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ON DECOMPOSITIONS OF MULTIVARIATE FUNCTIONS

F. Y. KUO, I. H. SLOAN, G. W. WASILKOWSKI, AND H. WOŹNIAKOWSKI

Abstract. We present formulas that allow us to decompose a function f
of d variables into a sum of 2d terms fu indexed by subsets u of {1, . . . , d},
where each term fu depends only on the variables with indices in u. The
decomposition depends on the choice of d commuting projections {Pj}dj=1,

where Pj(f) does not depend on the variable xj . We present an explicit formula
for fu, which is new even for the anova and anchored decompositions; both are
special cases of the general decomposition. We show that the decomposition
is minimal in the following sense: if f is expressible as a sum in which there
is no term that depends on all of the variables indexed by the subset z, then,
for every choice of {Pj}dj=1, the terms fu = 0 for all subsets u containing z.

Furthermore, in a reproducing kernel Hilbert space setting, we give sufficient
conditions for the terms fu to be mutually orthogonal.

1. Introduction

Functions with very large numbers of variables arise nowadays in many contexts,
ranging from molecular chemistry to probability and statistics and the pricing of
financial options. Often there is a need to approximate such functions by a small
number of terms, either concretely (as in the case of “model reduction” in molecu-
lar chemistry), or notionally (as in modern approaches to multivariate integration,
which seek to exploit the existence of low-dimensional approximations without ac-
tually constructing them).

To add to the existing toolkit for the study of low-dimensional approximations,
we introduce in this paper general decomposition formulas of functions of d variables
into sums of 2d terms, with each term depending on a group of variables indexed
by a particular subset of {1, . . . , d}. That is, the decomposition is of the form

f =
∑

u⊆{1,...,d}
fu,

where the summation is over all subsets of {1, . . . , d}, and fu depends only on the
subset of variables {xj : j ∈ u}.

One important example of such a decomposition formula is the anova decompo-
sition; see, e.g., [2, 5, 14, 18, 21]. Another is the anchored decomposition; see, e.g.,
[5, 7, 8, 15, 19]. Both have already been discussed in Sobol′’s 1969 book [17]. They
are both included here as special cases. The results obtained here for the general
decomposition include not only those that are well known in special cases, such
as the recursive form of the anova decomposition, but also results that are new.

Received by the editor May 2, 2008 and, in revised form, October 16, 2008 and February 12,
2009.

2000 Mathematics Subject Classification. Primary 41A63, 41A99.

c©2009 American Mathematical Society

953

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



954 F. Y. KUO, I. H. SLOAN, G. W. WASILKOWSKI, AND H. WOŹNIAKOWSKI

These include an explicit expression for the general term in the decomposition, and
a certain “minimal” property that applies to all decompositions in the class. This
new explicit formula may turn out to be very useful for both theoretical analysis
and practical computation. In its simplest form the minimal property states that if
there exists a (possibly unknown) decomposition of the function in which there is
no term involving one particular variable, then the decomposition (whether anova
or anchored or any other in the class) never unnecessarily introduces that variable.
(As a simple example with d = 2, the function f(x1, x2) := 2x1 can obviously be
written in many non-minimal ways, such as f(x1, x2) = x1 − x2 + (x1 + x2). Our
decompositions never commit a crime of this kind.) More generally, if there is a de-
composition in which no term contains all members of some subset of the variables
(say x1, x2, x4), then in our decomposition every term that involves all variables in
that subset vanishes.

The general decomposition depends on a set of commuting projections {Pj}dj=1,
where Pj acting on a multivariate function has the effect of eliminating the variable
xj in some way, while leaving all other variables unchanged. (For example, in
the anchored case, Pj freezes xj at some specified value cj . In the anova case, Pj

integrates with respect to xj .) We show that, for a given set of projections {Pj}dj=1,
our decomposition is the unique decomposition of the form f =

∑
u⊆{1,...,d} fu with

the property Pj(fu) = 0 whenever j ∈ u. The projections provide a useful tool for
the proof of various properties, such as the minimal property mentioned above.

We also show that decompositions defined by the commuting projections are
orthogonal decompositions in certain reproducing kernel Hilbert spaces. The or-
thogonality property is a key to the successful theoretical and practical development
of integration and approximation schemes in high-dimensional reproducing kernel
Hilbert spaces. Since the orthogonality is with respect to the inner product of a
Hilbert space, it is clear that orthogonality can only be achieved if there is a correct
association between the set of commuting projections and a particular reproducing
kernel Hilbert space.

The general decomposition makes an appearance in the field of computational
chemistry under the heading high-dimensional model representation (HDMR). See,
e.g., the papers [11, 12, 13] and the references therein. In particular, their cut-
HDMR is essentially our anchored decomposition. In the recent survey article [5],
there is also a section discussing anova-like decompositions. These decompositions
are for product measures with densities, and for the Dirac measures, they become
anchored decompositions.

The paper is organized as follows. The class of decompositions and their proper-
ties are presented in Section 2. Their minimal property is shown in Section 3, and
orthogonality in reproducing kernel Hilbert spaces is considered in Section 4. As
examples we consider two Sobolev spaces (the anchored and unanchored Sobolev
spaces) both with arbitrary smoothness, and we show that the corresponding or-
thogonal decompositions are precisely the anchored and the anova decompositions,
respectively. Section 5 focuses on the computational cost of the anchored decom-
position. The final section contains a short discussion about potential applications.
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A more elaborate version of this paper, including a derivation of (3.2) and of
the unanchored Sobolev space,1 can be found in www.maths.unsw.edu.au/~fkuo/

pubs/.

2. A general decomposition formula

Let F be a linear space of real functions f(x) = f(x1, . . . , xd) defined on a
domain D ⊆ R

d. We introduce [1..d] := {1, . . . , d} as a shorthand notation for the
set of indices from 1 to d, and we say that a function f ∈ F does not depend on xj

for some j ∈ [1..d] if

x[1..d]\{j} = y[1..d]\{j} =⇒ f(x) = f(y) for all x,y ∈ D.

Here and elsewhere for a given x = (x1, . . . , xd) we use the notation xu = (xj)j∈u.
Let {Pj}dj=1 be a set of commuting projections on F with the following property:

(2.1) Pj(f) = f if f does not depend on xj , and Pj(f) does not depend on xj .

Intuitively, we can think of Pj as acting only on the jth variable xj to produce a
result that does not depend on xj , and if Pj acts on a function that is independent
of xj it leaves the function unchanged.

For u ⊆ [1..d], we define Pu :=
∏

j∈u Pj , with P∅ := I, the identity operator.
Since the commuting projections in Pu can be applied in any order and since PjPj =
Pj , we have PuPv = Pu∪v for all u,v ⊆ [1..d].

Formally, for each u ⊆ [1..d] we can define Fu := P[1..d]\u(F). Then Fu is
a subspace of F and consists of functions which depend only on the variables
listed in u, i.e., on xu = (xj)j∈u, and which are constant with respect to the
variables outside u. For an arbitrary gu ∈ Fu, it is sometimes useful to ignore the
uninteresting variables, by writing gu(x) = gu(xu). We have F[1..d] = F , and F∅
contains only constant functions. Moreover, Fv ⊆ Fu if v ⊆ u.

The commuting projections {Pj}dj=1 can be very general as long as each Pj

satisfies (2.1). We have in mind two obvious examples:

• Freezing xj at cj :

(2.2) Pj(f)(x) = f(x1, . . . , xj−1, cj , xj+1, . . . , xd) for x ∈ D.

• With D = [0, 1]d, integrating out xj :

(2.3) Pj(f)(x) =

∫ 1

0

f(x1, . . . , xj−1, t, xj+1, . . . , xd) dt for x ∈ D.

Depending on the choice of the projections Pj , there are some implicit assump-
tions on the domain D and the linear space F . In the first example we need to
assume that for all j ∈ [1..d] and all x ∈ D we have (x1, . . . , xj−1, cj , xj+1, . . . , xd) ∈
D. In the second example, whereD = [0, 1]d, we require f to be integrable on [0, 1]d.

Other obvious examples include a weighted sum Pj(f)(x) =
∑Mj

m=1 wj,mf(x1, . . . ,

xj−1, cj,m, xj+1, . . . , xd), with
∑Mj

m=1 wj,m = 1, and a weighted integral Pj(f)(x) =∫ 1

0
f(x1, . . . , xj−1, t, xj+1, . . . , xd) ρj(t) dt, with

∫ 1

0
ρj(t) dt = 1. There is no require-

ment that the d projections have to be of the same form.

1This space is derived under the condition that its periodic subspace coincides with the
weighted Korobov space of the same smoothness.
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We are now ready to introduce the general decomposition formula. There are
multiple ways to present the same theorem. Here we take the most elegant ap-
proach, which was brought to our attention by Griebel; see also [5, 11]. Let aj and
bj be commuting linear operators from F to F . Using the simple property

(2.4)
∏
j∈u

(aj + bj) =
∑
v⊆u

(∏
j∈v

aj

)( ∏
j∈u\v

bj

)
,

we can express the identity operator I as

(2.5) I =

d∏
j=1

[(I − Pj) + Pj ] =
∑

u⊆[1..d]

(∏
j∈u

(I − Pj)

)( ∏
j∈[1..d]\u

Pj

)
.

Theorem 2.1. Let {Pj}dj=1 be commuting projections on F satisfying (2.1). For
every function f ∈ F and each subset u ⊆ [1..d], we define

(2.6) fu :=

(∏
j∈u

(I − Pj)

)
P[1..d]\u(f).

This leads to a decomposition of f given by

(2.7) f =
∑

u⊆[1..d]

fu,

where fu depends only on variables with indices in u.

(a) Define the functions gu recursively with respect to the cardinality of u ⊆
[1..d] by

g∅ := P[1..d](f), gu := P[1..d]\u(f) −
∑
v�u

gv.

Then fu = gu for all u ⊆ [1..d].
(b) Define the functions hu for u ⊆ [1..d] by

hu :=
∑
v⊆u

(−1)|u|−|v|P[1..d]\v(f).

Then fu = hu for all u ⊆ [1..d].
(c) Assume that f =

∑
u⊆[1..d] wu, where wu depends only on the variables with

indices in the set u and satisfies the “annihilating” property

(2.8) Pj(wu) = 0 for all j ∈ u.

Then fu = wu for all u ⊆ [1..d]. In other words, (2.7) is the unique
decomposition of this form with the annihilating property.

Proof. The fact that the functions fu defined by (2.6) yield (2.7) follows immedi-
ately from (2.5). We now proceed to prove parts (a), (b), and (c).

It is clear from (2.6) that f∅ = P[1..d](f) = g∅. For u �= ∅ we can rewrite (2.6) as

fu = P[1..d]\u(f)−
(
I −

∏
j∈u

(I − Pj)

)
P[1..d]\u(f)

= P[1..d]\u(f)−
(∏

j∈u

[(I − Pj) + Pj ]−
∏
j∈u

(I − Pj)

)
P[1..d]\u(f).
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We use (2.4) for the first product and obtain

fu = P[1..d]\u(f)−
( ∑

v�u

(∏
j∈v

(I − Pj)

)
Pu\v

)
P[1..d]\u(f)

= P[1..d]\u(f)−
∑
v�u

(∏
j∈v

(I − Pj)

)
P[1..d]\v(f) = P[1..d]\u(f)−

∑
v�u

fv,

where we used the definition (2.6) with u replaced by v. This proves that fu
satisfies the same recurrence as gu. Since f∅ = g∅, we conclude that fu = gu for all
u ⊆ [1..d].

To prove that fu = hu for all u ⊆ [1..d], we apply (2.4) to the first product
in (2.6):

fu =

( ∑
v⊆u

(∏
j∈v

I

)( ∏
j∈u\v

(−Pj)

))
P[1..d]\u(f)

=
∑
v⊆u

(−1)|u|−|v|P[1..d]\v(f) = hu.

Finally, for f =
∑

v⊆[1..d] wv as given in (c), we have from (2.6) that

fu =
∑

v⊆[1..d]

(∏
j∈u

(I − Pj)

)
P[1..d]\u(wv).

If v �= u, then either there exists an index k ∈ v and k /∈ u, or there exists an index
k ∈ u and k /∈ v. In the former case, we have from (2.8) that Pk(wv) = 0; in the
latter case, we have (I − Pk)(wv) = 0. Hence only the v = u term survives, and
we have

fu =

(∏
j∈u

(I − Pj)

)
P[1..d]\u(wu) = wu.

This completes the proof. �
It is clear from the theorem that, instead of defining the decomposition through

(2.6), we could use any of the parts (a), (b), or (c) as the definition for fu.
We now present two specific examples of the decomposition formula: the first

requires integrals of f , while the second requires only function evaluations of f .

Example 2.2 (Anova Decomposition). Taking D = [0, 1]d and F as the space of
square integrable functions, and choosing each Pj according to (2.3), we recover the
well-known anova decomposition (analysis of variance); see, e.g., [2, 5, 14, 18, 21].
This has the form

(2.9) f =
∑

u⊆[1,d]

fu,∗ ,

with fu,∗ depending only on the variables listed in u and satisfying

(a) f∅,∗ =

∫
[0,1]d

f(x) dx, fu,∗(xu) =

∫
[0,1]d−|u|

f(x) dx[1..d]\u−
∑
v�u

fv,∗(xv),

(b) fu,∗(xu) =
∑
v⊆u

(−1)|u|−|v|
∫
[0,1]d−|v|

f(x) dx[1..d]\v,

(c)

∫ 1

0

fu,∗(xu) dxj = 0 for all j ∈ u.
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Here dx[1..d]\u denotes
∏

j∈[1..d]\u dxj . For u = [1..d], the integral over the empty

set is replaced by f(x). In the literature, the recursive form (a) of the anova terms
is typically used as the definition of anova decomposition. However, Sobol′ used
the annihilating property (c) as the definition of the anova terms; see, e.g., [18].
The explicit form (b) obtained here is new. The anova decomposition might be
difficult to use in practice because it requires integrals of f which are typically
unavailable.

Example 2.3 (Anchored Decomposition). Let c ∈ D, and let (x; c)u denote the
d-dimensional vector whose jth component is xj if j ∈ u and cj if j /∈ u. Assuming
that (x; c)u ∈ D whenever x ∈ D, and choosing each Pj according to (2.2), we
obtain the anchored decomposition with respect to the anchor c. This has the form

(2.10) f =
∑

u⊆[1..d]

fu,c ,

with fu,c depending only on the variables listed in u and satisfying

(a) f∅,c = f(c), fu,c(xu) = f((x; c)u)−
∑
v�u

fv,c(xv),

(b) fu,c(xu) =
∑
v⊆u

(−1)|u|−|v|f((x; c)v),

(c) fu,c(xu) = 0 whenever xj = cj for all j ∈ u.

The recursive form (a) of the anchored decomposition has already appeared in
earlier literature; see, e.g., [7, 8]. The explicit form (b) is new. This is attractive
because it involves only function evaluations of f with respect to the anchor c ; see
Section 5 for a discussion on computational cost. We add that, in some specific
setting, the terms fu,c from the anchored decomposition can also be expressed as
integrals of the mixed first partial derivatives of f ; see [7, Proposition 1]. This is
useful for some theoretical error analysis.

3. The decomposition is minimal

In this section, we prove that the decomposition from Theorem 2.1 with respect
to any choice of commuting projections {Pj}dj=1 is minimal in the sense of never
introducing unnecessary terms.

In general, there are infinitely many ways to express a function f of d variables
x = (x1, . . . , xd) in the form

(3.1) f =
∑

u⊆[1..d]

tu,

with tu depending only on the variables listed in u, i.e., on xu = (xj)j∈u. With
respect to a particular decomposition (3.1), it is common to refer to the terms
{tu : |u| = �} collectively as the “order-� terms”. Similarly, in the discussion below,
we shall refer to the terms {tu : z ⊆ u ⊆ [1..d]} for a given z ⊆ [1..d] as the “super-z
terms”. In other words, the super-z terms are all the terms tu for which u contains
z.

The minimal property of the decomposition from Theorem 2.1 is stated below.

Theorem 3.1. Let f be a function from F and let z be a given subset of [1..d].
Assume that there exists a decomposition (3.1) of f in which all super-z terms are
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zero, i.e.,

tu = 0 for all u containing z.

Then the decomposition from Theorem 2.1 also has all super-z terms equal to zero,
i.e.,

fu = 0 for all u containing z.

Proof. Suppose that f =
∑

w⊆[1..d] tw with tw depending only on the variables

listed in w, and with tw = 0 for all w containing z. For each u satisfying z ⊆ u ⊆
[1..d], we want to prove that fu = 0 in the decomposition in Theorem 2.1. We see
from (2.6) that

fu =

(∏
j∈u

(I − Pj)

)
P[1..d]\u(f) =

∑
w⊆[1..d]

(∏
j∈u

(I − Pj)

)
P[1..d]\u(tw).

Note that for u ⊆ w we have z ⊆ w, and it follows from the assumption on tw that
tw = 0. For u �⊆ w, there exists an index k ∈ u and k /∈ w, and for this index k
we have (I −Pk)(tw) = 0 since tw does not depend on xk. Hence we conclude that
fu = 0. �

From Theorem 3.1 we see that if for different sets z there exist different decom-
positions of f in which all super-z terms are zero, then the decomposition from
Theorem 2.1 has all super-z terms equal to zero for all of these different sets z.
In other words, the decomposition from Theorem 2.1 uses lower order terms as
much as possible and does not introduce unnecessary higher order terms. Further-
more, this holds for all possible choices of commuting projections {Pj}dj=1 satisfying
(2.1). Indeed, if the decomposition with respect to one choice of operators Pj has
all super-z terms equal to zero, then the decompositions with respect to all choices
of operators Pj have all super-z terms equal to zero.

This minimal property has a strong link with the following notions of dimension:

• We say that a function of d variables has cutoff dimension k iff it depends
only on the first k variables, and k is the smallest number for which this
holds.

• We say that a function of d variables is of order q iff it can be written as a
sum of functions each depending on at most q of the d variables, and q is
the smallest number for which this holds.

These two notions correspond respectively to the more familiar concepts of trun-
cation dimension and superposition dimension, see e.g., [2, 14, 21], except that the
latter two allow small contributions from other groups of variables. Obviously the
cutoff dimension of f is the smallest k for which a decomposition f =

∑
u⊆[1..k] tu

exists. Similarly, the order of f is the smallest q for which a decomposition
f =

∑
u⊆[1..d], |u|≤q tu holds. Note that the cutoff dimension and the order of a

given function are both uniquely defined and that the definition is not related to
any particular decomposition method. Theorem 3.1 implies that the decomposition
from Theorem 2.1 is minimal with respect to both cutoff dimension and order:

• A function f of d variables has cutoff dimension k < d iff k is the smallest
number such that fu = 0 for all subsets u ⊆ [1..d] for which u �⊆ [1..k].

• A function f of d variables is of order q < d iff q is the smallest number
such that fu = 0 for all subsets u ⊆ [1..d] with |u| > q.
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The order of f may be defined as the smallest value of q for which f = Fq, with
the quantity Fq defined by

Fq :=
∑

u⊆[1..d]
|u|≤q

fu, 0 ≤ q ≤ d.

Using simple algebraic manipulations and induction, it can be proved that Fd = f
and

(3.2) Fq =

q∑
j=0

(−1)q−j

(
d− 1− j

q − j

) ∑
u⊆[1..d]
|u|=j

P[1..d]\u(f) for q < d.

4. Orthogonality

In this section, we identify a reproducing kernel Hilbert space setting and condi-
tions for which the decomposition is precisely an orthogonal decomposition. It turns
out that the setting is very general and covers many interesting function spaces,
including certain well-known Sobolev spaces. For the theory of reproducing kernels,
we refer the readers to [1], and in particular, to the section on “sum of reproducing
kernels”. We mention here only that a reproducing kernel K : D ×D → R corre-
sponding to the reproducing kernel Hilbert space H(K) satisfies K(x, ·) ∈ H(K)
for all x ∈ D and K(x,y) = K(y,x) for all x,y ∈ D and has the reproducing
property

〈f,K(x, ·)〉H(K) = f(x) for all f ∈ H(K) and x ∈ D,

where 〈·, ·〉H(K) denotes the inner product in H(K). Additionally, H(K) is the
completion of span{K(·,y) : y ∈ D}.

Following [24], we consider a general reproducing kernel Hilbert space H(Kd) of
real functions defined on D ⊆ R

d with a reproducing kernel of the form

(4.1) Kd(x,y) =
∑

u⊆[1..d]

Kd,u(xu,yu), Kd,∅ = 1.

For each u ⊆ [1..d], Kd,u is the reproducing kernel for a Hilbert space H(Kd,u) of
real functions defined on Du := {xu : x ∈ D}. Functions in H(Kd,u) depend only
on variables listed in u. In particular, the space H(Kd,∅) = span{1} contains just
constant functions. We allow for more generality than [24] by not assuming that
Kd,u is of a product form.

Functions from H(Kd) are sums of functions from H(Kd,u),

(4.2) f =
∑

u⊆[1..d]

fu for some fu ∈ H(Kd,u).

The representation (4.2) is generally not unique, because some nonzero functions
may belong to H(Kd,u) for different subsets u. If ‖ · ‖H(Kd) denotes the norm in
H(Kd) and ‖ · ‖H(Kd,u) denotes the norm in H(Kd,u) for each u ⊆ [1..d], then we
have

‖f‖2H(Kd)
(4.3)

= inf

{ ∑
u⊆[1..d]

‖fu‖2H(Kd,u)
: fu ∈ H(Kd,u) such that f =

∑
u⊆[1..d]

fu

}
;
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see [1]. The representation (4.2) is unique iff

(4.4) H(Kd,u) ∩ H(Kd,v) = {0} for all subsets u �= v.

When (4.4) holds, the space H(Kd) is the direct and orthogonal sum of the spaces
H(Kd,u), and we have

‖f‖2H(Kd)
=

∑
u⊆[1..d]

‖fu‖2H(Kd,u)
.

Now we relate reproducing kernel Hilbert spaces constructed in this manner to
the decompositions introduced in Section 2.

Theorem 4.1. Let H(Kd) be a reproducing kernel Hilbert space of real functions
defined on D ⊆ R

d which is constructed from reproducing kernel Hilbert spaces
H(Kd,u) for u ⊆ [1..d] as in (4.1) and (4.3). Let {Pj}dj=1 be a set of commuting
projections on H(Kd) satisfying (2.1) and such that for all nonempty u ⊆ [1..d] and
all yu ∈ Du we have

(4.5) Pj(Kd,u(·,yu)) = 0 for all j ∈ u.

Then the representation (4.2) is unique and is an orthogonal decomposition that
coincides with the decomposition from Theorem 2.1.

Proof. Take a representation (4.2) of f . Since span{Kd,u(·,yu) : yu ∈ Du} is
dense in H(Kd,u) and the projections Pj are continuous, (4.5) immediately implies
that Pj(fu) = 0 if j ∈ u. Hence Theorem 2.1(c) implies that (4.2) coincides with
(2.7), and because of uniqueness, (4.4) then gives orthogonality of the subspaces
H(Kd,u) in H(Kd). �

For the anchored decomposition, see Example 2.3, the condition (4.5) requires

Kd,u(xu, ·) = 0 whenever xj = cj(4.6)

for all j ∈ u and for all nonempty u ⊆ [1..d].

In the case of the anova decomposition, see Example 2.2, the condition (4.5)
requires

(4.7)

∫ 1

0

Kd,u(xu, ·) dxj = 0 for all j ∈ u and for all nonempty u ⊆ [1..d].

We now give examples of reproducing kernel Hilbert spaces satisfying (4.6) and
(4.7).

Example 4.2 (Anchored Sobolev spaces). Let D = [0, 1]d. The weighted Sobolev
space anchored at c ∈ D with smoothness parameter r ≥ 1 has a reproducing kernel
of the form (4.1), with Kd,u(xu,yu) = γd,u

∏
j∈u ηj(xj , yj), where

ηj(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ min(x,y)

cj

(x− t)r−1 (y − t)r−1

((r − 1)!)2
dt +

r−1∑
i=1

(x− cj)
i (y − cj)

i

(i!)2
if x, y > cj ,

∫ cj

max(x,y)

(t− x)r−1 (t− y)r−1

((r − 1)!)2
dt +

r−1∑
i=1

(cj − x)i (cj − y)i

(i!)2
if x, y < cj ,

0 otherwise.
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Clearly the kernel is continuous, and ηj(cj , ·) = 0 for all j = 1, 2, . . . , d. Thus the
condition (4.6) holds, and the anchored decomposition (2.10) is precisely the or-
thogonal decomposition in the anchored Sobolev spaces for all r ≥ 1. The numbers
γd,u > 0 are referred to as weights. They model the relative importance between
various groups of variables by weighting the norms. For r = 1, we can express the
norm solely in terms of f as

‖f‖2H(Kd)
= f2(c) +

∑
∅�=u⊆[1..d]

1

γd,u

∫
[0,1]|u|

(
∂|u|f((x; c)u)

∂xu

)2

dxu.

The norm for higher smoothness r > 1 is difficult to express explicitly when d > 1.
For d = 1 and r ≥ 1, it takes the following form:

‖f‖2H(K1)
= f2(c) +

1

γ

(
r−1∑
i=1

[
f (i)(c)

]2
+

∫ 1

0

[
f (r)(x)

]2
dx

)
.

Special cases of anchored Sobolev spaces have been considered in many papers
(specializing to c = 0 or c = 1, and/or r = 1, and/or γd,u = 1); see, e.g., [16] and
the references therein, and [20, Chapter 1.2]. See also [23] for extensions.

Example 4.3 (Unanchored Sobolev spaces). Let D = [0, 1]d. The weighted and
unanchored Sobolev space with smoothness parameter r ≥ 1 has a reproducing
kernel of the form (4.1), with Kd,u(xu,yu) = γd,u

∏
j∈u η(xj , yj), where

η(x, y) =
B2r(|x− y|)
(−1)r+1(2r)!

+
r∑

i=1

Bi(x)Bi(y)

(i!)2
.

Here Bi denotes the Bernoulli polynomial of degree i, which has the property∫ 1

0
Bi(x) dx = 0. It is easy to see that

∫ 1

0
η(x, ·) dx = 0. Thus the condition

(4.7) holds, and the anova decomposition (2.9) is precisely the orthogonal decom-
position in this unanchored Sobolev space. It is a striking and sometimes useful
consequence that the terms in the anova decomposition are orthogonal not only
in L2([0, 1]

d), but also in the unanchored Sobolev spaces for every value of r. For
r = 1, we have

‖f‖2H(Kd)
=

(∫
[0,1]d

f(x) dx

)2

+
∑

∅�=u⊆[1..d]

1

γd,u

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂|u|f(x)

∂xu
dx[1..d]\u

)2

dxu.

For d = 1 and general r ≥ 1, we have

‖f‖2H(K1)
=

(∫ 1

0

f(x) dx

)2

+
1

γ

[
r−1∑
i=1

(∫ 1

0

f (i)(x) dx

)2

+

∫ 1

0

[
f (r)(x)

]2
dx

]
.

Special cases of unanchored Sobolev spaces have been considered in many papers
(specializing to r = 1 and/or γd,u = 1); see, e.g., [4] and the references therein, as
well as [3] and [20, Chapter 10.2]. In particular, it was already shown in [4] that
the anova and the orthogonal decompositions for r = 1 coincide.
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Example 4.4 (General tensor product spaces). We now show how to construct
operators Pj when the spaceH(Kd) is given as the d-fold tensor product of a general
reproducing kernel Hilbert space H(K1). We only assume that K1 : D ×D → R,
with D ⊆ R, is of the form K1(x, y) = 1 + η(x, y), where η : D × D → R is
a reproducing kernel such that H(η) is separable and 1 /∈ H(η). Thus we have

Kd(x,y) =
∏d

i=1(1 + η(xi, yi)) =
∑

u⊆[1..d]

∏
i∈u η(xi, yi). Let ξ0 ≡ 1, and let

{ξk}∞k=1 be a complete orthonormal system in H(η). Then {ξk}∞k=0 is a complete
orthonormal system in H(K1). For d ≥ 1 and k = (k1, . . . , kd) ∈ N

d (where

N = {0, 1, . . .}), let ξd,k(x) =
∏d

i=1 ξki
(xi) for x ∈ D d. Then {ξd,k}k∈Nd is a

complete orthonormal system in H(Kd). Note that if ki = 0, then ξd,k does not
depend on the ith variable. Therefore, we set Pj to be orthogonal projections onto
span{ξd,k : k ∈ N

d with kj = 0}, since they clearly satisfy (2.1) and (4.5).

Although the above examples have reproducing kernel of the product form, the
product form is not a necessary property for the existence of a suitable set of
projections {Pj}dj=1. To see this, let K̃d,u(xu,yu) be an arbitrary (nonproduct)

reproducing kernel on Du. Then Kd,u(xu,yu) := (
∏

j∈u xjyj) K̃d,u(xu,yu) is the

reproducing kernel of some Hilbert space H(Kd,u) which is anchored at 0, since
every element of the space will vanish if any component of xu has the value 0.
Thus Theorem 4.1 holds for H(Kd,u) with Pj defined by (2.2) and cj = 0 for all
j = 1, 2, . . . , d. Although the present theory has wider scope than just product
kernels Kd,u, we do not claim that a suitable set of projections {Pj}dj=1 exists for
every choice of reproducing kernel Hilbert spaces H(Kd,u).

5. Computational cost

The anchored decomposition is arguably more useful in practice than the anova
decomposition because it requires only function evaluations of f with respect to
a chosen anchor c. Let x ∈ D be given and fixed. It is clear from the explicit
formula in Example 2.3(b) that for each u, fu,c(xu) can be computed using 2|u|−1

additions and subtractions and 2|u| samples of f .
Suppose we want to compute fu,c(xu) for all u with |u| ≤ q. We have Ad,q :=∑q
j=0

(
d
j

)
such subsets u. It is easy to check, see also [25], that Ad,q ≤ 2 d q and

Ad,q = (d q/q!)(1 + o(1)) as d → ∞. We need to evaluate f at the points (x; c)u
for all u with |u| ≤ q; that is, we use at most q components of x and the rest are
replaced by the corresponding components of c. The total number of such points
is again Ad,q. Hence, all fu,c(xu) with |u| ≤ q can be computed using at most

Ad,q samples of f and at most Bd,q :=
∑q

j=0 2
j
(
d
j

)
arithmetic operations, where

Bd,q ≤ 2 q+1 d q and Bd,q = (2 q d q/q!)(1 + o(1)) as d → ∞.
If instead we just want to compute Fq(x), that is, the combined contribution

from all terms fu,c(xu) with |u| ≤ q, then we have from (3.2) that for q < d,

Fq(x) =

q∑
j=0

αq,j

∑
u⊆[1..d]
|u|=j

f((x; c)u), αq,j = (−1)q−j

(
d− 1− j

q − j

)
.

This would again require at most Ad,q samples of f at the points (x; c)u for all u
with |u| ≤ q. However, the total number of arithmetic operations will be sig-
nificantly reduced. Starting with α0,0 = 1, the numbers αi,j for i = 1, . . . , q
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and j = 1, . . . , i can be computed using the general recurrence relations αi,0 =
−αi−1,0(d− i)/i, αi,j = αi−1,j +αi−1,j−1, and αi,i = 1. Once the numbers αq,j are
computed, we need to perform Ad,q − 1 additions and q + 1 multiplications. For
large q, the total number of arithmetic operations is then roughly a factor of 2q

smaller than Bd,q.

6. Discussion

In recent times, the success of quasi-Monte Carlo (QMC) methods for many
practical problems of high dimension has been attributed to the fact that these
problems have low effective dimension. Two notions of effective dimension have
been defined through the variance allocation of the anova terms: truncation di-
mension and superposition dimension; see, e.g., [2] for their precise definitions and
[21] for known techniques to approximate them.

Although the explanation in terms of effective dimension is undoubtedly broadly
true, the existing framework is somewhat unsatisfactory since, unlike the Monte
Carlo (MC) error, the QMC error is not expressible in terms of the variance.
Rather, QMC errors are typically bounded in terms of some discrepancy times
the variation of the function, or more recently, in terms of the worst case error
in a reproducing kernel Hilbert space times the norm of the function. Moreover,
the anova decomposition may not be orthogonal in this function space. Once the
underlying function space is decided, a more suitable approach is to identify a set
of projections that lead to orthogonal decomposition in the function space as dis-
cussed in our paper, and then capture the notion of low dimensionality through the
allocation of the square norm.

Many recent papers have considered weighted reproducing kernel Hilbert spaces,
with the weights intended to characterize the relative importance of various groups
of variables. The choice of weights can have practical as well as theoretical im-
portance, since modern constructions of lattice rules (for a survey see [9]) make
explicit use of the weights. The question of how best to choose the weights is a
topic of active current research. In considering quadrature errors for QMC in the
unanchored space of Example 4.3 with r = 1, [22] showed that the quadrature error
bound of the form “worst case error × norm of f” achieves its minimum value for
a given function f if the weights are given by γd,u = 6|u|/2 βu(f), where

βu(f) :=

⎡
⎣∫

[0,1]|u|

(∫
[0,1]d−|u|

∂|u|f

∂xu
dx[1..d]\u

)2

dxu

⎤
⎦
1/2

= ‖fu,∗‖H(Kd,u),

where in the last step we used two easily verified properties of the anova decom-
position (2.9), namely that βu(fv,∗) = 0 if v �= u and βu(fv,∗) = ‖fu,∗‖H(Kd,u)

if v = u. This opens a path to a good choice of the weights if we can estimate
‖fu,∗‖H(Kd,u), a task that should be made easier by a better understanding of the
structure of the anova decomposition. Similar arguments for choosing weights can
be used for the anchored Sobolev space with the anchored decomposition.

The explicit decomposition formula can be useful for numerical integration and
approximation of functions in high dimensions, since there might be a merit in
approximating the solution corresponding to the lower order part (see, e.g., [10]).
We may also use the explicit decomposition formula in a theoretical analysis where
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no actual computation is required, noting that it may be easier to observe or iden-
tify certain properties of one particular decomposition term when it is expressed
explicitly rather than recursively (see, e.g., [6]).
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submitted.

11. G. Li, J. Schoendorf, T.-S. Ho, and H. Rabitz, Multicut-HDMR with an application to an
ionospheric model, J. Comput. Chem. 25, 1149–1156 (2004).

12. G. Li, J. Hu, S.-W. Wang, P. G. Georgopoulos, J. Schoendorf, and H. Rabitz, Random
sampling-high dimensional model representation (RS-HDMR) and orthogonality of its differ-
ent order component functions, J. Phys. Chem. A 110, 2474–2485 (2006).

13. G. Li and H. Rabitz, Ratio control variate method for efficiently determining high-dimensional
model representations, J. Comput. Chem. 27, 1112–1118 (2006).

14. R. Liu and A. Owen, Estimating mean dimensionality of analysis of variance decompositions,
J. Amer. Statist. Assoc. 101, 712–721 (2006). MR2281247

15. H. Rabitz, O. F. Alis, J. Shorter and K. Shim, Efficient input-output model representation,
Comput. Phys. Commun. 117, 11–20 (1999).
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