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Abstract

This paper intends to shed light on the decor-
relation or reduction process in solving integer least
squares (ILS) problems for ambiguity determination.
We show what this process should try to achieve to
make the widely used discrete search process fast and
explain why neither decreasing correlation coefficients
of real least squares (RLS) estimators of the ambigu-
ities nor decreasing the condition number of the co-
variance matrix of the RLS estimator of the ambiguity
vector should be an objective of the reduction process.
The new understanding leads to a new reduction al-
gorithm, which avoids some unnecessary size reduc-
tions in the LLL reduction and still has good numer-
ical stability. Numerical experiments show that the
new reduction algorithm is faster than LAMBDA’s
reduction algorithm and MLAMBDA’s reduction al-
gorithm (to less extent) and is usually more numer-
ically stable than MLAMBDA’s reduction algorithm
and LAMBDA’s reduction algorithm (to less extent)
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1 Introduction

In high precision relative GNSS positioning, a key com-
ponent is to resolve the unknown double differenced
ambiguities of the carrier phase data as integers. The
most successful approach, which was proposed by Te-
unissen, see, e.g., [17,18,19,21,22], is to solves an in-
teger least squares (ILS) problem. The corresponding
numerical method proposed by Teunissen is referred
to as the LAMBDA (Least-squares AMBiguity Decor-
relation Adjustment) method. A detailed description
of the algorithm and implementation is given by [6].
Its educational software (Fortran version and Matlab

version) is available from Delft University of Technol-
ogy. Frequently asked questions and misunderstanding
about the LAMBDA method are addressed by [9]. The
LAMBDA method can be used to solve some high-
dimensional problems arising in dense network process-
ing as indicated in [11]. Recently a modified method
called MLAMBDA was proposed in [4], which was then
further modified and extended to handle mixed ILS
problem by using orthogonal transformations, resulting
in the Matlab package MILES [5].

An often used approach to solving an ILS problem
in the literature, including the papers mentioned above,
is the discrete search approach. Most methods based on
the discrete search approach have two stages: reduction
and search. In the first stage, the original ILS problem
is transformed to a new one by a reparametrization of
the original ambiguities. In this stage, LAMBDA and
other methods decorrelate the ambiguities in the GNSS
context. For this reason, it is called the “decorrelation”
stage in the GNSS literature. The word “decorrelation”
seems to have caused some confusion in some literature,
where it was believed that this stage is to make the cor-
relation coefficients small, see, e.g., [13, Sec 5]. In [4],
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the first stage is referred to as “reduction”, because the
process is similar to a lattice reduction process. Like [4],
we prefer “reduction” to “decorrelation” in this paper,
as the former is less confusing. In the second stage, the
optimal ILS estimate or a few optimal or suboptimal
ILS estimates of the parameter vector over a region in
the ambiguity parameter space are found by enumera-
tion. The purpose of the reduction process is to make
the search process more efficient.

The typical search process which is now widely used
is the Schnorr and Euchner based depth-first tree search,
which enumerates (part of) integer points in a hyper-
ellipsoid to find the solution, see, [15], [6], [21], [1] and
[4]. A comparison of some different reduction and search
strategies was attempted in [8]. What should the reduc-
tion process achieve to make the search process faster?
One (partial) answer in the literature is that the reduc-
tion process should try to decorrelate the covariance
matrix of the RLS estimate as much as possible, i.e.,
make the off diagonal entries of the covariance matrix
as small as possible; see, e.g., [6], [16, p495], [19,21] and
[4] (note that these publications also mentioned other
objectives to achieve). Another answer in the literature
is that the reduction process should reduce the condi-
tion number of the covariance matrix as much as pos-
sible; see, e.g., [13], [25,26] and [14]. In this paper, we
will argue that although decorrelation or reducing the
condition number may be helpful for the discrete search
process, they are not the right answers to the question.
We shed light on what the reduction process should try
to achieve. The new understanding leads to a more effi-
cient reduction algorithm that will be presented in this
paper. More theoretical discussion about how reduction
can improve search efficience can be found in [3].

The paper is organized as follows. In Section 2, we
briefly review the typical reduction and search strate-
gies used in solving the ILS problem. In Section 3, we
show that using lower triangular integer Gauss trans-
formations alone in the reduction process do not affect
the search speed of the search strategy given in Section
2. In particular, we explain why decreasing the correla-
tion coefficients of the real least squares estimates of the
ambiguities should not be an objective of the reduction
process. In Section 4, we argue why decreasing the con-
dition number of the covariance matrix of the real least
squares estimate of the ambiguity vector should not be
as an objective of the reduction process. In Section 5,
a new more efficient reduction algorithm is presented.
In Section 6, numerical results are given to compare
different reduction algorithms. Finally, we give a brief
summary in Section 7.

We now describe the notation to be used in this
paper. The sets of all real and integer m × n matrices

are denoted by Rm×n and Zm×n, respectively, and the
set of real and integer n-vectors are denoted by Rn and
Zn, respectively. The identity matrix is denoted by I

and its ith column is denoted by ei. We use Matlab-
like notation to denote a submatrix. Specifically, if A =
(aij) ∈ Rm×n, then Ai,: denotes the ith row, A:,j the
jth column, and Ai1:i2,j1:j2 the submatrix formed by
rows i1 to i2 and columns j1 to j2. For z ∈ Rn, we use
#z$ to denote its nearest vector, i.e., each entry of z is
rounded to its nearest integer (if there is a tie, the one
with smaller magnitude is chosen).

2 Reduction and Search

Suppose x̂ ∈ Rn is the real least squares (RLS) estimate
of the integer parameter vector (i.e., the double differ-
enced integer ambiguity vector) and W x̂ ∈ Rn×n is its
covariance matrix, which is symmetric positive definite.
The ILS estimate x̌ of the integer parameter vector is
the solution of the minimization problem:

min
x∈Zn

(x − x̂)T W−1
x̂

(x − x̂). (1)

Although (1) is in the form of an integer quadratic
optimization problem, it is easy to rewrite it in the stan-
dard ILS form:

min
x∈Zn

‖Ax − y‖2
2. (2)

In fact, suppose W−1
x̂

has the Cholesky factorization
W−1

x̂
= RT R, where R is upper triangular, then, with

y = Rx̂ and A = R, (1) can be written as (2). Con-
versely, an ILS problem in the standard form (2) with A

being of full column rank can be transformed to (1). Let
A have the QR factorization A = [Q1, Q2] [

R
0

] = Q1R,
where [Q1, Q2] ∈ Rm×m is orthogonal and R ∈ Rn×n

is upper triangular. Then

‖Ax − y‖2
2 = ‖[Q1, Q2]

T (Ax − y)‖2
2

= ‖Rx − QT
1 y‖2

2 + ‖QT
2 y‖2

2

= ‖R(x − x̂)‖2
2 + ‖QT

2 y‖2
2.

Thus, with W x̂ = (RT R)−1, (2) can be transformed
to (1). But we want to point out that it may not be nu-
merically reliable to transform (1) to (2), or vice versa.
As the quadratic form of the ILS problem (1) is often
used in the GNSS literature, for the sake of comparison
convenience, we also use it in this paper. An approach
to solving (1) can be modified to solve (2) without using
the transformation mentioned above.

In Section 2.1, we discuss the reduction or decorre-
lation process used in the GNSS literature. In Section
2.2, we briefly review the search process.
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2.1 Reduction

The reduction process uses a unimodular matrix Z to
transform (1) into

min
z∈Zn

(z − ẑ)T W−1
ẑ

(z − ẑ), (3)

where z = ZT x, ẑ = ZT x̂ and W ẑ = ZT W x̂Z. If ž

is the minimizer of (3), then x̌ = Z−T ž is the mini-
mizer of (1). The benefit the reduction process brings
is that the discrete search process for solving the new
optimization problem (3) can be much more efficient by
choosing an appropriate Z.

Let the LTDL factorization of W ẑ be

W ẑ = LT DL, (4)

where L = (lij) is unit lower triangular and D =
diag(d1, . . . , dn) with di > 0. These factors have a sta-
tistical interpretation. Let z̄j denote the RLS estimate
of zj when zj+1, . . . , zn are fixed. It is easy to show (cf.
[21, p337]) that di = σ2

z̄i
, where σ2

z̄i
is the variance of

z̄i, and lij = σz̄i ẑj
σ−2

z̄i
for i > j, where σz̄i ẑj

denotes the
covariance between z̄i and ẑj .

In the literature, see, e.g., [6], [16, p. 498], [21], and
[4], it is often mentioned that the following two objec-
tives should be pursued in the reduction process be-
cause it is believed that they are crucial for the effi-
ciency of the search process:

(i) W ẑ is as diagonal as possible. The motivation is
that if W ẑ is a diagonal matrix, i.e., the entries of
ẑ are uncorrelated to each other, then simply set-
ting zi = #ẑi$, for i = 1, 2, . . . , n, would solve (3).
Thus it is assumed that the search process would
be fast if W ẑ is nearly diagonal. That a covariance
matrix is close to diagonal means that there is little
correlation between its random variables. In other
words, an objective of the reduction is to decorre-
late the RLS estimates of the ambiguities as much
as possible. E.g. in [6, section 3.7] it stated that
“For the actual integer minimization we strive for
largely decorrelated ambiguities”.

(ii) The diagonal entries of D are distributed in de-
creasing order if possible, i.e., one strives for

d1 ' d2 ' · · · ' dn. (5)

Note that d1d2 · · · dn = det(W ẑ) = det(W x̂), which
is invariant with respect to the unimodular matrix
Z. The ordering of dj is also known as the signa-
ture of the spectrum of conditional variances. This
objective will flatten the spectrum. The importance
of this objective was explained in detail in [17,19,
21].

LAMBDA’s reduction process and MLAMBDA’s re-
duction process as well start with the LTDL factoriza-
tion of W x̂ and updates the factors to give the LTDL
factorization of W ẑ by using integer Gauss transfor-
mations (IGTs) and permutations, both of which are
unimodular matrices. The IGTs are used to make the
off-diagonal entries of L as small as possible, while per-
mutations are used to strive for (5). Specifically, af-
ter reduction, the L-factor of the LTDL factorization
of W ẑ satisfies the conditions of the well-known LLL
reduction [10, see]:

|lij | ≤ 1/2, i = j + 1, . . . , n, j = 1, . . . , n − 1, (6)

dj + l2j+1,jdj+1 ≥ αdj+1, j = 1, . . . , n − 1, (7)

with α = 1. In the general LLL reduction, the param-
eter α satisfies 1/4 < α ≤ 1. The inequality (6) is re-
ferred to the size reduced condition and the inequality
(7) is often called Lovász’s condition.

We will show that, contrary to the common belief,
decorrelations done to pursue the first objective may
not make the search process more efficient unless they
help to achieve the second objective. The second objec-
tive is very crucial for the search speed, but it is not
mentioned in some GNSS literature.

In some papers such as [13], [25] and [14], instead of
(i) and (ii), decreasing the condition number of the co-
variance matrix is regarded as an objective of the reduc-
tion process. Although this may be helpful for achieving
the second objective, in Section 4, we will argue that it
should not be an objective of the reduction.

In the following, we introduce the integer Gauss
transformations and permutations, which will be used
later in describing algorithms.

2.1.1 Integer Gauss transformations

An integer Gauss transformation Zij has the following
form:

Zij = I − µeie
T
j , µ is an integer. (8)

Applying Zij (i > j) to L from the right gives

L̄ ≡ LZij = L − µLeie
T
j .

Thus L̄ is the same as L, except that

l̄kj = lkj − µlki, k = i, . . . , n.

To make l̄ij as small as possible, we choose µ = #lij$,
which ensures that

|l̄ij | ≤ 1/2, i > j. (9)

We use the following algorithm [4, see] to apply the
IGT Zij to transform the ILS problem.
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Algorithm 1 (Integer Gauss Transformations). Given
a unit lower triangular L ∈ Rn×n, index pair (i, j),
x̂ ∈ Rn and Z ∈ Zn×n. This algorithm first applies
the integer Gauss transformation Zij to L such that
|(LZ)i,j | ≤ 1/2, then computes ZT

ij x̂ and ZZij , which
overwrite x̂ and Z, respectively.

function: [L, x̂, Z] = Gauss(L, i, j, x̂, Z)
µ = #lij$
if µ += 0

Li:n,j = Li:n,j − µLi:n,i

Z1:n,j = Z1:n,j − µZ1:n,i

x̂j = x̂j − µx̂i

end

2.1.2 Permutations

In order to strive for order (5), symmetric permutations
of the covariance matrix W x̂ are needed in the reduc-
tion process. After a permutation, the factors L and D

of the LTDL factorization have to be updated.
If we partition the LTDL factorization of W x̂ as

follows

W x̂ = LT DL

=





LT
11 LT

21 LT
31

LT
22 LT

32

LT
33









D1

D2

D3









L11

L21 L22

L31 L32 L33





k−1 2 n−k−1

k−1

2
n−k−1

.

Let

P =

[

0 1
1 0

]

, P k,k+1 =





Ik−1

P

In−k−1



 . (10)

It can be shown that P T
k,k+1W x̂P k,k+1 has the LTDL

factorization (cf. [6])

P T
k,k+1W x̂P k,k+1

=







LT
11 L̄

T
21 LT

31

L̄
T
22 L̄

T
32

LT
33











D1

D̄2

D3









L11

L̄21 L̄22

L31 L̄32 L33



 , (11)

where

D̄2 =

[

d̄k

d̄k+1

]

,

d̄k+1 = dk + l2k+1,kdk+1, d̄k =
dk

d̄k+1

dk+1, (12)

L̄22 ≡
[

1
l̄k+1,k 1

]

, l̄k+1,k =
dk+1lk+1,k

d̄k+1

, (13)

L̄21 =

[

−lk+1,k 1
dk

d̄k+1
l̄k+1,k

]

L21 (14)

=

[

−lk+1,k 1
dk

d̄k+1
l̄k+1,k

]

Lk:k+1,1:k−1, (15)

L̄32 = L32P = [Lk+2:n,k+1, Lk+2:n,1:k]. (16)

We refer to such an operation as a permutation of pair
(k, k +1). We describe the process as an algorithm (see
[4]).

Algorithm 2 (Permutations). Given the L and D fac-
tors of the LTDL factorization of W x̂ ∈ Rn×n, index
k, scalar δ which is equal to d̄k+1 in (12), x̂ ∈ Rn, and
Z ∈ Zn×n. This algorithm computes the updated L and
D factors in (11) after rows and columns k and k + 1
of W x̂ are interchanged. It also interchanges entries k
and k + 1 of x̂ and columns k and k + 1 of Z.

function: [L, D, x̂, Z] = Permute(L, D, k, δ, x̂, Z)
η = dk/δ // see (12)
λ = dk+1,k+1lk+1,k/δ // see (13)
dk = ηdk+1,k+1 // see (12)
dk+1,k+1 = δ

Lk:k+1,1:k−1 =

[

−lk+1,k 1
η λ

]

Lk:k+1,1:k−1 // see (15)

lk+1,k = λ
swap columns Lk+2:n,k and Lk+2:n,k+1 // see (16)
swap columns Z1:n,k and Z1:n,k+1

swap entries x̂k and x̂k+1

2.2 Search

In this section, we briefly review the often used discrete
search process (see [15] and [6]) in solving an ILS prob-
lem. Substituting the LTDL factorization (4) into (3),
we obtain

min
z∈Zn

(z − ẑ)T L−1D−1L−T (z − ẑ). (17)

Define z̄ as

z̄ = z − L−T (z − ẑ). (18)

Thus we have

LT (z − z̄) = z − ẑ,

which can be expanded to

z̄j = ẑj +
n

∑

i=j+1

lij(zi − z̄i), j = n, n − 1, . . . , 1, (19)

where when j = n, the summation term vanishes. Ob-
serve that z̄j depends on zj+1, . . . , zn. Actually z̄j is the
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RLS estimate of zj when zj+1, . . . , zn are fixed. With
(18), we can rewrite the optimization problem (17) as

min
z∈Zn

(z − z̄)T D−1(z − z̄), (20)

or equivalently

min
z∈Zn

n
∑

j=1

(zj − z̄j)
2/dj . (21)

Assume that the solution of (21) satisfies the bound

n
∑

j=1

(zj − z̄j)2

dj
< χ2 (22)

for some χ. Note that (22) is a hyper-ellipsoid, which is
referred to as an ambiguity search space. If z satisfies
(22), then it must also satisfy inequalities

level k :
(zk − z̄k)2

dk
< χ2 −

∑n
j=k+1

(zj − z̄j)2

dj
(23)

for k = n, n − 1, . . . , 1. From (23), the range of zk is
[lk, uk], where

lk =
⌈

z̄k − d1/2

k (χ2 −
n

∑

j=k+1

(zj − z̄j)
2/dj)

1/2
⌉

, (24)

uk =
⌊

z̄k + d1/2

k (χ2 −
n

∑

j=k+1

(zj − z̄j)
2/dj)

1/2
⌋

. (25)

The search process starts at level n and moves down to
level 1. Suppose that zn, . . . , zk+1 have been fixed. At
level k, if lk > uk, then there is no integer satisfying
the inequality (23) and the search process moves back
to level k + 1; otherwise it chooses zk = #z̄k$, which is
in [lk, uk], and moves to level k − 1. If at level k − 1 it
cannot find any integer in [lk−1, uk−1] it moves back to
level k and tries to find the next nearest integer to z̄k

in [lk, uk]. In general the enumeration order at level k
is as follows:

zk =

{

#z̄k$, #z̄k$ − 1, #z̄k$ + 1, . . . , if z̄k ≤ #z̄k$,
#z̄k$, #z̄k$ + 1, #z̄k$ − 1, . . . , otherwise.

(26)

When an integer point, say z∗, is found, update χ2

by setting χ2 = (z∗ − ẑ)T W−1
ẑ

(z∗ − ẑ) and the search
process tries to update z∗ to find an integer point within
the new hyper-ellipsoid.

The initial χ2 can be set to be infinity. With initial
χ2 = ∞, the first integer point found in the search
process is referred to as the Babai integer point (see [2]
and [4]) or the bootstrapped estimate (see [23]). The
search process is actually a depth-first search in a tree,
see Fig. 1, where n = 3. Each node in the tree, except
for the root node, represents an actual step in the search

Fig. 1 Search Tree

process – assigning a value to xk. In Fig. 1, each leaf
at level 1 corresponds to an integer point found in the
search process and leaves at other levels correspond to
invalid integer points.

For the extension of the search process to find more
than one optimal solutions to (3), see [6] and [4].

3 Impact of IGTs on the search process

As seen in Section 2.1, according to the GNSS litera-
ture, one of the two objectives that the reduction pro-
cess is to decorrelate the ambiguities as much as pos-
sible. Decorrelating the ambiguities as much as possi-
ble means making the covariance matrix as diagonal
as possible. To achieve this, a natural way, as given in
the literature, is to make the absolute values of the off-
diagonal entries of the L-factor of the covariance matrix
as small as possible by using IGTs. In the following, we
rigorously show that solely reducing the off-diagonal
entries of L will have no impact on the search process
given in Section 2.2.

Theorem 1 Given the ILS problem (1) and the re-

duced ILS problem (3), if the unimodular transforma-

tion matrix Z is a product of lower triangular IGTs,

then the search process for solving problem (1) is as

efficient as the search tree for solving (3).

Proof We will show that the structure of the search tree
is not changed after the transformation.

Let the LTDL factorization of W x̂ and W ẑ be

W x̂ = LT DL, W ẑ = L̄
T
D̄L̄.

As shown in Section 2.1, the ILS problems (1) and (3)
can respectively be written as (cf. (21))

min
x∈Zn

n
∑

j=1

(xj − x̄j)
2/dj, (27)
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where

x̄j = x̂j +
n

∑

i=j+1

lij(xi − x̄i), (28)

and

min
z∈Zn

n
∑

j=1

(zj − z̄j)
2/d̄j , (29)

where

z̄j = ẑj +
n

∑

i=j+1

l̄ij(zi − z̄i). (30)

We first consider the case where Z is a single lower
triangular IGT Zst = I − µese

T
t with s > t, which is

applied to L from the right to reduce lst (see Section
2.1.1). Then we have

D̄ = D, L̄ = LZst = L − µLese
T
t ,

where

l̄it = lit, i = t, t + 1, . . . , s − 1, (31)

l̄it = lit − µlis, i = s, s + 1, . . . , n, (32)

l̄ij = lij , i = j, j + 1, . . . , n, j += t. (33)

With ẑ = ZT
stx̂, we have

ẑi =

{

x̂i, if i += t,
x̂i − µx̂s, if i = t.

(34)

Suppose that in the search process xn, xn−1, . . . , xk+1

and zn, zn−1, . . . , zk+1 have been fixed. We consider the
search process at level k. At level k, the inequalities
need to be checked are respectively

(xk − x̄k)2/dk < χ2 −
n

∑

j=k+1

(xj − x̄j)
2/dj , (35)

(zk − z̄k)2/dk < χ2 −
n

∑

j=k+1

(zj − z̄j)
2/dj. (36)

There are three cases:
Case 1: k > t. Note that Lk:n,k:n = L̄k:n,k:n. From

(28), (30) and (34), it is easy to conclude that we have
x̄i = z̄i and xi = zi for i = n, n − 1, . . . , k + 1. Thus,
at level k, x̄i = z̄i and the search process takes an
identical value for xk and zk. For the chosen value, the
two inequalities (35) and (36) are identical. So both
hold or fail at the same time.

Case 2: k = t. According to Case 1, we have xi = zi

and x̄i = z̄i for i = n, n − 1, . . . , t + 1. Thus, by (30),
(31), (32), (34) and (28)

z̄t = ẑt +
n

∑

i=t+1

l̄it(zi − z̄i)

= x̂t − µx̂s +
s−1
∑

i=t+1

lit(xi − x̄i)

+
n

∑

i=s

(lit − µlis)(xi − x̄i)

= x̂t +
n

∑

i=t+1

lit(xi − x̄i)

−µ
[

x̂s +
n

∑

i=s+1

lis(xi − x̄i)
]

− µ(xs − x̄s)

= x̄t − µx̄s − µ(xs − x̄s)

= x̄t − µxs,

where µxs is an integer. Since zt and xt respectively
take values according to the same order (cf. (26)), the
values of zt and xt chosen by the search process must
satisfy zt = xt −µxs. Thus, zt− z̄t = xt − x̄t, and again
the two inequalities (35) and (36) hold or fail at the
same time.

Case 3: k < t. According to Cases 1 and 2, zi − z̄i =
xi − x̄i for i = n, n − 1, . . . , t. Then for k = t − 1, by
(30), (33) and (28)

z̄k = ẑk+
n

∑

i=k+1

l̄ik(zi−z̄i) = x̂k+
n

∑

i=k+1

lik(xi−x̄i) = x̄k.

Thus the search process takes an identical value for zk

and xk when k = t − 1. By induction we can similarly
show this is true for a general k < t. Thus, again (35)
and (36) hold or fail at the same time.

The above has shown that the two search trees for
(1) and (3) have identical structures.

Now we consider the general case where Z is a prod-
uct of lower triangular IGTs, i.e., Z = Z1 · · ·Zm. As is
shown, applying Z1 to (1) will transform the ILS prob-
lem, but not modify the structure of the search tree.
Applying Z2 to this transformed ILS problem will also
not modify the structure of the search tree, and so on.
Thus, if Z is a product of lower triangular IGTs, the
search trees for problems (1) and (3) have the same
structure.

It is easy to observe that the computational costs
for fixing xk and zk at each level k in search are the
same. Therefore we can conclude that the two search
processes have the same computational efficiency. !
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Here we make a remark. Obviously, all diagonal en-
tries of L remain invariant under integer Gauss trans-
formations. Thus the complete spectrum of ambiguity
conditional variances, di’s in (5), remains untouched as
stated in [19]. But whether the search speed solely de-
pends on the spectrum has not been rigorously proved.

From the proof of Theorem 1 we can easily observe
that the search ordering given in (26) may not be neces-
sary, i.e., Theorem 1 may still hold if the ordering is in a
different way. For example, Theorem 1 still holds if the
enumerated integers at level k are ordered from left to
right in the interval [lk, uk] – this enumeration strategy
is used in the educational LAMBDA package. Theo-
rem 1 also holds when the shrinking technique is em-
ployed. This can be seen from the fact that the residues
of the corresponding integer points found in the two
search trees are always equal, i.e.,

∑n
j=1

(xj − x̄j)2/dj =
∑n

j=1
(zj − z̄j)2/dj .

We would like to point out that [12] gave a geo-
metric argument that the Babai integer point (i.e., the
bootstrapped estimate) encountered in solving the stan-
dard form of the ILS problem (2), referred to as the
successive interference cancellation decoder in commu-
nications, is not affected by the size reduction of the
off-diagonal entries (except the super-diagonal entries)
of R of the QR factorization of A. Our result given
in Theorem 1 is more general, because the Babai inte-
ger point is the first integer point found in the search
process.

In [8, section 3.5], to prove that the lattice reduc-
tion speeds up searching process, the authors tried to
prove that the more orthogonality the columns of R,
the less the number of candidates for searching. But this
method is not correct because the number of candidates
is not closely dependent on the column orthogonality of
R. In fact, a series of IGTs can be found to reduce all
the off-diagonal entries of R. Applying them to R will
make R more orthogonal. But according to Theorem 1,
this can neither reduce the number of candidates nor
speed up the search process.

Theorem 1 showed that modifying the unit lower
triangular matrix L by a unimodular matrix will not
change the computational efficiency of the search pro-
cess. Here we first give a geometric interpretation for
the general two-dimensional case, then give a specific
2-dimensional integer search example to illustrate it.

Suppose the ambiguity search space is the ellipse
given in Fig. 2 A, with the integer candidates marked.
The search process will try to fix x2 and then fix x1 for
each value of x2. After the size reduction, we get Fig.
2 B. As explained in [21], the result of this transforma-
tion is to push the vertical tangents of the ambiguity
search space. The horizontal tangents are unchanged.

Note that for each integer value of x2, the number of
choices for x1 is not changed after the size reduction.
This indicates the size reduction does not change the
search speed, although the elongation of the ellipse be-
comes smaller.

Fig. 2 Size reduction

Example 1 Let the covariance matrix be

W x̂ =

[

11026 1050
1050 100

]

.

The factors L and D of its LTDL factorization are

L =

[

1 0
10.5 1

]

, D =

[

1 0
0 100

]

.

Let the RLS estimate be x̂ = [5.38, 18.34]T . We can

reduce l21 by the IGT Z =

[

1 0
−10 1

]

. Then the modified

covariance matrix and its L factor become

W ẑ = ZT W x̂Z =

[

26 50
50 100

]

, L̄ = LZ =

[

1 0
0.5 1

]

.

In [21], the correlation coefficient ρ and the elongation
of the search space e are used to quantify the corre-
lation between the ambiguities. The correlation coeffi-
cient ρ between random variables s1 and s2 is defined
as ρ = σs1s2

/(σs1
σs2

); see, e.g., [16, p322]. The elon-
gation of the search space e is given by square root of
the 2-norm condition number of the covariance matrix.
For the original ambiguity vector, we have ρ = 0.9995
and e = 1.1126 × 103. For the transformed ambigu-
ity vector, we have ρ = 0.9806 and e = 12.520. These
measurements indicate that the transformed RLS esti-
mates of ambiguities are more decorrelated. The points
[x1, x2]T and [z1, z2]T encountered during search are
shown in Table 1, where − indicates that no valid inte-
ger is found. In both cases, the first point encountered
is valid, while the others points are invalid. The ILS
solution is x = [2, 18]T . As expected, we observe that
the lower triangular IGT did not reduce the number
of points (including invalid points) encountered in the
search process.
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Table 1 Search results for Example 1

x1 x2 z1 z2

2 18 −178 18
− 19 − 19
− 17 − 17
− 20 − 20
− − − −

We have already shown that solely decorrelating the
RLS estimates of the ambiguities by applying lower tri-
angular IGTs to the L-factor of the LTDL factorization
of the covariance matrix will not help the search pro-
cess. However, we will show that some IGTs are still
useful for improving the efficiency of the search pro-
cess. The search speed depends on the D factor. The
more flattened the spectrum of ambiguity conditional
variances, the more efficient the search (see, e.g., [19])).
We strive for (5) in the reduction process. If an IGT
is helpful in striving for (5), then this IGT is useful
for improving the search speed. When we permute pair
(k, k+1) in the reduction process, D is modified accord-
ing to (12). In order to make d̄k+1 as small as possible,
from (12), we observe that |lk+1,k| should be made as
small as possible. An example would be helpful to show
this.

Example 2 Let the L-factor and D-factor of the LTDL
factorization of a 2 by 2 covariance matrix W x̂ be

L =

[

1 0
0.8 1

]

, D =

[

1 0
0 100

]

.

We have d1 = 1 and d2 = 100. Let the RLS estimate be
x̂ = [13.5, 1.2]T . The number of integer points [x1, x2]T

encountered in the search process without reduction is
shown in Table 2. If we permute the two ambiguities

without first applying an IGT, i.e., Z =

[

0 1
1 0

]

, using

(12), we have d̄2 = 65 and d̄1 = 1.54. The search process
will be more efficient after this transformation because
d̄2 < d2 allows more pruning to occur (see (5)). The in-
teger pairs [z1, z2]T encountered during the search are
given in Table 2. The ILS solution is x̌ = Z−T [2, 14]T =
[14, 2]T . However, we can make d̄2 even smaller by ap-
plying a lower triangular IGT before the permutation,

which means that Z =

[

0 1
1 −1

]

. In this case, we have

d̄2 = 5 and d̄1 = 20. The integer pairs [z̃1, z̃2] encoun-
tered in search are given given in the last two columns of
Table 2. The ILS solution is x̌ = Z−T [2, 12]T = [14, 2]T .
This example illustrates how a lower triangular IGT,
followed by a permutation, can prune more nodes from
the search tree.

We have seen that it is useful to reduce lk+1,k by
an IGT if the resulted d̄k+1 satisfies d̄k+1 < dk+1, i.e.,

Table 2 Search results for Example 2

x1 x2 z1 z2 z̃1 z̃2

13 1 2 14 2 12
14 2 − 13 − −

− 0 − −

− −

a permutation of the pair (k, k + 1) will be performed,
because it can help to strive for (5). However, reducing
lik for i > k+1 will have no effect on D since (12) only
involves lk+1,k. Hence, even if |lik| is very large, reduc-
ing it will not improve the search process at all. This
means that reducing all the off-diagonal entries of L is
unnecessary. We only need to do a partial reduction.

Large off-diagonal entries in L indicate that the
ambiguities are not decorrelated as much as possible,
which contradicts the claim that it should be one of the
objectives of the reduction process in the literature. In
the following, we provide a 3 by 3 example which illus-
trates the issue.

Example 3 Let the covariance matrix and the RLS es-
timate of the ambiguity vector x be

W x̂ =





2.8355 −0.0271 −0.8071
−0.0271 0.7586 2.0600
−0.8071 2.0600 5.7842



 , x̂ =





26.6917
64.1662
42.5485



 .

Then the correlation coefficients are

ρ12 = −0.0185, ρ13 = −0.1993, ρ23 = 0.9834. (37)

The integer points [x1, x2, x3]T encountered during the
search are displayed in the first block column of Ta-
ble 3 and the solution is x̌ = [27, 64, 42]T . With the
LAMBDA reduction or MLAMBDA reduction, the uni-
modular transformation matrix is

Z =





4 −2 1
−43 19 −11

16 −7 4



 .

The covariance matrix becomes

W ẑ = ZT W x̂Z =





0.2282 0.0452 −0.0009
0.0452 0.1232 −0.0006

−0.0009 −0.0006 0.0327



 .

From this transformed covariance matrix, we obtain the
correlation coefficients

ρ12 = 0.2696, ρ13 = −0.0104, ρ23 = 0.0095,

which indicates that on average the transformed RLS
estimates of ambiguities are less correlated than the
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Table 3 Search results for Example 3

x1 x2 x3 z1 z2 z3 z̃1 z̃2 z̃3

23 64 43 -1972 868 -509 64 -150 -509
27 64 42 − − − − − −

− − 44
− − 41
− − −

original ones (see (37)) in terms of correlation coeffi-
cients. The integer points [z1, z2, z3]T encountered dur-
ing the search are displayed in the second block column
of Table 3 and the solution is

x̌ = Z−T [−1972, 868,−509]T = [27, 64, 42]T .

Now we do not apply IGTs to reduce l31 in the re-
duction process. With this partial reduction strategy,
the unimodular transformation matrix is

Z =





0 0 1
1 −3 −11
0 1 4



 .

The covariance matrix and the RLS estimate become

W ẑ = ZT W x̂Z =





0.7587 −0.2158 −0.1317
−0.2158 0.2516 0.0648
−0.1317 0.0648 0.0327



 .

From this transformed covariance matrix, we obtain the
correlation coefficients

ρ12 = −0.4940, ρ13 = −0.8362, ρ23 = 0.7144,

which indicates that on average the transformed RLS
estimates of ambiguities are more correlated than the
original ones (see (37)) in terms of correlation coeffi-
cients. The integer points [z̃1, z̃2, z̃3]T encountered dur-
ing the search are displayed in the third block column
of Table 3 and the solution is

x̌ = Z−T [64,−150,−509]T = [27, 64, 42]T .

From Table 3 we see that the partial reduction is as
effective as the full reduction given in LAMBDA and
MLAMBDA and both make the search process more
efficient, although they increase and decrease the cor-
relation coefficients in magnitude on average, respec-
tively. This indicates that reducing the correlation co-
efficients of RLS estimates of ambiguities should not be
an objective of the reduction process.

The significance of the result we obtained in this
section is threefold:

• It indicates that contrary to many people’s belief,
the computational cost of the search is independent
of the off-diagonal entries of L and of the correlation
between the ambiguities.

• It provides a different explanation on the role of
lower triangular IGTs in the reduction process.

• It leads to a more efficient reduction algorithm, see
Section 5.

4 On the condition number of the covariance

matrix

In some GNSS literature (see, e.g., [13], [25,26] and [14])
it is believed that the objective of reduction process is to
reduce the condition number of the covariance matrix
W x̂. The 2-norm condition number of W x̂ satisfies

κ2(W x̂) ≡ ‖W x̂‖2‖W−1
x̂

‖2 =
λmax(W x̂)

λmin(W x̂)
,

where λmax(W x̂) and λmin(W x̂) are the largest and
smallest eigenvalues of W x̂, respectively. Suppose that
the search region is a hyper-ellipsoid:

(x − x̂)T W−1
x̂

(x − x̂) < χ2.

Then κ2(W x̂) is equal to the square of the ratio of the
major and minor axes of the search ellipsoid (see, e.g.,
[16, Sect. 6.4]). In other words, the condition number
measures the elongation of the search ellipsoid. It is
true that often the current decorrelation strategies in
the literature can reduce the condition number or the
elongation of the search ellipsoid and make the search
process faster. But should reducing the condition num-
ber or the elongation be an objective of a reduction
process? In this section we will argue that it should
not.

Reducing the off-diagonal entries of the L-factor can
usually reduce the condition number of L and thus the
condition number of the covariance matrix W x̂. But we
have shown that the off-diagonal entries of L (except
sub-diagonal entries) do not affect the search speed and
do not need to be reduced in theory. Thus the condition
number of the covariance matrix is not a good measure
of effectiveness of the reduction process. The following
example shows that although the condition number of
the covariance matrix can significantly be reduced, the
search speed is not changed.

Example 4 Let

W x̂ = LT DL =

[

1 1000.5
0 1

] [

4 0
0 0.05

] [

1 0
1000.5 1

]

.

Then κ2(W x̂) = 1.2527× 1010. After we apply a lower
triangular IGT to reduce the (2,1) entry of L, the new
covariance matrix becomes

W ẑ = LT DL =

[

1 0.5
0 1

] [

4 0
0 0.05

] [

1 0
0.5 1

]

.
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Table 4 Search results for Example 5

x1 x2 x3 z1 z2 z3

0 1 2 2 1 0
− 0 2 − − −

− 1 1
− 1 3
− 1 0
− − −

Then κ2(W ẑ) = 80.5071, much smaller than the orig-
inal one. But the search speed will not be changed by
the reduction according to Theorem 1.

The condition number of the covariance matrix does
not change under permutations. But permutations can
change the search speed significantly. This shows again
that the condition number is not a good indication of
the search speed. We use an example to illustrate this.

Example 5 Let W x̂ = LDLT = diag(1, 4, 16), where
L = I and D = W x̂, and let x̂ = [0.4, 0.8, 1.6]T .
The search results are given in the first block column
of Table 4 and the ILS solution is x̂ = [0, 1, 2]T . Sup-
pose we permute W x̂ such that W ẑ = P T W x̂P =
diag(16, 4, 1). Then W ẑ = LDLT , where L = I and
D = W ẑ . The search results for the permuted one are
given in the second block column of Table 4 and the so-
lution x̂ = P [2, 1, 0]T = [0, 1, 2]. Although κ2(W x̂) =
κ2(W ẑ), the search speed for the permuted problem
is much more efficient than that for the original one.
Note that the order of diagonal entries of the D-factor
of W ẑ is exactly what a reduction process should pur-
sue, see objective (ii) in Section 2.1. In section 6, we
will use more general examples to show that proper
permutations of the covariance matrix without doing
any decorrelation can improve the search efficiency.

5 A new reduction algorithm

In this section we would like to propose a new reduc-
tion algorithm which is more efficient and numerically
stable than the reduction algorithms used in LAMBDA
and MLAMBDA. We showed in Section 3 that except
the sub-diagonal entries of L, the other lower triangular
entries do not need to be reduced in theory. Thus we
could design an algorithm which does not reduce the en-
tries of L below the sub-diagonal entries. However, it is
possible that some of those entries may become too big
after a sequence of size reduction for the sub-diagonal
entries. This may cause a numerical stability problem.
For the sake of numerical stability, therefore, after we
reduce lk+1,k, we also reduce the entries lk+2,k, . . . , ln,k

by IGTs. If we do not reduce the former, we do not
reduce the latter either. Thus the first property of the

LLL reduction given in (6) may not hold for all i > j,
while the second property holds for all j. Due to this,
our new reduction algorithm will be referred to as PRe-
duction (where P stands for “partial”).

Now we describe the key steps of PReduction. Like
the reduction algorithm used in MLAMBDA (called
MReduction), for computational efficiency, we first com-
pute the LTDL factorization with minimum symmetric
pivoting (see Algorithm 3.1 in [4]). This permutation
sorts the conditional variances to pursue the objective
(5). Then the algorithm works with columns of L and
D from the right to the left. At column k, it computes
the new value of lk+1,k as if an IGT were applied to
reduce lk+1,k. Using this new value we compute d̄k+1

(see (12)). If d̄k+1 ≥ dk+1 holds, then permuting pair
(k, k + 1) will not help strive for (5), therefore the al-
gorithm moves to column k−1 without actually apply-
ing any IGT; otherwise it first applies IGTs to make
|lik| ≤ 1/2 for i = k + 1, . . . , n, then it permutes pair
(k, k + 1) and moves back to column k + 1. In the re-
duction algorithm used in LAMBDA (to be referred to
as LAMBDA Reduction) when a permutation occurs at
column k, the algorithm goes back to the initial position
k = n − 1.

We now present the complete new reduction algo-
rithm:

Algorithm 3 (PReduction). Given the covariance ma-
trix W x̂ and real-valued LS estimate x̂, this algorithm
computes a unimodular matrix Z and the LTDL factor-
ization W ẑ = ZT W x̂Z = LT DL, which is obtained
from the LTDL factorization of W x̂ by updating. This
algorithm also computes ẑ = ZT x̂, which overwrites x̂.

function: [Z, L, D, x̂] = PReduction(W x̂, x̂)
Compute the LTDL factorization of W x̂ with

symmetric pivoting P T W x̂P = LT DL

x̂ = P T x̂

Z = P

k = n − 1
while k > 0

l = lk+1,k − #lk+1,k$lk+1,k+1

d̄k+1 = dk + l2dk+1

if d̄k+1< dk+1

if |lk+1,k| > 1/2
for i = k + 1 : n

// See Alg. 1
[L, x̂, Z] = Gauss(L, i, k, x̂, Z)

end

end

// See Alg. 2
[L, D, x̂, Z] = Permute(L, D, k, d̄k+1, x̂, Z)
if k < n − 1

k = k + 1
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end

else

k = k − 1
end

end

The structure of PReduction is similar to that of
LAMBDA Reduction. But the former is more efficient
as it uses the symmetric pivoting strategy in computing
the LTDL factorization and does less size reductions.

PReduction is more numerically stable than MRe-
duction, because, unlike the latter, the former does size
reduction for the remaining entries of the column in
L immediately after it does size reduction for a sub-
diagonal entry of L, avoiding quick growth of the off-
diagonal entries of L in the reduction process.

The main difference between PReduction and LAMBDA
Reduction is that the latter does more size reduction
for the entries below the sub-diagonal entries of L. So
it is very likely that there is no big difference between
the diagonal of D obtained by the two reduction algo-
rithms. The structure of MReduction is not quite sim-
ilar to that of LAMBDA Reduction. But both do the
LLL reduction, so the difference between the diagonal
of D obtained by the two algorithms is not expected to
be large. Thus these three reduction algorithms should
usually have more of less the same effect on the effi-
ciency of the search process. This is confirmed in our
numerical tests.

6 Numerical experiments

To compare Algorithm PReduction given in the previ-
ous section with the LAMBDA reduction algorithm and
the MLAMBDA reduction algorithm (MReduction) in
terms of computational efficiency and numerical stabil-
ity, in this section we give some numerical test results.
We will also give test results to show the three reduction
algorithms have almost the same effect on the efficiency
of the search process. The routine for the LAMBDA re-
duction algorithm is from the LAMBDA package avail-
able from TU Delft web site. MLAMBDA’s search rou-
tine was used for the search process.

We use the CPU running time as a measure of com-
putational efficiency and the relative backward error as
a measure of numerical stability. For the concepts of
backward error and numerical stability, see [7]. Given
W x̂, a reduction algorithm computes the factorization:

ZT W x̂Z = LT DL.

The relative backward error is

RBE =
‖W x̂ − Z−T

c LT
c DcLcZ

−1
c ‖2

‖W x̂‖2

,

where Zc, Lc and Dc are the computed versions of Z,
L and D, respectively. In our computations when we
computed Z−1

c we used the fact that Z−1
ij = I + µeie

T
j

(cf. (8)) and P−1
k,k+1 = P k,k+1 (cf. (10)).

All our computations were performed in Matlab

7.11 on a Linux 2.6, 1.86 GHz machine.

6.1 Setup and simulation results

We performed simulations for four different cases (Cases
1, 2 and 3 were used in [4]).

• Case 1: W x̂ = UDUT , U is a random orthog-
onal matrix obtained by the QR factorization of
a random matrix generated by randn(n, n), D =
diag(di), where d1 = 2−

k
2 , dn = 2

k
2 , other diagonal

elements of D are randomly distributed between d1

and dn. We took n = 20 and k = 5, 6, . . . , n. The
range of the condition number κ2(W x̂) is from 25

to 220.
• Case 2: W x̂ = LT DL, where L is a unit lower

triangular matrix with each lij (for i > j) being
a pseudorandom number drawn from the standard
normal distribution and generated by the Matlab

command randn, D = diag(di) with each di be-
ing a pseudorandom number drawn from the stan-
dard uniform distribution on the open interval (0, 1)
and generated by Matlab command rand, and x̂ =
100 ∗ randn(n, 1).

• Case 3: W x̂ = LT DL, where L is generated in the
same way as in Case 1,

D = diag(200, 200, 200, 0.1, 0.1, . . . , 0.1),

and x̂ is generated in the same way as in Case 1.
• Case 4: We constructed the linear model y = Ax +

v, where A = randn(n, n), x = #100 ∗ randn(n, 1)$
and v =

√
0.01∗randn(n, 1). The problem we intend

to solve is the ILS problem in the standard form:
minx∈Zn ‖y − Ax‖2

2. To solve it, we transformed it
into the form of (1), see the second paragraph of
Sect. 2.

• Case 5: A set of real GPS data. It has 50 instances
and the dimension of the integer ambiguity vector
in each instance is 18. The data was provided to us
by Dr. Yang Gao of The University of Calgary.

6.2 Effect of permutations on the search speed

In Example 5 in section 3, we showed that a proper
permutation of the covariance matrix can improve the
search speed. Following a suggestion from a reviewer,
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here we use Case 1 to show that the minimum sym-
metric pivoting strategy incorporated in the LTDL fac-
torization can improve the search efficiency. The pur-
pose is to show that correlation coefficients or condition
numbers should not be used as measures of effective-
ness of reduction. In our numerical test, we first com-
puted the LTDL factorization without and with min-
imum symmetric pivoting, respectively, and then ap-
plied the search routine to find the ILS solution. So no
decorrelation or size reduction was involved. In our test,
we took dimensions n = 5, 6, . . . , 40 and performed 40
runs for each n. The test result was given in Fig. 3,
which indicates that the search efficiency can increase
up to about 5 times by using this permutation strategy.
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Fig. 3 The effect of permutation

6.3 Comparison of the reduction algorithms

We use Case 1 to 5 to give comparison of the three
different reduction algorithms. For Cases 1, 2 and 4,
we took dimensions n = 5, 6, . . . , 40 and performed 40
runs for each n. For Case 3, we performed 40 runs for
each k. For Case 5, we performed the tests on 50 dif-
ferent instances. For each case we give three plots, cor-
responding to the average reduction time (in seconds),
the average search time (in seconds), and the average
relative backward error; see Figs. 4 to 8.

From the simulation results for Cases 1-4, we ob-
serve that new reduction algorithm PReduction is faster
than both LAMBDA Reduction and MReduction for all
cases. Usually, the improvement becomes more signifi-
cant when the dimension n increases. For example, in
Case 3, PReduction has about the same running time as
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Fig. 4 Case 1

MReduction and LAMBDA reduction when n = 5, but
is almost 10 times faster when n = 40. In Case 1, even
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Fig. 5 Case 2

when n = 5, PReduction is slightly faster than MRe-
duction and more than 6 times faster than LAMBDA’s
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Fig. 6 Case 3

reduction algorithm. Except in Case 4 for n = 33, 35,
we also observe that the three different reduction al-
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Fig. 7 Case 4

gorithms have almost the same effect on the efficiency
of the search process (the three curves for the search
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Fig. 8 Case 5

time in the plots often coincide). This confirms what



On “Decorrelation” in Solving Integer Least-Squares Problems for Ambiguity Determination 15

we argued at the end of Section 5. For the exceptional
situations we will give an explanation later.

In Case 5, we observe that PReduction is about 20%
faster then MLAMBDA and is about 4 times faster
than LAMBDA’s reduction. Consider that the reduc-
tion time is comparable to the search time in this case,
the increase of the reduction efficiency is very helpful
to improve the overall efficiency.

From the simulation results, we also observe that
PReduction is usually more numerically stable than
MReduction and LAMBDA Reduction (to less extent
and occasions). From the third plot of Fig. 7 we see that
MReduction can be much worse than PReduction and
LAMBDA Reduction in terms of stability. The reason
is that IGTs for reducing the entries below the subdiag-
onal of L in MReduction were deferred to the last step
to make the algorithm more efficient, but this can result
in large off-diagonal entries in L and consequently large
entries in Z, which may lead to big rounding errors. As
we said in Section 5, such a problem is avoided in PRe-
duction. LAMBDA Reduction does not have this prob-
lem either. The reason that PReduction can be much
more stable than LAMBDA Reduction (see the third
plot of Fig. 6) is probably that the former involves less
computations. For the real data, the three algorithms’
stability is more or less the same.

Now we can explain the spikes in the second plot
of Fig. 7. Due to the numerical stability problem, the
transformed ILS problem after MReduction is applied
has large rounding errors in each of the instances which
produce two large spikes and the resulted ILS solution
is not identical to the ILS solution obtained by using
PReduction or LAMBDA Reduction in one of the 40
runs. Here we would like to point out that the MILES
package by [5], which solves a mixed ILS problem in
the standard form, uses a reduction algorithm which is
different from MReduction and has no such numerical
stability problem.

7 Summary

We have shown that there are two misconceptions about
the reduction or decorrelation process in solving ILS
problems by discrete search in the GNSS literature.
The first is that the reduction process should decor-
relate the ambiguities as much as possible. The second
misconception is that the reduction process should re-
duce the condition number of the covariance matrix.
We showed by theoretical arguments and numerical ex-
amples that both are not right objectives a reduction
process should try to achieve. The right objective is to
pursue the order of the diagonal entries of D given in

(5). The new understanding on the role of decorrela-
tion in the reduction process led to PReduction, a re-
duction algorithm. The numerical test results indicate
that PReduction is more computationally efficient than
LAMBDA’s reduction algorithm and MLAMBDA’s re-
duction algorithm (to less extent) and is usually more
numerically stable than MLAMBDA’s reduction algo-
rithm and LAMBDA’s reduction algorithm (to less ex-
tent). For real data, we found that the three reduction
algorithms have more or less same stability.
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