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ON DECOMPOSITIONS OF BANACH SPACES
OF CONTINUOUS FUNCTIONS ON MRÓWKA’S SPACES

PIOTR KOSZMIDER

(Communicated by Alan Dow)

Abstract. It is well known that if K is infinite compact Hausdorff and scat-
tered (i.e., with no perfect subsets), then the Banach space C(K) of contin-
uous functions on K has complemented copies of c0, i.e., C(K) ∼ c0 ⊕ X ∼
c0 ⊕ c0 ⊕ X ∼ c0 ⊕ C(K). We address the question if this could be the only
type of decompositions of C(K) �∼ c0 into infinite-dimensional summands for
K infinite, scattered. Making a special set-theoretic assumption such as the
continuum hypothesis or Martin’s axiom we construct an example of Mrówka’s
space (i.e., obtained from an almost disjoint family of sets of positive integers)
which answers positively the above question.

1. Introduction

This paper is concerned with a set-theoretic construction of a compact topolog-
ical space which has interesting consequences in the isomorphic theory of Banach
spaces, of continuous functions with the supremum norm.1. It was recently proved
in [7] that there are Banach spaces C(K) of continuous functions on compact con-
nected K with no non-trivial decomposition C(K) = A ⊕ B. Actually it was only
recently proved that there are at all such Banach spaces (not of continuous func-
tions) [4]. In this paper we consider similar questions about the minimal possible
space of operators or collection of projections or complemented subspaces in the
context of K compact and scattered.

Infinite scattered compact spaces have non-trivial convergent sequences of iso-
lated points, which easily give rise to complemented copies of c0 in the function
space which implies that there are many operators including projections with ranges
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1∼ will denote an isomorphism of Banach spaces, i.e., a linear isomorphism which is continuous.
A is complemented in X if and only if X ∼ A ⊕ B for some B. This is equivalent to the
existence of a projection P : X → A, i.e., an onto bounded operator such that P 2 = P ([17],
§21). Since finite-dimensional or finite-co-dimensional subspaces are always complemented, by
nontrivial decompositions we mean those with two infinite-dimensional factors (see [17], [11]).
Unless stated otherwise all compact spaces are infinite and Hausdorff and all Banach spaces are
infinite-dimensional.
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2138 PIOTR KOSZMIDER

included in c0. We ask in this paper if it is possible that there are no more operators
and no more complemented subspaces in a C(K) �∼ c0 for a scattered K. In section
2, we obtain consistent examples.

Theorem. Assuming CH or MA there is a compact separable scattered Hausdorff
space with C(K) �∼ c0 such that all operators T : C(K) → C(K) are of the form
cI + S where c is a real and S has range included in a subspace isomorphic to
c0. Moreover the only decompositions C(K) = A⊕B into two infinite-dimensional
complemented subspaces are such that A ∼ c0 and B ∼ C(K) or A ∼ C(K) and
B ∼ c0.

Note that such a space K must be non-metrizable since for separable C(K)’s
we have that the space is isomorphic to its square and that operators into c0 have
relatively simple structure, i.e., they correspond to weakly∗ null sequences in the
dual to C(K). Note that the question of the existence of Banach spaces whose only
operators are scalar multiples of the identity plus an operator with separable range
has been considered by various authors [18], [19], [20], [6]. We do not know if any
set-theoretic assumption is needed for our C(K) or even to get an example of any
Banach space having the above properties, i.e., c0 �∼ X ∼ c0 ⊕ X and whether this
type of a non-trivial decomposition is the only one. We know, however, that the
existence of C(K) �∼ c0 which is Lindelöf in the weak topology and has the above
properties is consistent and independent from the axioms of ZFC. This result will
be published elsewhere.

In this paper we only analyze the Banach space of continuous functions on
Mrówka’s or Isbell’s space, also known as the Ψ-space, which was first consid-
ered by Alexandroff. If A = {Aξ : ξ < κ} is an infinite almost disjoint (i.e., with
finite pairwise intersections) family of subsets of N , then the space KA is the Stone
space of the Boolean algebra generated by A. The Banach space of continuous
functions on KA was considered for example in [5] (example 2) or in [12] (example
8). There are three types of ultrafilters-points of KA: first the isolated points cor-
responding to principal ultrafilters generated by singletons of n ∈ N ; the second
level is made up from ultrafilters generated by Aξ and the cofinite sets (these points
will be denoted xξ); the third level is represented by the unique ultrafilter which
contains all cofinite sets and the complements of Aξ’s (this point will be denoted by
∞). We will use the same notation Aξ for the subset of N and the corresponding
clopen subset of KA hoping that the meaning is clear from the context. The sets
Aξ −{0, ..., n− 1} will be denoted by An

ξ , the characteristic functions of n ∈ N will
be denoted by en ∈ C(KA) and the characteristic functions of the An

ξ ∪ {xξ}’s will
be denoted by dn

ξ ∈ C(KA). C0(KA) denotes the space of functions which vanish
at ∞. The following are two natural questions, which appear in the light of the
results of this paper:

Question 1. Is there a separable Banach space X �∼ c0 whose only non-trivial
decompositions are of the form c0 ⊕ X?

Question 2. Are there (with no additional set-theoretic assumption) almost dis-
joint families such that the only decompositions of C(KA) into two factors have
one factor separable?

Let us make more comments on the second question. One can prove (Lemma 4)
that the property of having few decompositions in the sense of our theorem for a
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ON DECOMPOSITIONS OF BANACH SPACES 2139

C(K) where K is Mrówka’s space is equivalent to the fact that the only decompo-
sitions of C(K) have just one separable factor. Easy examples of decompositions
for A ⊆ N are of the form

C(K) ∼ C0(A) ⊕ C0(N − A) ⊕ R,

where for every Aξ ∈ A one has either Aξ − A is finite or A ∩ Aξ is finite. Such
an A is called a separation of A. The projection on the first factor is given by
P1(f) = (f −f(∞))|A, and similarly for the second factor, while the last projection
is given by P3(f) = f(∞).

Thus the family A as in the theorem cannot have separations into two uncount-
able parts. There are two known examples of almost disjoint families with this
property which, unlike our theorem, do not require any additional set-theoretic as-
sumptions. One, due to Lusin ([10], [3], 4.1), is of cardinality ω1, and the other due
to Mrówka [13, 3.11] is maximal and of cardinality 2ω.

Section 3 is devoted to showing that Lusin’s family cannot witness the theorem
in ZFC. It turns out that under Martin’s axiom all spaces C(KA) for A of cardinal-
ity less than 2ω have many decompositions into both non-separable factors (even
though, as in the case of Lusin’s family, there may be no separations of the family
into two uncountable parts). On the other hand, Mrówka’s families could serve to
prove the existence of spaces such as in the theorem without the use of any special
set-theoretic assumptions. As Mrówka’s argument relies on the perfect set property
of Borel sets of the reals (we thank A. Miller for explaining to us this construction
in [11]), it is reasonable to expect that the positive answer could be obtained by
the methods of descriptive set-theory. In the light of our result from section 3 it is
natural to ask the following:

Question 3. Suppose MA. Is it true that if |A| = |A′| < 2ω, then C(KA) is
isomorphic to C(KA′)?

In the context of the Pe�lczyński decomposition method ([14], [11], Appendix)
one could ask:

Question 4. Suppose MA. Is it true that if |A| < 2ω, then C(KA) is isomorphic
to its square?

It seems also that it is unknown2 in ZFC (of course our result decides it under a
special set-theoretic assumption):

Question 5. Are there two almost disjoint families A and A′ of the same cardi-
nality such that C(KA) is not isomorphic to C(KA′)?

Our terminology follows [17], [3], [2]. In particular we consider several inter-
related structures such as Boolean algebras, compact spaces, Banach spaces of
continuous functions, Radon measures, etc. The main links between them are
given by the Stone duality and the Riesz representation theorem. We also use
Rosenthal’s lemma ([16], [2]), which can be formulated in our context as follows:
given a sequence of absolutely convergent series

∑∞
n=0 mk

n whose sums are bounded
by the same number and given an ε > 0, one can find an infinite set M ⊆ N such
that

∑
n∈M−{k} mk

n < ε for every k ∈ M .

2Mrówka shows in [13], 3.5, with no additional set-theoretic assumption, that there are 22ω

non-homeomorphic spaces KA, and it follows from [13], 3.6 that there is one KA such that C(KA)
has 2ω decompositions into nonseparable factors.
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Section 3, which deals with Martin’s axiom, uses the terminology of chapter 2 of
[8]. The terminology regarding the combinatorics of sets of integers follows [3]; in
particular, A ⊆∗ B means that A−B is finite, and almost disjoint means with finite
intersection. All almost disjoint families are assumed to be infinite and consist of
infinite sets. A pseudointersection of a family of sets F is an infinite set A such that
A ⊆∗ B for all B ∈ F . The number p is the minimal cardinal such that there is a
centred (intersections of finite subfamilies are infinite) family of sets of integers of
cardinality p without a pseudointersection. Martin’s axiom (and so the continuum
hypothesis) implies p = 2ω. An ideal of subsets of N is a family of proper subsets
of N which contains all finite sets and is closed under subsets and finite unions.

2. Spaces of continuous functions on Mrówka’s spaces
with few operators

Lemma 1. Assume that p = 2ω. Suppose that I is an ideal of subsets of N which
is generated by < 2ω sets. Suppose that F is a family of finite subsets of N such
that for every I ∈ I there is an F ∈ F such that I ∩ F = ∅. Then there is a
sequence (Fn)n∈N of pairwise disjoint elements of F such that I ∩ ⋃{Fn : n ∈ N}
is finite for all I ∈ I.

Proof. The assumption p = 2ω says that any centred family of subsets of N of car-
dinality < 2ω has a pseudointersection (see [3]), i.e., a set which is almost included
in all members of the family. Identify N with the family [N ]<ω of all finite subsets
of N and consider a centred family

{[N − I]<ω ∩ F : I ∈ I}.
Let G be its pseudointersection. It exists since I is generated by less than p sets.
Any infinite subset of G is another pseudointersection. So, using the fact that ideals
contain all finite sets of N , one can choose a pairwise disjoint sequence which is a
pseudointersection as well. It satisfies the lemma. �

Proposition 2. Assume that p = 2ω. There is an almost disjoint family A such
that every bounded linear operator on C0(KA) is of the form cI + S where c is a
constant and S has separable range.

Proof. Before the construction, fix an enumeration (mk
n(β) : n, k ∈ N, β < 2ω),

with cofinally many repetitions, of all real sequences (mk
n : n, k ∈ N) such that∑∞

n=0 |mk
n| < ρ for any k ∈ N and some ρ > 0. Construct the almost disjoint

family from three parts:

(Aβ : β < 2ω) = (Bβ : β < 2ω) ∪ (Cβ : β < 2ω) ∪ (Dβ : β < 2ω)

by induction in β < 2ω. Let Iβ denote the ideal generated by (Bα, Cα, Dα : α < β)
and the finite subsets of N . Suppose that Bα, Cα, Dα for α < β are already
constructed. At the stage β we inquire if the following is satisfied for some fixed
ε > 0:

1) ∀A ∈ Iβ ∃F ∈ [N − A]<ω ∃k ∈ N − (A ∪ F ) |
∑
n∈F

mk
n(β)| > ε.

If 1) is not satisfied, then Bβ and Cβ are arbitrary as long as they are almost disjoint
and almost disjoint from the sets already constructed; the assumption p = 2ω

implies that we can always find such sets since p = 2ω > β (p ≤ a in [3]).
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If 1) is satisfied, then Bβ =
⋃{Fi : i ∈ 2N} and Cβ = {ki : i ∈ N} where the

Fi’s are pairwise disjoint finite sets and the ki’s are distinct positive integers, such
that ki �∈ Fj for i, j ∈ N and

∀i ∈ N |
∑
n∈Fi

mki
n (β)| > ε,2)

∀i ∈ N
∑
j �=i

∑
n∈Fj

|mki
n (β)| < ε/3.3)

It follows from Lemma 1 applied to the F∪{k}’s such as in 1) and Iβ that there exist
Fn’s and kn’s satisfying 2) such that the corresponding Bβ, Cβ are almost disjoint
from the previously constructed sets Bα, Cβ and Dα for β < 2ω. Rosenthal’s lemma
implies that one can thin out the sequence obtaining 3).

Define Jβ to be the ideal generated by the sets of Iβ and Bβ, Cβ . Before the
construction of Dβ we inquire if the following is satisfied for some fixed reals r1 < r2:

4) ∀A ∈ Jβ ∃k, l ∈ N − A mk
k < r1 < r2 < ml

l.

If 4) is not satisfied, then Dβ is arbitrary as long as it is almost disjoint from the
sets already constructed. Again, it exists, since p = 2ω > β.

If 4) is satisfied, then pick some r1 < r2 witnessing it and define Dβ = {kn : n ∈
N} ∪ {ln : n ∈ N} where kn �= lj for all n, j ∈ N and

∀n ∈ N mkn

kn
< r1 < r2 < mln

ln
,5)

∀n ∈ N
∑
j �=n

|mln
lj
| <

r2 − r1

6
,

∑
j �=n

|mkn

kj
| <

r2 − r1

6
,6)

∀n ∈ N
∑
j∈N

|mln
kj
| <

r2 − r1

6
,

∑
j∈N

|mkn

lj
| <

r2 − r1

6
.7)

Let us justify the existence of such a Dβ . It follows from Lemma 1 applied to
{k, l} satisfying 4) that there exist two infinite disjoint sets K, L ⊆ N such that
mk

k < r1 < r2 < ml
l for every k ∈ K and l ∈ L and both K and L are almost

disjoint from the previously constructed sets Bα, Cα for α < β and from Bβ, Cβ .
Thus, any enumeration of K = {k′

n : n ∈ N} and L = {l′n : n ∈ N} would give 5).
To obtain 6) and 7) one needs to apply Rosenthal’s lemma to r2−r1

6 and the series
∞∑

i=0

(|mk′
n

k′
i
| + |mk′

n

l′i
| + |ml′n

k′
i
| + |ml′n

l′i
|)

for all n ∈ N obtaining infinite M ⊆ N as in Rosenthal’s lemma (see the in-
troduction). Now consider two disjoint infinite sets M1, M2 ⊆ M and enumerate
{kn : n ∈ N} = M1 and {ln : n ∈ N} = M2. 6) and 7) are satisfied by the
construction. This completes the construction. �

Let T : C0(KA) → C0(KA). Define g(n) = T (en)(n). Define mk
n = T (en)(k),

i.e., g(n) = mn
n.

Claim 1. There is a countable set X ⊆ 2ω such that for every β ∈ 2ω − X, for
every n, k ∈ N we have

T (dn
β)(k) =

∑
i∈An

β

T (ei)(k).
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2142 PIOTR KOSZMIDER

Proof of the Claim. Note that φk(f) = T (f)(k) = T ∗(δk) for k ∈ N is a bounded
linear functional on C0(KA). Thus by the Riesz representation theorem (see [17],
18.5.3) there is a Radon measure µk on KA such that µk({∞}) = 0 which satisfies
T (f)(k) =

∫
fdµk for all f ∈ C(KA). Since KA is scattered, all Radon measures

on KA are atomic (see [17], 19.7.6); in particular, they have countable carriers. Let
X be a countable set which includes the intersections of all the carriers of the µk’s
with the {xβ : β < 2ω}. If β �∈ X , then µk({xβ}) = 0 for all k ∈ N and so

T (dn
β)(k) =

∫
KA−{xβ}

[
∑

i∈An
β

ei + χ{xβ}]dµk =
∑
i∈An

β

T (ei)(k),

since χ{xβ} is Borel and so integrable with respect to any Radon measure, as re-
quired. �

Before proceeding to Claim 2, note that mk
n = µk({n}). This implies that∑

n∈N |mk
n| ≤ ||µk|| ≤ ||T || for all k ∈ N . It follows that the sequence of the series

(mk
n : n, k ∈ N) appears for cofinally many β < 2ω on our list (mk

n(β) : n, m ∈
N, β < 2ω).

Claim 2. There is a constant c and a countable set Y ⊆ 2ω such that for every
β ∈ 2ω − Y we have

lim
n∈Aβ

g(n) = c.

Proof of the Claim. Suppose that the claim is false, i.e., for every countable Y ⊆ 2ω

there are α, β ∈ 2ω − Y and two rationals q1 < q2 such that

lim inf
n∈Aα

g(n) < qα,β
1 < qα,β

2 < lim sup
n∈Aβ

g(n).

Knowing that every element of the ideal is included in the union of finitely many
generators, without loss of generality we may assume that there are two reals r1 < r2

such that
∀A ∈ I2ω ∃k, l ∈ N − A g(k) < r1 < r2 < g(l).

But g(k) = mk
k(β), g(l) = ml

l(β) for some β < 2ω, i.e., 4) is satisfied. As our initial
enumeration has cofinally many repetitions we may assume that β �∈ X from Claim
1. Now Claim 1, 5), 6) and 7) imply that

T (χDβ
)(kn) < r1 +

r2 − r1

3
,

T (χDβ
)(ln) > r2 − r2 − r1

3
,

which means that T (χDβ
) is discontinuous at the point of KA corresponding to Dβ,

a contradiction. �

Claim 3. T − cI has separable range.

Proof of the Claim. Suppose the claim is false. Then there is an ε > 0 such that
for every countable Z ⊆ 2ω and every l′ ∈ N there are α, β ∈ 2ω − Z and l ≥ l′

such that |(T − cI)(dl
β)(xα)| > ε. By the continuity of the functions (T − cI)(dl

β),
this means that |(T − cI)(dl

β)(k)| > ε for k ∈ Aα for sufficiently large k. Let X be
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as in Claim 1 and suppose that X ⊆ Z. Let Y be as in Claim 2 and suppose that
Y ⊆ Z. Claims 1 and 2 imply that

|T (dl
β)(k) − cdl

β(k)| = |
∑

n∈Al
β

[T (en)(k) − cdl
βek]| = |

∑
n∈Al

β−{k}
mk

n| > ε

if k is sufficiently large in Aα, since by Claim 2, then c is close to g(k) = T (ek)(k) =
mk

k and dl
β(k) = 0 if k �∈ Al

β and dl
β(k) = 1 if k ∈ Al

β (note that we need to consider
the case of k ∈ Aβ only because it could happen that α = β). It follows that 1) is
satisfied at stage β such that mk

n = mk
n(β) for all n, k ∈ N . Since our enumeration

has cofinally many repetitions and cf(2ω) > ω we may assume that β �∈ X, Y where
X is as in Claim 1 and Y is as in Claim 2.

Thus 2) and 3) is satisfied for Bβ and Cβ . But this implies that |T (χBβ
)(ki)| >

2ε/3 if i is even and |T (χBβ
)(ki)| < ε/3 if i is odd, which contradicts the fact that

T (χBβ
) must be continuous at the point corresponding to Cβ . This completes the

proof of the proposition. �

Lemma 3 ([5], Example 2c). Suppose that A ⊆ C0(KA) is separable for some
almost disjoint A. Then there is a closed subspace B such that A ⊆ B and B ∼ c0.

Lemma 4. Suppose that C0(KA) = A ⊕ B where A is separable and B is not
separable. Then B has a complemented copy of c0. In particular A ∼ c0 and
B ∼ C0(KA).

Proof. By Lemma 3, A is complemented in an isomorphic copy of c0; thus by a result
of [14] (Theorem 1), A ∼ c0. Well order A as (Aξ : ξ < κ) for some uncountable
cardinal κ so that A is included in the closure of {χAn : n ∈ ω} ∪ {en : n ∈ N}.
Let P be the projection on B and Q the projection on A. By induction construct
ω < βi < β′

i < βi+1 < ... < ω1 and ni ∈ N such that

||Q(dni

βi
) − Q(dni

β′
i
)|| ≤ 1/2i,8)

(Ani

βi
∪ Ani

β′
i
) ∩ (Anj

βj
∪ A

nj

β′
j
) = ∅9)

for all i < j < ω. This can be accomplished since (Aξ : ξ < κ) is almost disjoint
and A is separable. We claim that

X = {
∑
i∈N

aiP (dni

βi
− dni

β′
i
) : (ai)i∈N ∈ c0}

is included in B, that it is isomorphic to c0 and that it is complemented in C0(KA)
and hence in B.

First note that each element of X is a well-defined element of C0(KA) because
the series

∑
i∈N aiP (dni

βi
− dni

β′
i
) is norm convergent. For this we use the fact that

P + Q is the identity to write

10) P (dni

βi
− dni

β′
i
) = (dni

βi
− dni

β′
i
) − [Q(dni

βi
) − Q(dni

β′
i
)]

and we note that
∑

i∈N ai(dni

βi
−dni

β′
i
) norm converges by 9) and

∑
i∈N aiQ(dni

βi
−dni

β′
i
)

norm converges by 8). X is included in B because B is closed. The projection on
X is

R(f) =
∑
i∈N

f(xβi)
.P (dni

βi
− dki

βi
).
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It is linear and bounded and hence continuous by 10). By the fact that all elements
of the space A are zero on xβi (since βi > ω), R is zero on A, and so it is true that

R(P (dni

βi
− dni

βi
)) = R(dni

βi
− dni

βi
) = P (dni

βi
− dni

βi
),

i.e., R is the identity on X . To prove the last part of the lemma let B ∼ c0 ⊕ C
(since B by the above has a complemented copy of c0) and note that

C0(KA) ∼ A ⊕ B ∼ c0 ⊕ c0 ⊕ C ∼ c0 ⊕ C ∼ B.

�
Proof of the Theorem. Let A be as in Proposition 2. Since every operator on
C(KA) is an operator on C0(KA) plus an operator with finite-dimensional range
(restriction projected on C0(KA) by subtracting the value at ∞), the operators on
C(KA) are of the desired form by Proposition 2.

Suppose that P is any projection on C(KA), in particular P = P 2, so if P =
cI + S where S has a separable range, we get cI + S = c2I + 2cS + S2, that is,
(c − c2)I has separable range, which means that c = c2. If c = 0, P has separable
range; otherwise the projection on the complement has separable range since the
sum of the projections is I. The conclusion is that the only decompositions of
C(KA) are into one separable and one nonseparable summand. Lemma 4 implies
that the separable summand is a copy of c0 and the nonseparable summand is a
copy of C(KA) as required. �

3. Decompositions of C(KA) for small A under Martin’s axiom

Lemma 5. Suppose that κ is an infinite cardinal. Assume MAκ and suppose
that an almost disjoint family A = {Aξ : ξ < κ} is of cardinality κ. For every
X ⊆ κ there is a finite-to-one function f : N → N such that f ◦ f = f and 1)
(f [Aξ] ∪ f−1[Aξ]) ⊆∗ Aξ for all ξ ∈ X, 2) f [N ] ∩ Aη is finite for all η ∈ κ − X.

Proof. First we define a partial order P to which we will be applying Martin’s
axiom. The conditions of P are of the form p = (ap, np, fp), where ap ∈ [κ]<ω,
np ∈ N , fp : np → np such that fp ◦ fp = fp and

a) for all distinct ξ, η ∈ ap we have Aξ ∩ Aη ⊆ np. The order on P is defined by
p ≤ q if and only if ap ⊇ aq, np ≥ nq, fp ⊇ fq and

b) f−1
p ({n}) = f−1

q ({n}) for all n < nq,
c) for ξ ∈ aq ∩ X we have n ∈ Aξ ∩ [nq, np) iff f(n) ∈ Aξ ∩ [nq, np),
d) f [[nq, np)] ∩ Aη = ∅ for η ∈ aq − X .
Note that the above relation is a partial order. To be able to take advantage

of Martin’s axiom, we must prove that P satisfies the countable chain condition.
Suppose that an uncountable family of conditions of P is given. We may assume
without loss of generality that their second coordinates are all equal to some integer
n and that all third coordinates are equal to some f : n → n. So it is enough to prove
that any two conditions q, r with n = nq = nr and f = fq = fr are compatible.

Find np > n so that for all ξ ∈ (aq ∪ ar) ∩ X there is an nξ ∈ [n, np) which
does not belong to any Aη for η distinct from ξ and η ∈ aq ∪ ar; moreover, [n, np)
should contain an m which does not belong to any of the sets Aξ for ξ ∈ aq ∪ ar,
and we also require that Aξ ∩ Aη ⊆ np for distinct ξ, η ∈ aq ∪ ar. This can be
accomplished because the sets are almost disjoint. Put ap = aq ∪ ar. For k ∈ n put
fp(k) = fq(k) = fr(k) and for k ∈ [n, np) define fp(k) as follows:

i) if k ∈ Aξ ∩ Aξ′ for distinct ξ, ξ′ ∈ (aq ∪ ar) ∩ X , then fp(k) = k;
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ii) if n ∈ Aξ for ξ ∈ (aq ∪ ar) ∩ X , but i) doesn’t hold, then f(k) = nξ;
iii) if neither i) nor ii) holds for k, then f(k) = m.
It is clear that p = (ap, n, f) is a condition of P . Let us check that p ≤ q, r.

Conditions b) and c) are clear from the construction.
The key observation needed to prove d) is that if i) holds for k, then ξ ∈ aq − ar

and ξ′ ∈ ar−aq. This is because condition a) for q or r implies that the intersections
Aξ ∩Aξ′ for ξ, ξ′ ∈ aq or ξ, ξ′ ∈ ar are included in n. Consequently, again applying
a) in a similar way for q or r, already knowing that k ∈ Aξ ∩Aξ′ , we conclude that
if i) holds for k, then k does not belong to any Aη for η ∈ ap −X , which implies d).

A similar but simpler argument shows that the sets Dn = {p ∈ P : np ≥ n} are
dense in P for n ∈ N . The sets Eξ = {p : ξ ∈ ap} are dense in P for each ξ ∈ κ
because by the density of Dn’s one can get np large enough so that adding ξ to ap

does not violate a).
By Martin’s axiom there is a filter G ⊆ P which intersects all sets Eξ and Dn

for n ∈ N and ξ ∈ κ. Then
⋃{fp : p ∈ G} is a function that satisfies the lemma.

Indeed, c) implies 1) and d) implies 2). �

Proposition 6. Assume MAκ and suppose that A = {Aξ : ξ < κ} is an almost
disjoint family. For any X ⊆ κ there is a decomposition C(KA) = A ⊕ B such
that for suitable {nξ : ξ < κ} ⊆ N we have d

nξ

ξ ∈ A for ξ ∈ X and d
nξ

ξ ∈ B for
η ∈ κ − X. In particular if both X and κ − X are uncountable, then both of the
factors are non-separable.

Proof. Let f be as in Lemma 5 for X . Define r : KA → KA in the following way:
r(n) = f(n) for n ∈ N , r(xξ) = xξ for ξ ∈ X , r(xξ) = ∞ for ξ ∈ κ − X and
r(∞) = ∞.

Let us check that r is a retraction. It is clear that r ◦ r = r, so we need to check
that it is continuous. It is vacuously true at points of N . If ni → xξ for ξ ∈ X ,
then f(ni) → xξ = f(xξ) by 1) of Lemma 5 and by the fact that f is finite-to-one.
If ni → xξ for ξ ∈ κ − X , then f(ni) → ∞ = f(xξ) by 2) of Lemma 5, by the part
f−1[Aξ] ⊆∗ Aξ for ξ ∈ X of 1) of Lemma 5 and by the fact that f is finite-to-one.
Finally if M ⊆ N has ∞ in its closure, then its image cannot be included in finitely
many elements of the almost disjoint family by Lemma 5, i.e. the image has ∞ in
its closure as well, i.e., f is continuous at ∞ as well.

Let K = f [N ] ∪ {xξ : ξ ∈ X} ∪ {∞} ⊆ KA be the image of r. It is well
known ([17], §21) that C(K) is isomorphic to a subspace A of C(KA) defined by
{f ◦ r : f ∈ C(K)} and that P (f) = (f |K) ◦ r = f ◦ r is a projection witnessing the
fact that A is complemented in C(KA). Note that P (dnξ

ξ ) = d
nξ

ξ for some nξ ∈ N

if ξ ∈ X by 1) of Lemma 5) and that P (dnξ

ξ ) = 0 if Aξ − nξ is disjoint from f [N ]
which can be acomplished by 2) of Lemma 5) for ξ ∈ κ − X . �
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