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Abstract. Let τ(n) denote the minimum number of arithmetic opera-
tions sufficient to build the integer n from the constant 1. We prove that
if there are arithmetic circuits of size polynomial in n for computing the
permanent of n by n matrices, then τ(n!) is polynomially bounded in
log n. Under the same assumption on the permanent, we conclude that
the Pochhammer-Wilkinson polynomials

∏n
k=1(X − k) and the Taylor

approximations
∑n

k=0
1
k!X

k and
∑n

k=1
1
kXk of exp and log, respectively,

can be computed by arithmetic circuits of size polynomial in log n (al-
lowing divisions). This connects several so far unrelated conjectures in
algebraic complexity.
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1. Introduction

The investigation of the complexity to evaluate polynomials by straight-line
programs (or arithmetic circuits) is a main focus in algebraic complexity theory.
Let the complexity LK(f) of a polynomial f ∈ K[X1, . . . , Xm] over a field K be
the minimum number of arithmetic operations +,−, ∗, / sufficient to compute f
from the variables Xi and constants in K. We call a sequence (fn)n∈N of
univariate polynomials easy to compute if LK(fn) = (log n)O(1), otherwise hard
to compute (usually n stands for the degree of fn). For example, the sequence

(G
(r)
n )n∈N of univariate polynomials over K = C

(1.1) G(r)
n :=

n∑
k=1

krXk

is easy to compute, provided r ∈ N, cf. von zur Gathen & Strassen (1980).
In a landmark paper, Strassen (1974) proved that various sequences (fn)

of specific polynomials like fn =
∑n

k=1 exp(2π
√
−1/2j) or fn =

∑n
k=1 22k

Xk

are hard to compute. Von zur Gathen & Strassen (1980) showed that the
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sequence (G
(r)
n ) is hard to compute if r ∈ Q \ Z. The complexity status of

this sequence for negative integers r has ever since been an outstanding open
problem, cf. Strassen (1990, Problem 9.2). More details and references on this
can be found in Bürgisser et al. (1997, Chapter 9).

Shub & Smale (1995) discovered the following connection between the com-
plexity of univariate integer polynomials and the PC 6= NPC-hypothesis in the
Blum-Shub-Smale model over C (Blum et al. 1989). For an integer polynomial
f ∈ Z[X1, . . . , Xm], we define the tau-complexity τ(f) as LQ(f), but allowing
only the constant 1 and disallowing divisions. Clearly, LQ(f) ≤ τ(f). The τ -
conjecture claims the following connection between the number z(f) of distinct
integer roots of a univariate f ∈ Z[X] and the complexity τ(f):

z(f) ≤ (1 + τ(f))c

for some universal constant c > 0 (compare also Strassen 1990, Problem 9.2).
Shub & Smale (1995) proved that the τ -conjecture implies PC 6= NPC. In fact,
their proof shows that in order to draw this conclusion, it suffices to prove
that for all nonzero integers mn, the sequence (mnn!)n∈N of multiples of the
factorials is hard to compute. Hereby we say that a sequence (a(n)) of integers
is hard to compute iff τ(a(n)) is not polynomially bounded in log n.

It is plausible that (n!) is hard to compute, otherwise factoring integers
could be done in (nonuniform) polynomial time, cf. Strassen (1976) or Blum
et al. (1998, p.126). Lipton (1994) strengthened this implication by showing
that if factoring integers is “hard on average” (a common assumption in cryp-
tography), then a somewhat weaker version of the τ -conjecture follows.

Bürgisser (2001) proposed a strengthening of the τ -conjecture (L-conjecture)
that claims that the number Nd(f) of distinct irreducible factors of degree
at most d of a polynomial f ∈ K[X] over a number field K is bounded as
Nd(f) ≤ (LK(f) + d)c, where c is a constant only depending on K. Soon after,
Cheng (2003) observed that the L-conjecture directly implies a recent deep
result in arithmetic geometry (Merel’s torsion theorem for elliptic curves from
1996) and even stronger statements, which are not (yet) known to be true.
This indicates that a proof of the τ -conjecture (if true at all) should rely on
very deep insights and techniques in arithmetic algebraic geometry, which are
not yet developed and probably won’t be so in the near future.

Resolving the τ -conjecture appears under the title “Integer zeros of a poly-
nomial of one variable” as the fourth problem in Smale’s list (2000) of the most
important problems for the mathematicians in the 21st century. Our main re-
sult confirms the belief that solving the τ -conjecture is indeed very hard. In
fact, we prove that the truth of the τ -conjecture (as well as a hardness proof for
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the other problems mentioned before) would imply the truth of another major
conjecture in algebraic complexity.

A quarter of a century ago, Valiant (1979a, 1982) proposed an algebraic
version of the P versus NP problem for explaining the hardness of comput-
ing the permanent. He defined the classes VPK of polynomially computable
and VNPK of polynomially definable families of multivariate polynomials over
a fixed field K of characteristic different from two and proved that the fam-
ily (Pern) of permanent polynomials is VNPK-complete. We recall that the
permanent of the matrix [Xij]1≤i,j≤n is defined as

Pern =
∑
π∈Sn

X1π(1) · · ·Xnπ(n),

where the sum is over all permutations π of the symmetric group. Valiant’s
completeness result implies that VPK 6= VNPK iff (Pern) 6∈ VPK . The latter
statement is equivalent to the hypothesis that LK(Pern) is not polynomially
bounded in n, which is often called Valiant’s hypothesis over K. (For a detailed
account we refer to Bürgisser 2000a).

We can now state the main result of our paper. It gives some explana-
tion why the attempts to prove the τ -conjecture or the hardness of the above
mentioned specific sequences of integers or polynomials did not succeed. Aston-
ishingly, the major open problems mentioned in Chapters 9 and 21 of Bürgisser
et al. (1997) turn out to be closely related!

Main Theorem 1.2. Each of the statements listed below implies that the
permanent of n by n matrices cannot be computed by constant-free and division-
free arithmetic circuits of size polynomial in n: that is, τ(Pern) is not polyno-
mially bounded in n.

1. The sequence of factorials (n!)n∈N is hard to compute.

2. The τ -conjecture of Shub & Smale (1995) is true.

3. The sequence of Taylor approximations (
∑n

k=0
1
k!

T k)n∈N of exp is hard to
compute.

4. The sequence (G
(r)
n ) = (

∑n
k=1 krT k)n∈N for a fixed negative integer r is hard

to compute.

We note that the hypothesis “τ(Pern) is not polynomially bounded in n”
is not known to be equivalent to Valiant’s hypothesis VPK 6= VNPK . We refer
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the reader to Figure 2.1 for an overview of the known implications between
these different hypotheses. More details can be found in Section 2.2.

The Main Theorem 1.2 was essentially conjectured in Bürgisser (2000a,
§8.3). Koiran (2004) proved the following weaker version of the statement re-
garding the factorials: if (n!) is hard to compute, then VP0 6= VNP0 or P 6=
PSPACE. Hereby, VP0 and VNP0 denote complexity classes in the constant-free
Valiant model, see Section 2.2 for definitions. (The statement VP0 6= VNP0

seems a bit weaker than the assumption that τ(Pern) is not polynomially
bounded in n, cf. Figure 2.1). Koiran also proved that if either of the se-
quences (b2n log nc) or (b2nπc) is hard to compute, then VP0 6= VNP0. He
then asked whether the same conclusion can be drawn for the sequences (b2nec),
(b(3/2)nc), or (b2n

√
2c). We prove that this is indeed the case (Corollary 4.3).

The main new idea for the proof of Main Theorem 1.2 is the consideration
of the counting hierarchy CH, which was introduced by Wagner (1986). This
is a complexity class lying between PP and PSPACE that bears more or less
the same relationship to #P as the polynomial hierarchy bears to NP. The
counting hierarchy is closely tied to the theory of threshold circuits of bounded
depth, cf. Allender & Wagner (1993).

A key technical ingredient of our proof is the existence of Dlogtime-uniform
threshold circuits of constant depth for iterated multiplication via Chinese re-
maindering. Here is a short history of this problem: Beame et al. (1986)
presented parallel NC1-algorithms for iterated multiplication and division of
integers. Reif & Tate (1992) observed that these algorithms can also be imple-
mented by constant depth threshold circuits, placing these problems in the class
TC0. The question of the degree of uniformity required for these circuits was
only recently solved in a satisfactory way by Hesse et al. (2002), who showed
that there are Dlogtime-uniform circuits performing these tasks. This result,
scaled up to the counting hierarchy, is crucial for our study of sequences of
integers definable in the counting hierarchy in Section 3. In fact, for our pur-
pose it is sufficient to have deterministic polylogarithmic time in the uniformity
condition, which is somewhat easier to obtain.

It is remarkable that, even though the statement of the Main Theorem 1.2
involves only arithmetic circuits, its proof relies on uniformity arguments thus
requiring the model of Turing machines.

2. Preliminaries

2.1. The counting hierarchy. The (polynomial) counting hierarchy was
introduced by Wagner (1986) with the goal of classifying the complexity of
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certain combinatorial problems where counting is involved. It is best defined
by means of a counting operator C· that can be applied to complexity classes.

We denote by {0, 1}∗ × {0, 1}∗ → {0, 1}∗, (x, y) 7→ 〈x, y〉 a pairing function
(e.g., by duplicating each bit of x and y and inserting 01 in between).

Definition 2.1. Let K be a complexity class. We define C ·K to be the set
of all languages A such that there exist a language B ∈ K, a polynomial p,
and a polynomial time computable function f : {0, 1}∗ → N such that for all
x ∈ {0, 1}∗:

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > f(x).

Remark 2.2. The operators ∃· or ∀· can be introduced in a similar way by
instead requiring ∃y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B or ∀y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B,
respectively. It is clear that K ⊆ ∃ ·K ⊆ C ·K and K ⊆ ∀ ·K ⊆ C ·K.

By starting with the class K = P of languages decidable in polynomial time
and iteratively applying the operator C· we obtain the counting hierarchy.

Definition 2.3. The k-th level CkP of the counting hierarchy is recursively
defined by C0P := P and Ck+1P := C · CkP for k ∈ N. One defines CH as the
union of all classes CkP.

We recall that the classes of the polynomial hierarchy PH are obtained
from the class P by iteratively applying the operators ∃· and ∀·. It follows from
Remark 2.2 that the union PH of these classes is contained in CH. Also it is not
hard to see that CH is contained in the class PSPACE of languages decidable in
polynomial space.

We can assign to a complexity class K a class C′ ·K by modifying Defini-
tion 2.1 as follows: C′ ·K is the set of all languages A such that there exist a
language B ∈ K and a polynomial p such that for all x ∈ {0, 1}∗

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > 2p(|x|)−1.

Note that the definition of the familiar class PP (probabilistic polynomial time)
can be concisely expressed as C′ ·P = PP. It can be shown that Ck+1P = C′ ·CkP
for k ∈ N, cf. Torán (1991). We therefore get C1P = C′ · P = PP.

We recall also that the counting complexity class #P consists of all functions
g : {0, 1}∗ → N for which there exist a language B ∈ P and a polynomial p such
that for all x ∈ {0, 1}∗:

g(x) = |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}|.
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Hence functions in #P can be evaluated in polynomial time by calls to an oracle
in PP.

Torán (1991) has obtained the following alternative characterization of the
counting hierarchy, which is quite analogous to the corresponding characteri-
zation of the polynomial hierarchy: for k ∈ N we have

(2.4) Ck+1P = PPCkP.

We recall the definition of the nonuniform version K/poly of a complexity
class K by polynomial advice functions.

Definition 2.5. The nonuniform version K/poly of a complexity class K con-
sists of all languages A for which there exists a language B ∈ K and a function
α : N → {0, 1}∗ with |α(n)| polynomially bounded in n, such that x ∈ A iff
〈x, α(|x|)〉 ∈ B, for all x ∈ {0, 1}∗.

Lemma 2.6. The counting hierarchy collapses to P if PP = P. Moreover,
PP ⊆ P/poly implies CH/poly ⊆ P/poly.

Proof. The first statement is immediate. For the second suppose PP ⊆
P/poly. We prove CkP ⊆ P/poly by induction on k. The start k = 0 being
clear, let A ∈ Ck+1P = C′ · CkP. By definition, there exist B ∈ CkP and a
polynomial p such that for all n ∈ N, x ∈ {0, 1}n,

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(n) | 〈x, y〉 ∈ B}| > 2p(n)−1.

By induction hypothesis, we have B ∈ P/poly. Hence there exists D ∈ P and
an advice function α : N → {0, 1}∗ such that z ∈ B iff 〈z, α(|z|)〉 ∈ D. Hence
x ∈ A iff

|{y ∈ {0, 1}p(n) | 〈〈x, y〉, α(n + p(n))〉 ∈ D}| > 2p(n)−1.

It follows that A ∈ PP/poly, hence A ∈ P/poly. We have thus proved CH ⊆
P/poly. A slight extension of the above argument shows CH/poly ⊆ P/poly. �

The counting hierarchy is closely tied to the theory of threshold circuits of
bounded depth, cf. Allender & Wagner (1993). Recall that a majority gate
outputs 1 iff the majority of its inputs have the value 1. A threshold circuit
is a Boolean circuit consisting of majority gates only. The class of languages
decidable by a family of threshold circuits of polynomial size and depth O(1) is
denoted TC0. This class is known to characterize the power of (iterated) integer
multiplication. We refer to the textbook by Vollmer (1999) for an introduction
to this subject.
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2.2. The constant-free Valiant model. An arithmetic circuit over the
field Q is an acyclic finite digraph, where all nodes except the input nodes have
fan-in 2 and are labelled by +,−,× or /. The circuit is called division-free if
there are no division nodes. The input nodes are labelled by variables from
{X1, X2, . . .} or by constants in Q. If all constants belong to {−1, 0, 1}, then
the circuit is said to be constant-free. We assume that there is exactly one
output node, so that the circuit computes a rational function in the obvious
way. By the size of a circuit we understand the number of its nodes different
from input nodes.

Definition 2.7. The complexity LQ(f) of a rational polynomial f is defined
as the minimum size of an arithmetic circuit computing f . The τ -complexity
τ(f) of an integer polynomial f is defined as the minimum size of a divison-free
and constant-free arithmetic circuit computing f .

Note that LQ(f) ≤ τ(f). While LQ(c) = 0 for any c ∈ Q, it makes sense
to consider the τ -complexity of an integer k. For instance, one can show that
log log k ≤ τ(k) ≤ 2 log k for any k ≥ 2, cf. de Melo & Svaiter (1996).

In order to control the degree and the size of the coefficients of f we are
going to put further restrictions on the circuits. The (complete) formal degree of
a node is inductively defined as follows: input nodes have formal degree 1 (also
those labelled by constants). The formal degree of an addition or subtraction
node is the maximum of the formal degrees of the two incoming nodes, and the
formal degree of a multiplication node is the sum of these formal degrees. The
formal degree of a circuit is defined as the formal degree of its output node.

Valiant’s algebraic model of NP-completeness (1979a; 1982) explains the
hardness of computing the permanent polynomial in terms of an algebraic
completeness result (see also Bürgisser 2000a). For our purposes, it will be
necessary to work with a variation of this model. This constant-free model has
been systematically studied by Malod (2003). We briefly present the salient
features following Koiran (2004).

Definition 2.8. A sequence (fn) of integer polynomials belongs to the com-
plexity class VP0 iff there exists a sequence (Cn) of division-free and constant-
free arithmetic circuits such that Cn computes fn and the size and the formal
degree of Cn are polynomially bounded in n.

Clearly, if (fn) ∈ VP0 then τ(fn) = nO(1) . Moreover, it is easy to see
that the bitsize of the coefficients of fn is polynomially bounded in n. When
removing in the above definition the adjective “constant-free”, the original class
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VPQ over the field Q is obtained (Malod 2003). The class VP0 is universal in
the sense that a family (gn) is in VPQ iff there exists a family (fn) in VP0

such that gn can be obtained from fn by substituting some of the variables by
constants in Q.

The nondeterministic counterpart to VP0 is the following class.

Definition 2.9. A sequence (fn(X1, . . . , Xu(n))) of polynomials belongs to the
complexity class VNP0 iff there exists a sequence (gn(X1, . . . , Xv(n))) in VP0

such that

fn(X1, . . . , Xu(n))) =
∑

e∈{0,1}v(n)−u(n)

gn(X1, . . . , Xu(n), e1, . . . , ev(n)−u(n)).

(Hereby u(n) and v(n) are polynomially bounded functions of n.)

We note that by replacing VP0 by VPQ in this definition, the original class
VNPQ is obtained.

In Valiant’s original model, the following equivalences are well-known (cf.
Bürgisser 2000a):

VPQ = VNPQ ⇐⇒ (Pern) ∈ VPQ ⇐⇒ LQ(Pern) = nO(1).

In the constant-free setting, the situation seems more complicated. Figure 2.1
gives an overview of the known implications with this regard, as well as sum-
marizing the main results of this paper. Let us briefly comment on this.

It is not clear that τ(Pern) = nO(1) implies (Pern) ∈ VP0. The problem is
to transform an arithmetic circuit of size polynomial in n into one whose size
and formal degree are polynomially bounded in n. The usual homogenization
trick (cf. Bürgisser 2000a, Lemma 2.14) does not seem to work here. Neither
is it clear whether (Pern) ∈ VP0 implies VP0 = VNP0. The point here is that
in the algebraic completeness proof for the permanent, divisions by two occur.
(By contrast, (HCn) ∈ VP0 is equivalent to VP0 = VNP0, where HCn denotes
the n-th Hamilton cycle polynomial, cf. Malod 2003.) A partial implication for
the permanent was given by Koiran (2004, Theorem 4.3). The following is a
variation of his result.

Proposition 2.10. Suppose τ(Pern) = nO(1). Then for any family (fn) ∈
VNP0 there exists a polyomially bounded sequence (p(n)) in N such that
τ(2p(n)fn) = nO(1).
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Figure 2.1: Known implications between different hypotheses.

Proof. An inspection of Valiant’s algebraic completeness result (see for
instance Bürgisser 2000a) reveals that any family (fn) in VNP0 can be ex-
pressed as a projection fn = Perp(n)(y1, . . . , yp(n)2), where p(n) is polyno-
mially bounded in n and the yi are either variables or constants taken from
{−1,−1/2, 0, 1/2, 1}. By the homogeneity of the permanent we get 2p(n)fn =
Perp(n)(2y1, . . . , 2yq(n)2). This shows the assertion. �

Valiant (1979a, Remark 1) developed the following useful criterion for rec-
ognizing families in VNP0, see also Bürgisser (2000a, Proposition 2.20) and
Koiran (2004, Theorem 2.3). For instance, this criterion easily implies that the
sequence (Pern) of permanent polynomials lies in the class VNP0.

Proposition 2.11. Consider a map a : N × N → N, (n, j) 7→ a(n, j) that lies
in the complexity class #P/poly, when n is encoded in unary and j in binary.
Let p : N → N be a polynomially bounded function and let ji denote the bit of
0 ≤ j < 2p(n) of weight 2i−1. Then the following sequence (fn) of polynomials
is in VNP0:

fn(X1, . . . , Xp(n)) =
2p(n)−1∑

j=0

a(n, j)Xj1
1 · · ·Xjp(n)

p(n) .
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This criterion has been “scaled down” by (Koiran 2004, Theorem 6.1) as
follows.

Theorem 2.12. Assume the map a : N × N → N, (n, j) 7→ a(n, j) is in the
complexity class #P/poly, where n, j are encoded in binary. Let p : N → N
be polynomially bounded and satisfying p(n) ≥ n for all n. Consider the
polynomial

Fn(X1, . . . , X`(n)) =

p(n)∑
j=0

a(n, j)Xj1
1 · · ·Xj`(n)

`(n) ,

where `(n) = 1 + blog p(n)c and ji denotes the bit of j of weight 2i−1. Then
there exists a family (Gr(X1, . . . , Xr, N1, . . . , Nr, P1, . . . , Pr))r∈N in VNP0 that
satisfies

Fn(X1, . . . , X`(n)) = G`(n)(X1, . . . , X`(n), n1, . . . , n`(n), p1, . . . , p`(n)))

for all n, where ni and pi denote the bits of n and p(n) of weight 2i−1, respec-
tively.

We will also need the following observation.

Lemma 2.13. τ(Pern) = nO(1) implies that PP ⊆ P/poly.

Proof. Suppose there is a family (Cn) of constant-free and division-free
arithmetic circuits of polynomial size such that Cn computes the permanent
Pern. Let pn be a prime such that n! < pn ≤ 2nO(1)

(pn is interpreted as
a polynomial advice for input size n). On an input A ∈ {0, 1}n×n, we exe-
cute the arithmetic circuit Cn in the finite field Fpn . This computation can
be simulated by a Boolean circuit of polynomial size. Moreover, from the re-
sult Per(A) mod pn, the integer value of the permanent of A can be retrieved.
Since the computation of the permanent of matrices with entries in {0, 1} is
#P-complete (Valiant 1979b), it follows that any function in the class #P
can be computed in nonuniform polynomial time. This clearly implies that
PP ⊆ P/poly. �

We remark that the proof of the above lemma can be extended to handle
also arithmetic circuits using divisions.
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3. Integers definable in the counting hierarchy

We consider sequences of integers a(n, k) defined for n, k ∈ N and 0 ≤ k ≤ q(n),
where q is polynomially bounded, such that

(3.1) ∀n > 1 ∀k ≤ q(n) |a(n, k)| ≤ 2nc

for some constant c. We shall briefly refer to such sequences a = (a(n, k)) as
being of exponential bitsize (we think of n, k as being represented in binary
using O(log n) bits). The falling factorials a(n, k) = n(n− 1) · · · (n−k +1) are
an interesting example to keep in mind; note that a(n, k) ≤ 2n2

.
We shall write |a| := (|a(n, k)|) for the sequence of absolute values of a. We

assign to a sequence a = (a(n, k)) of exponential bitsize the following languages
with the integers n, k, j represented in binary:

Sgn(a) := {(n, k) | a(n, k) ≥ 0}
Bit(|a|) := {(n, k, j, b) | the j-th bit of |a(n, k)| equals b }.

The integer j can thus be interpreted as an address pointing to bits of a(n, k).
Because of (3.1), we have j ≤ nc and thus log j = O(log n).

Definition 3.2. A sequence a of integers of exponential bitsize is called de-
finable in the counting hierarchy CH iff Sgn(a) ∈ CH and Bit(|a|) ∈ CH. If both
Sgn(a) and Bit(|a|) lie in CH/poly then we say that a is definable in CH/poly.

This definition and all what follows extends to sequences (a(n, k1, . . . , kt))
with a fixed number t of subordinate indices k1, . . . kt ≤ nO(1) in a straightfor-
ward way. For the sake of simplifying notation we only state our results for the
cases t ∈ {0, 1}.

Remark 3.3. If n 7→ a(n) is computable in polynomial time, then clearly
Sgn(a) ∈ P and Bit(|a|) ∈ P. In particular, a is definable in CH. (Note that in
this case log a(n) = (log n)O(1).)

Our next goal is to find a useful criterion for showing that specific sequences
are definable in CH. Let m mod p ∈ {0, . . . , p− 1} denote the remainder of m
upon division by the prime p. We assign to a = (a(n, k)) and a corresponding
constant c > 0 satisfying (3.1) the Chinese remainder language

CR(a) := {(n, k, p, j, b) | p prime, p < n2c,

the j-th bit of a(n, k) mod p equals b}.
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Again, the integers n, k, p, j are to be represented in binary with O(log n)
bits. (We suppress the dependence of CR(a) on c to simplify notation.) Note
that the absolute value |a(n, k)| ≤ 2nc

is uniquely determined by the residues
a(n, k) mod p for the primes p < n2c, since the product of these primes is larger
than 2nc

(for n > 1).

Lemma 3.4. Suppose that the sequence a = (a(n)) of integers is easy to com-
pute in the sense of Shub and Smale (1995), that is, τ(a(n)) = (log n)O(1).
Then CR(a) ∈ P/poly.

Proof. By assumption, there are arithmetic circuits Cn of size (log n)O(1)

computing a(n). On input (n, k, p, j, b), given the advice Cn, we evaluate Cn in
the finite field Fp to obtain a(n) mod p. This is possible in time polynomial in
log n as log p = O(log n). �

The following criterion for definability in CH turns out to be a rather
straightforward consequence of the results in Hesse et al. (2002) on uniform
bounded-depth threshold circuits for division and iterated multiplication of
integers.

Theorem 3.5. Let a be a sequence of integers of exponential bitsize. Then a
is definable in CH iff Sgn(a) ∈ CH and CR(a) ∈ CH. Moreover, a is definable
in CH/poly iff Sgn(a) ∈ CH/poly and CR(a) ∈ CH/poly.

Proof. We first show that for nonnegative sequences a of exponential bitsize

(3.6) a is definable in CH ⇐⇒ CR(a) ∈ CH

and similarly for the nonuniform situation.
By the Chinese Remainder Representation (CRR) of an integer 0 ≤ X ≤ 2n

we understand the sequence of bits indexed (p, j) giving the j-th bit of X mod
p, for each prime p < n2. (The length of this sequence is O(n2).)

It was shown by Hesse et al. (2002, Theorem 4.1) that there are Dlogtime-
uniform threshold circuits of polynomial size and depth bounded by a con-
stant D that on input the Chinese Remainder Representation of 0 ≤ X ≤ 2n

compute the binary representation of X. Let this circuit family be denoted by
{Cn}.

Suppose that a is a sequence of nonnegative integers satisfying (3.1). For
d ∈ N consider the language Ld consisting of the binary encodings of (n, k, F, b),
where F is the name of a gate at level at most d of the threshold circuit Cnc

and F evaluates to b on input the CRR of a(n, k).
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Claim. Ld+1 ∈ PPLd for 0 ≤ d < D.

We argue as in Allender et al. (2006). Due to the Dlogtime-uniformity of the
circuits we can check in linear time whether two gates F and G are connected.
Let F be a gate at level d + 1. On input (n, k, F, b), we need to determine
whether (n, k, G, 1) is in Ld for a majority of the gates G connected to F . This
is possible in PPLd , which proves the claim.

We can now show the direction from right to left of (3.6). Suppose that
CR(a) is contained in the s-th level CsP of the counting hierarchy. This means
that L0 ∈ CsP. Using the claim and (2.4) we conclude that Ld ∈ Cs+dP ⊆
Cs+DP. Applying this to the output gates of Cnc we see that a is definable in
CH. Similarly, if CR(a) ∈ CsP/poly we obtain Ld ∈ Cs+dP/poly.

In order to show the direction from left to right of (3.6) we argue in the same
way, using the fact that the reverse task of computing the CRR of 0 ≤ X ≤ 2n

from the binary representation of X can be accomplished by Dlogtime-uniform
threshold circuits of polynomial size and constant depth, cf. Hesse et al. (2002,
Lemma 4.1).

We claim that for completing the proof it now suffices to prove that

(3.7) Sgn(a) ∈ CH and CR(a) ∈ CH ⇐⇒ Sgn(a) ∈ CH and CR(|a|) ∈ CH

and similarly for the nonuniform situation. Indeed, suppose a is definable in CH.
Then |a| is definable in CH and hence CR(|a|) ∈ CH by (3.6). Applying (3.7)
we conclude that CR(a) ∈ CH. For the other direction (and the nonuniform
statement) one argues similarly.

For proving the equivalence (3.7) note first that |a(n, k)| = −a(n, k) if
a(n, k) < 0. The equivalence follows now from the fact that from the binary
representation of an integer 0 ≤ X ≤ 2n and a prime p < n2, the binary
representation of −X mod p can be computed by unbounded fan-in Boolean
circuits of constant depth and size polynomial in n, cf. Vollmer (1999). �

Corollary 3.8. If a and b are two sequences of nonnegative integers definable
in CH, then so is a− b. Similarly in the nonuniform situation.

Proof. By Theorem 3.5 we know that CR(a), CR(b) ∈ CH. Using Hesse
et al. (2002, Lemma 4.3) and proceeding as in the proof of Theorem 3.5 we
conclude Sgn(a− b) ∈ CH. Moreover it is obvious that CR(a− b) ∈ CH. Now
apply again Theorem 3.5. In the nonuniform case similar arguments apply �
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Corollary 3.9. If the sequence a = (a(n)) of integers is easy to compute,
then a is definable in CH/poly.

Proof. If a is nonnegative, the assertion follows by combining Lemma 3.4
with Theorem 3.5. In the general case we consider the nonnegative sequence
ã(n) := a(n) + 2dn

ce. It is easy to compute and hence defined in CH/poly. The
same is true for the nonnegative sequence (2dn

ce)n. Corollary 3.8 thus implies
that a is definable in CH/poly. �

From the above criterion we can derive the following closure properties with
respect to iterated addition, iterated multiplication, and integer division.

Theorem 3.10. 1. Suppose a = (a(n, k))n∈N,k≤q(n) is definable in CH, where
q is polynomially bounded. Consider

b(n) :=

q(n)∑
k=0

a(n, k), d(n) :=

q(n)∏
k=0

a(n, k).

Then b = (b(n)) and d = (d(n)) are definable in CH. Moreover, if a is definable
in CH/poly, then so are b and d.

2. Suppose (s(n))n∈N and (t(n))n∈N are definable in CH and t(n) > 0 for
all n. Then the sequence of quotients (bs(n)/t(n)c)n∈N is definable in CH. The
analogous assertion holds for CH/poly.

Proof. 1. Iterated addition is the problem to compute the sum of n integers
0 ≤ X1, . . . , Xn ≤ 2n in binary. This problem is well known to be in Dlogtime-
uniform TC0, cf. Vollmer (1999). By scaling up this result as in the proof of
Theorem 3.5, we obtain the claim for b in the case where a(n, k) ≥ 0.

The general case for b follows by applying this to each of two sums in

b(n) =

q(n)∑
k=0

a(n, k) · 1{a(n,k)≥0} −
q(n)∑
k=0

(−a(n, k)) · 1{a(n,k)<0}

and by using Corollary 3.8.
The claim for the iterated multiplication will follow by scaling up the ar-

guments in Hesse et al. (2002) to the counting hierarchy. Those arguments
are similar as in Beame et al. (1986), except that the much stronger Dlogtime-
uniformity condition was achieved in Hesse et al. (2002). We need this unifor-
mity condition for obtaining our result.
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Suppose that a is definable in CH. First note that we can check for given
n in CH whether all a(n, k) are nonzero. We therefore assume w.l.o.g. that
a(n, k) 6= 0 and write a(n, k) = (−1)e(n,k)|a(n, k)| with e(n, k) ∈ {0, 1}. By
definition, the sequence (e(n, k)) is definable in CH. We have

d(n) = (−1)s(n)

q(n)∏
k=0

|a(n, k)| where s(n) =

q(n)∑
k=0

e(n, k).

According to the first claim of the theorem, (s(n)) is definable in CH. Hence it
suffices to prove the second claim for a nonnegative sequence a.

By Theorem 3.5 we know CR(a) ∈ CH and it suffices to prove that CR(d) ∈
CH. Suppose d satisfies (3.1) with the constant c > 0. Let a prime p ≤ n2c be
given. We can find the smallest generator g of the cyclic group F×

p in PPH by
bisecting according to the following oracle in Σ2 (u < p):

∃ 1 ≤ g < u ∀ 1 ≤ i < p gi 6= 1.

Note that gi can be computed by repeated squaring in polynomial time. Sim-
ilarly, for a given u ∈ F×

p , we can compute the discrete logarithm 0 ≤ i < p
defined by u = gi in PNP.

Let α(n, k) denote the discrete logarithm of a(n, k) mod p for k ≤ q(n). We
have (recall that we assume now a(n, k) ≥ 0)

d(n) mod p =
∏

k

a(n, k) mod p =
∏

k

gα(n,k) = g
∑

k α(n,k).

By the previous reasonings we see that (α(n, k)) is definable in CH. More-
over, by part one of the theorem we conclude that (δ(n)) defined by δ(n) =∑q(n)

k=0 α(n, k) is definable in CH. Hence d(n) mod p is computable in CH. Sim-
ilar arguments apply in the nonuniform case.

2. The claim for integer division follows as before by scaling up the argu-
ments in Beame et al. (1986) and Hesse et al. (2002) to the counting hierarchy.

�

Corollary 3.11. The sequence of factorials (n!) is definable in CH. More
generally, the falling factorials (n(n− 1) · · · (n−k +1))k≤n are definable in CH.

Proof. This follows from Theorem 3.10 and Remark 3.3. �

We denote by σk(z1, . . . , zn) the k-th elementary symmetric function in the
variables z1, . . . , zn (0 ≤ k ≤ n).
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Corollary 3.12. The sequence (σk(1, 2, . . . , n))n∈N,k≤n is definable in CH.

Proof. Starting from (X + 1) · · · (X + n) =
∑n

k=0 σk(1, . . . , n)Xn−k and

substituting T by 2n2
we get

d(n) := (2n2

+ 1) · · · (2n2

+ n) =
n∑

k=0

σk(1, . . . , n)2n2(n−k).

Since σk(1, 2, . . . , n) < 2n2
there is no overlap of the bit representations, hence

the bits of σk(1, 2, . . . , n) can be read off the bit vector of d(n). It is therefore
sufficient to show that (d(n)) is definable in CH.

Using Theorem 3.10, it is enough to prove that the sequence c(n, k) = 2n2
+k

for k ≤ n, n ∈ N, is definable in CH. However, it is clear that Bit(c) ∈ P. �

4. Connecting Valiant’s model to integers and
univariate polynomials

We establish now the announced connection between Valiant’s constant-free
model and sequences of polynomials having coefficient sequences that are de-
finable in the counting hierarchy.

Theorem 4.1. Consider a sequence (a(n))n∈N of integers definable in CH/poly
and sequences

fn =

q(n)∑
k=0

b(n, k)Xk ∈ Z[X], gn =
1

d(n)
fn ∈ Q[X]

of integer and rational polynomials, respectively, such that (b(n, k))n∈N,k≤q(n)

and (d(n))n∈N are both definable in CH/poly (in particular, q is polynomially
bounded).

If τ(Pern) = nO(1), then the following holds:

1. τ(a(n)) = (log n)O(1).

2. τ(2e(n)fn) = (log n)O(1) for some polynomially bounded sequence (e(n))
in N.

3. LQ(gn) = (log n)O(1).
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Proof. We assume that τ(Pern) = nO(1). By Lemma 2.13 this yields PP ⊆
P/poly. According to Lemma 2.6, this implies that CH/poly ⊆ P/poly.

1. Let a(n) =
∑p(n)

j=0 a(n, j)2j be the binary representation of a(n). Without
loss of generality we may assume that the polynomially bounded function p
satisfies p(n) ≥ n. By assumption, we can decide a(n, j) = b in CH/poly,
where n, j are given in binary. Because of the assumed collapse of the counting
hierarchy we can decide a(n, j) = b in P/poly.

Consider the polynomial

An(Y1, . . . , Y`(n)) =

p(n)∑
j=0

a(n, j)Y j1
1 · · ·Y j`(n)

`(n) ,

where `(n) = 1 + blog p(n)c and ji denotes the bit of j of weight 2i−1. Note
that

An(220

, 221

, . . . , 22`(n)−1

) = a(n)

By Theorem 2.12 there is a family (Gr(Y1, . . . , Yr, N1, . . . , Nr, P1, . . . , Pr)) in
VNP0 that satisfies for all n

An(Y1, . . . , Y`(n)) = G`(n)(Y1, . . . , Y`(n), n1, . . . , n`(n), p1, . . . , p`(n)),

where ni and pi denote the bits of n and p(n) of weight 2i−1, respectively.
By Proposition 2.10 there exists a polynomially bounded sequence (s(r)) in

N such that τ(2s(r)Gr) = rO(1). This implies τ(2e(n)G`(n)) = (log n)O(1), where
e(n) = s(`(n)) = (log n)O(1). We conclude from the above that

2e(n)a(n) = 2e(n)G`(n)(2
20

, 221

, . . . , 22`(n)−1

, n1, . . . , n`(n), p1, . . . , p`(n)),

hence

τ(2e(n)a(n)) ≤ τ(2e(n)G`(n)) + `(n) ≤ (log n)O(1).

Lemma 4.4 in Koiran (2004) implies τ(a(n)) ≤ (2e(n) + 3)τ(2e(n)a(n)). Alto-
gether, we obtain τ(a(n)) = (log n)O(1).

2. Let b(n, k) =
∑p(n)

j=0 b(n, k, j)2j be the binary representation of b(n, k) for
k ≤ q(n). As before we assume p(n) ≥ n without loss of generality. Consider
the polynomial

Bn(Y1, . . . , Y`(n), Z1, . . . , Zλ(n)) =

p(n)∑
j=0

q(n)∑
k=0

b(n, k, j)Y j1
1 · · ·Y j`(n)

`(n) Zk1
1 · · ·Zkλ(n)

λ(n) ,
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where `(n) = 1 + blog p(n)c , λ(n) = 1 + blog q(n)c, and ji, ki denote the bit of
j, k of weight 2i−1, respectively. Note that

Bn(220

, 221

, . . . , 22`(n)−1

, X20

, X21

, . . . , X22λ(n)−1

) =

q(n)∑
k=0

b(n, k)Xk = fn.

By Theorem 2.12 there is a family (Gr(X1, . . . , Xr, N1, . . . , Nr, P1, . . . , Pr)) in
VNP0 that satisfies for all n

Bn(Y, Z) = G`(n)+λ(n)(Y, Z, n1, . . . , n`(n)+λ(n), p1, . . . , p`(n), q1, . . . , qλ(n)),

where (Y, Z) = (Y1, . . . , Y`(n), Z1, . . . , Zλ(n)) and ni, pi, and qi denote the bits of
n, p(n), and q(n) of weight 2i−1, respectively. By Proposition 2.10 there exists
a polynomially bounded sequence (s(r)) in N such that τ(2s(r)Gr) = rO(1).
This implies τ(2e(n)G`(n)+λ(n)) = (log n)O(1), where e(n) := s(`(n) + λ(n)) =
(log n)O(1). We conclude from the above that

τ(2e(n)fn) ≤ τ(2e(n)G`(n)+λ(n)) + `(n) + λ(n) ≤ (log n)O(1).

3. We know already that τ(2e(n)fn) = (log n)O(1). By the first assertion,
we have τ(d(n)) = (log n)O(1). Using one division, we conclude that LQ(gn) =
(log n)O(1). �

We can now complete the proof the main result stated in the introduction.

Proof of Main Theorem 1.2. We prove the contraposition and hence as-
sume that τ(Pern) = nO(1).

1. The sequence of factorials a(n) = n! is definable in CH according to
Corollary 3.11. By Theorem 4.1(1) we get τ(n!) = (log n)O(1). This proves the
first assertion.

2. Consider the Pochhammer-Wilkinson polynomial

fn =
n∏

k=1

(X − k) =
n∑

k=0

(−1)kσk(1, 2, . . . , n) Xn−k,

which has exactly n integer roots. Corollary 3.12 implies that its coefficient
sequence is definable in CH. By Theorem 4.1(2) we have τ(2e(n)fn) = (log n)O(1)

for some (e(n)). The polynomial 2e(n)fn violates the τ -conjecture.
3. We have gn =

∑n
k=0

1
k!

T k = 1
n!

∑n
k=0 n(n − 1) · · · (k + 1) Xk. According

to Corollary 3.11 both the coefficient sequence and the sequence (n!) of denom-
inators are definable in CH. Theorem 4.1(3) implies that LQ(gn) = (log n)O(1).

4. Similar to 3. �
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We can also prove a conditional implication refering to the original Valiant
hypothesis VPC 6= VNPC (dealing with arithmetic circuits using divisions and
arbitrary complex constants).

Corollary 4.2. Assuming the generalized Riemann hypothesis, LC(Pern) =
nO(1) implies that LC(gn) = (log n)O(1), where gn is as in Theorem 4.1.

Proof. Suppose that LC(Pern) = nO(1). In Bürgisser (2000b) it was shown
that this implies PP ⊆ NC/poly ⊆ P/poly, assuming the generalized Riemann
hypothesis. Since (Pern) is VNP-complete, we have LC(fn) = nO(1) for any
(fn) ∈ VNP. Now we can argue as in the proof of Theorem 4.1 with LC instead
of τ . �

It is an intriguing question whether the Riemann hypothesis can be avoided
in Corollary 4.2. Its role in the proof is to eliminate complex constants, while
the corollary is about a model of computation in which arbitrary constants are
allowed.

We proceed with further applications of Theorem 4.1. The following result
answers in the affirmative some questions posed by Koiran (2004). From the
very general proof technique, it becomes obvious that this result actually holds
for a large class of integer sequences, so the choice of the sequences below is for
illustration and just motivated by Koiran’s question. Of course, one could as
well consider expansions in radix different from 2, like (b10nec)n∈N.

Corollary 4.3. If one of the following integer sequences is hard to compute,
then τ(Pern) is not polynomially bounded in n:

(b2nec)n∈N, (b(3/2)nc)n∈N, (b2n
√

2c)n∈N.

Proof. 1. A straightforward estimation shows e =
∑∞

k=0
1
k!

=
∑n+1

k=0
1
k!

+ εn

with 0 < εn < 2−n. It follows that b(n) ≤ b2nec ≤ b(n) + n + 3, where

b(n) :=
n+1∑
k=0

b2
n

k!
c.

Hence b2nec = b(n) + r(n) where r(n) is an integer sequence satisfying 0 ≤
r(n) ≤ n + 3.

The sequence (r(n)) is easy to compute since τ(m) ≤ 2 log m for m ≥ 1,
cf. Blum et al. (1998). Hence (b2nec)n∈N is hard to compute iff (b(n)) is hard
to compute. By Theorem 4.1 it is enough to prove that (b(n)) is definable in
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CH/poly. We already know that (2n) and (k!) are definable in CH (cf. Corol-
lary 3.11). By applying Theorem 3.10 first for the quotients b2n

k!
c and then for

the iterated sum, we conclude that (b(n)) is indeed definable in CH.
2. The binomial expansion (3/2)n = (1 + 1

2
)n =

∑n
k=0

(
n
k

)
2−k yields

b(3/2)nc =
n∑

k=0

b n(n− 1) · · · (n− k + 1)

k!2k
c+ r(n)

for some integers r(n) satisfying 0 ≤ r(n) ≤ n + 1. The assertion follows by
arguing as for the first claim.

3. We start with the binomial series expansion

3

4

√
2 =

√
18

16
=

√
1 +

1

8
=

∞∑
k=0

(
1
2

k

)
8−k =

n−1∑
k=0

(
1
2

k

)
8−k + εn.

Hereby,
( 1

2
k

)
= 1

k!
1
2
(−1

2
) · · · (1

2
− k + 1) for k > 0 and

( 1
2
0

)
= 1. The error εn

can be expressed with Lagrange’s formula for the function f(x) = (1 + x)1/2 as
follows: for some ξn ∈ (1, 9/8) we have (using n! ≥ (n/e)n)

|εn| =
1

n!
|f (n)(ξn)| 8−n =

1

n!

1 · 3 · 5 · · · (2n− 3)

2n

1

(1 + ξ)
2n−1

2

8−n

≤
(e

8

)n

<
3

4
2−n.

This implies, for some integer r(n) satisfying 0 ≤ r(n) ≤ n + 1,

b2n
√

2c =
n−1∑
k=0

b4
3

(
1
2

k

)
2n

8k
c+ r(n).

The sequence 4
3

( 1
2
k

)
2n

8k = 1·3·5···(2n−3)·4·2n

k!·3·8k is definable in CH by Theorem 3.10.
The assertion follows now as before. �
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