The initial states of P1 are the initial states of the first
copy of R. From any final state of the first copy of R, the PBA P1 can reach
each initial state of R in the second copy (but no other state) while reading the
symbol �. (That means, each initial state of R of the second copy is reached with
the initial probability of R.) Upon reading the symbol � in a non-final state p
of the first copy of R, the automaton P1 proceeds to each initial state of the
first copy of R (again the initial distribution of R is assumed). Consuming the
symbol $ in some (final or non-final) state of the second copy, P1 enters with
probability 1 the special state F , which is the unique accepting state of P1.
Reading the second $ symbol, P1 moves on to an initial state.

The language of this PBA is the following:

L(P1) =
{
w1

1�w
1
2� . . . w1

k1
$$ w2

1�w
2
2� . . . w2

k2
$$ . . . | wj

i ∈ Σ∗

and
∏

j≥1

(
1 −

(kj−1∏

i=1
(1 − PrR(wj

i ))
))

> 0
}
.
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p′
0

F ′

p′
1

p′
2

u′
1 u′

2

�, ε

$, 1

$, 1

a ∈ Σ, 1

a ∈ Σ, 1
$, 1

$, 1

a ∈ Σ, 1

�, 1 − ε

a ∈ Σ, 1

�, 1

Fig. 4. PBA P2

PBA P2 (Fig. 4) does not depend on the structure of the given PFA R, but
only on ε and the alphabet Σ. Its accepted language is :

L(P2) =
{

v1$$ v2$$ . . . | vi ∈ (Σ ∪ {�})∗ and
∏

i≥1

(
1 − (1 − ε)|vi|�) = 0

}
,

where |v|� is the number of � symbols in the word v ∈ (Σ ∪ {�})∗.
Given P1 and P2, let us now detail the correctness of the reduction, i.e., prove

that the language L>ε(R) = {w ∈ Σ∗ | PrR(w) > ε} of R for the threshold ε is
empty if and only if L(P1) ∩ L(P2) = ∅.

⇒: Assume that L>ε(R) is empty, i.e. for all finite words w ∈ Σ∗ we have:
PrR(w) ≤ ε. Let w̃ ∈ L(P2). The goal is to prove that w̃ /∈ L(P1). Since
w̃ ∈ L(P2), w̃ can be written as

w̃ = v1$$ v2$$ . . . with vi ∈ (Σ ∪ {�})∗ and
∏

i

(
1 − (1 − ε)|vi|�) = 0.

The subwords vi can be decomposed according to the occurrences of the
symbol �. That is,

w̃ = w1
1�w

1
2� . . . w1

k1
$$ w2

1�w
2
2� . . . w2

k2
$$ . . . with |vi|� = ki − 1.

Hence w̃ ∈ L(P2) implies
∏

i

(
1 − (1 − ε)ki−1

)
= 0. However:

∏

j

(
1 −

∏kj−1
i=1

(
1 − PrR(wj

i )
))

≤
∏

j

(
1 −

kj−1∏

i=1

(
1 − ε

))
since L>ε(R) = ∅

=
∏

j

(
1 − (1 − ε)kj−1

)

= 0 since w̃ ∈ L(P2).

Hence, w̃ /∈ L(P1). Since this holds for any w̃ ∈ L(P2), we conclude that
L(P1) ∩ L(P2) = ∅.
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⇐: Assume now that L>ε(R) �= ∅. By assumption on the PFA R, this means
that there exists a finite word w ∈ Σ∗ such that PrR(w) > 1 − ε.
We define

w̃k1,k2,... = (w�)k1w$$ (w�)k2w$$ . . .,

and prove that there exists a sequence k1, k2, . . ., such that w̃k1,k2,... ∈
L(P1) ∩ L(P2). The acceptance probability of w̃k1,k2,... in P1 is

∏

j

(
1 −

∏kj

i=1

(
1 − PrR(w)

))
=

∏

j

(
1 −

(
1 − PrR(w)

)kj
)

>
∏

j

(
1 −

(
1 − (1 − ε)

)kj
)

=
∏

j

(
1 − εkj

)

On the other hand, the word w̃k1,k2,... can be written as v1$$v2$$ . . . with
vi ∈ (Σ∪{�})∗ and |vi|� = ki. Hence,

∏
i

(
1−(1−ε)|vi|�) =

∏
i

(
1−(1−ε)ki

)
.

We finally apply Lemma 4 (with n = 2) which yields the existence of a
sequence (k′

i)i≥1 that will ensure at the same time
∏

j≥1

(
1 − εk′

j

)
> 0 and

∏

i≥1

(
1 − (1 − ε)k′

i

)
= 0.

Hence, w̃k′
1,k′

2,... ∈ L(P1) ∩ L(P2) and L(P1) ∩ L(P2) �= ∅.

This completes the proof of Theorem 2.
Since complementation is effective for PBA, from the undecidability of the

emptiness problem, we immediately get that many other interesting algorithmic
problems for PBA are undecidable too.

Corollary 6 (Other undecidability results for PBA). Given two PBA P1
and P2, the following problems are undecidable.

universality: L(P1) = Σω?
equivalence: L(P1) = L(P2)?
inclusion: L(P1) ⊆ L(P2)?

Another immediate consequence of Theorem 2 is that the verification problem
for finite transition systems T and PBA-specifications is undecidable. Here we
assume that the states in T are labelled with sets of atomic propositions of some
finite set AP and consider the traces of the paths in T that arise by the projection
to the labels of the states. Furthermore, we assume that the given PBA has the
alphabet 2AP:

Corollary 7 (Verification against PBA-specifications). The following
problems are undecidable:

(a) Given a transition system T and a PBA P, is there a path in T whose trace
is in L(P)?

(b) Given a transition system T and a PBA P, do the traces of all paths in T
belong to L(P)?
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Proof. Consider a transition system T such that each infinite word over the
alphabet of P is a trace of T . Then the emptiness problem for PBA reduces to
(a) and the universality problem for PBA reduces to (b). ��

As transition systems are special instances of state-labelled Markov decision
processes, the following four cases of the qualitative verification problem for
finite state-labelled Markov decision processes M and PBA-specifications P are
undecidable too. Is there a scheduler U for M such that

(i) PrU(L(P)) > 0? (ii) PrU (L(P)) = 1?
(iii) PrU(L(P)) < 1? (iv) PrU (L(P)) = 0?

Indeed, problem (a) of Corollary 7 reduces to (i) (resp. (ii)) and problem (b)
reduces to (iii) (resp. (iv)) when T is viewed as an MDP M.

Since PBA are a special case of POMDPs our results immediately imply un-
decidability results for POMDPs and qualitative properties. In the literature,
some undecidability results for POMDPs and quantitative properties (e.g. ex-
pected rewards, approximation of the maximal reachability problem) can be
found [MHC03,GD07]. However, as far as we know, the undecidability of qualita-
tive ω-regular properties for POMDPs is a new result. As POMDPs are 1 1

2 -player
games, the following results also apply to the setting of stochastic multi-player
games with incomplete information.

Corollary 8 (Undecidability results for POMDPs). The following prob-
lems are undecidable:

(a) Given (M, ∼) a finite POMDP and F a set of states in M, is there an
observation-based strategy U for (M, ∼) such that PrU(�♦F ) > 0?

(b) Given (M, ∼) a finite POMDP and F a set of states in M, is there an
observation-based strategy U for (M, ∼) such that PrU(♦�F ) = 1?

4 Almost-Sure Semantics and Decidability Results

Despite the undecidability of the emptiness problem for PBA, one way to try
to recover decidability results is to consider an altered semantics for PBA. More
precisely, we define the almost-sure semantics of a PBA P as the set of words
which generate an almost-sure set of accepting runs:

L=1(P) =
{
w ∈ Σω | PrP(w) = 1

}

Let us first observe that for probabilistic Büchi automata, the switch from
the standard semantics which requires positive acceptance probability to the
almost-sure semantics leads to a loss of expressiveness, and the class of prob-
abilistic Büchi automata under the almost-sure semantics is not closed under
complementation. This restricted class of languages is nevertheless not included
in the ω-regular languages. Before we summarize the expressiveness results for
almost-sure PBA, we fix some notation. By IL(PBA) we denote the class of PBA-
definable languages, i.e. IL(PBA) = {L(P) | P is a PBA}. Similarly, IL(PBA=1)
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denotes the class of languages definable by a PBA with the almost-sure seman-
tics. At last, IL(ω-reg) denotes the class of ω-regular languages.

Theorem 9 (Expressiveness of almost-sure PBA)

(a) IL(PBA=1) � IL(PBA)
(b) IL(ω-reg) � IL(PBA=1)
(c) IL(PBA=1) � IL(ω-reg)
(d) IL(PBA=1) is not closed under complementation.

Proof (sketch). The proofs for items (a) and (b) are omitted here.

(c) The PBA P̃λ of Fig. 2 recognizes a non-ω-regular language and enjoys the
property that each word is either accepted with probability 0 or with prob-
ability 1, thus L=1(P̃λ) = L(P̃λ). This shows that P̃λ with the almost-sure
semantics accepts a non-ω-regular language.

(d) It is evident that each DBA P can be viewed as a PBA and that L(P) =
L=1(P). Consider the language (a∗b)ω. It can be recognized by a DBA and
hence by a PBA with the almost-sure semantics. However, its complement
(a + b)∗aω cannot be recognized by a PBA with the almost-sure semantics.

��

Remark 10. It is worth noting that the almost-sure semantics does not lead to
a loss of expressiveness if Streett or Rabin acceptance is considered. That is:

IL(PSA) = IL(PSA=1) = IL(PRA=1) = IL(PRA).

This follows from the duality of the Streett and Rabin acceptance conditions and
the results presented in section 2 as every PRA (resp. PSA) can be transformed
into an equivalent PBA [BG05].

PBA with the almost-sure semantics are less expressive but simpler to handle
algorithmically. As L=1(P̃λ) = L(P̃λ), Lemma 4 implies

Proposition 11. For 0 < λ < 1
2 < η < 1, L=1(P̃λ) �= L=1(P̃η).

Thus modifying the transition probabilities can affect the accepted language of a
PBA with the almost-sure semantics. However the emptiness problem “Given a
PBA, does L=1(P) = ∅?” for PBA under the almost-sure semantics is decidable.
We will show a more general result, namely the decidability of the almost-sure
repeated reachability problem for POMDPs (which asks whether, for a given
POMDP (M, ∼) and a state set F , there exists an observation-based scheduler
U such that PrU (�♦F ) = 1).

Theorem 12. The almost-sure repeated reachability problem for POMDPs is
decidable.

Proof. The proof splits into two steps. We first show (Lemma 13) that the
almost-sure repeated reachability problem for POMDPs reduces to the almost-
sure reachability problem for POMDPs (and vice versa) and then we proof the
decidability of the latter problem (Theorem 14). ��
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Lemma 13. The two following problems are reducible to each other:
(i) Given a POMDP (M, ∼) and a set of states F , is there an observation-based
scheduler U with PrU(�♦F ) = 1?
(ii) Given a POMPD (M, ∼) and a set of states F , is there an observation-based
scheduler U with PrU(♦F ) = 1?

Proof. Problem (ii) reduces to (i) in a straightforward manner: given an instance
for (ii) we transform it into an instance for (i) by making all F -states absorbing,
i.e. by removing all outgoing edges from states in F , and adding self loops for all
letters, with probability one (to these same states). We now show that problem
(i) is reducible to problem (ii). Let (M, ∼), F be an instance for (i). We define
M′ as follows: M′ consists of a copy of M and some additional state f . All
transitions (r, a, r′) in M with r /∈ F are left unchanged. The transitions (r, a, r′)
in M with r ∈ F are kept, but their probabilities are divided by 2 in M′. In M′,
we add a self-loop with probability 1 to state f for all actions a ∈ Act. Finally,
for all r ∈ F and a ∈ Act, we add a new transition (r, a, f) with probability 1

2 .
The transformation is depicted in figure 5.

∈F r′

M
∈F r′

Ma, p a, p/2

f
a, 1/2

Act, 1

M′

Fig. 5. Transformation from M to M′

The equivalence relation ∼′ on Q
.
∪ {f} agrees with ∼ on Q and {f} forms

its own equivalence class, i.e. [s]∼′ = [s]∼ for s ∈ Q and [f ]∼′ = {f}. With
F ′ = {f}, (M′, ∼′), F ′ is an instance for problem (ii) satisfying the equivalence:

∃ obs.-based scheduler U s.th. PrMU (�♦F ) = 1 ⇐⇒
∃ obs.-based scheduler U ′ s.th. PrM

′

U ′ (♦F ′) = 1

Indeed if F is visited almost surely infinitely often in M under the scheduler U ,
F ′ will be almost surely visited in M′ under the scheduler U ′ that mimics U .
Conversely, given U ′ with PrM

′

U ′ (♦F ′) = 1, we define U to be the restriction of U ′

on the set of path of M. Then PrMU (�♦F ) = 1, since PrMU (♦�¬F ) > 0 implies
PrM

′

U ′ (�¬F ′) > 0. ��

Theorem 14. The almost-sure reachability problem for POMDPs is decidable.

Proof. We reduce the almost-sure reachability problem for POMDPs to the
almost-sure reachability problem for (fully observable) MDPs, which is known
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to be solvable by means of graph-algorithms. Let M = ((Q,Act, δ, μ), ∼) be a
(w.l.o.g. total) POMDP and F ⊆ Q. We define an MDP M′ = (Q′,Act, δ′, μ′)
as follows. The set of states Q′ of M consists of pairs (r, R) with r ∈ R ⊆ [r]∼
and an extra state qF that has a self-loop with probability one for all a ∈ Act.
Given a ∈ Act and R ⊆ Q, let R′ = δ(R\F, a).

If δ(r, a) ∩ F = ∅ then δ′((r, R), a, (r′, R′ ∩ [r′]∼) = δ(r, a, r′) for each r′ ∈ Q.
If δ(r, a) ∩ F �= ∅ then δ′((r, R), a, (r′, R′ ∩ [r′]∼)) = 1

2·|R′\F | for all r′ ∈ R′\F

and δ′((r, R), a, qF ) = 1
2 (in case R′\F = ∅, δ′((r, R), a, qF ) = 1).

Moreover μ′(q, {q}) = μ(q) for all q �∈ F and μ(qF ) = Σr∈F μ(r). We set
F ′ = {qF }. This construction ensures that there exists an observation-based
scheduler U with PrMU (♦F ) = 1 if and only if M′ has a scheduler U ′ such that
PrM

′

U ′ (♦F ′) = 1. ��

Our algorithm uses a powerset construction and hence runs in time exponential
in the size of the given POMDP. However, given the EXPTIME-hardness results
established by Reif [Rei84] for 2-player games with incomplete information and
by de Alfaro [dA99] for POMDPs, we do not expect more efficient algorithms.

Corollary 15. The emptiness problem for PBA with the almost-sure semantics
is decidable.

Proof. As PBA are a special case of POMDPs, this follows from Theorem 12. ��

5 Conclusion

This paper answers several open questions on probabilistic Büchi automata.
We first provide a complementation operator for PBA, that somehow resembles
Safra’s complementation operator for NBA, but appears to be simpler as the
concept of sample runs (rather than Safra trees) suffices. We then establish the
undecidability of the emptiness and universality problem for PBA, which yields
the undecidability of the qualitative verification problem for POMDPs against
(general) ω-regular properties. Switching to an alternative almost-sure semantics
for PBA (which turns out to be less expressive) we prove the decidability of the
emptiness problem, via showing the decidability of the almost-sure repeated
reachability problem and the almost-sure reachability problem for POMDPs.
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