
On Defining Proofs of Knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
klihir Bellare’ and Oded Goldreich”*

High Performame Computing and Communications, IBM T.J. Watson Research
Center, P o Box 704, Yorktown Heights, NY 10598, USA. e-mail:

rnihi rQuatson. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAibm. corn.

Computer Science Department, Technion, Haifa, Israel. e-mail: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2

adedQcs.technion.ac.il.

Abstract. T h e notion of a “proof of knowledge,” suggested by Gold-
wasser, Micali and Rackoff, has been used in many works as a tool for
the construction of cryptographic protocols and other schemes. Yet the
commonly cited formalizations of this notion are unsatisfactory and in
particular inadequate for some of the applications in which they are used.
Consequently, new researchers keep getting misled by existing literature.
The purpose of this paper is to indicate the source of these problems and
suggest a definition which resolves them.

1 Introduction

The introduction of the concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa LLproof of knowledge” is one of the many
conceptual contributions of the work of Goldwasser, Micali and Rackoff 1141. This
fundamental work, though containing intuition and clues towards a definition of
the notion of a “proof of knowledge,” does not provide a formal definition of
i t . Furthermore, in our opinion, the commonly cited formal definitions, namely
those of Feige, Fiat and Shamir [6] and Tornpaand Woll [18], are not satisfactory,
and, in particular, inadequate for some of the applications in which they have
been used.

The purpose of this paper is two-fold. First, we would like to describe whence
stem the flaws in the previous definitions and why these definitions do not suffice
for some applications. We then propose a definition which we feel remedies these
defects and also has other advantages.

We note that a definition which is much better than those of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6 , 181 has
appeared in the work of Feige and Shamir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7] , but the communityseems unaware
of the fact that the definition in [7] is fundamentally different from, and preferable
to, the one in [6] (in particular, this fact is not stated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[i’]). The definition
we present differs in many ways from that of 171 which we feel still has some
conceptual problems. Yet both have in common the attempt to capture provers
who convince with probabilities that are not non-negligible, thereby correctly
addressing what we believe is one of the main flaws in the definitions of [6, 181. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ Research was partially supported by grant No. 89-00312 from the US-Israel Bina-

tional Science Foundation (BSF), Jerusalem, Israel.

E.F. Brickell (Ed.): AdLTances 111 Cryptology - CRX’PTO ’92, LNCS 740, pp. 390-420, 1993. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 Spnnger-Verlag Berlin Heidelberg 1993

39 1

Among the novel features of our new definition is that it allows us also to
talk of the knowledge of machines which operate in super-polynomial-time. But
this (and other novel features) we will discuss later; let us begin with the basics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1

Intuitively, a two-party protocol constitutes a “system for proofs of knowledge”
if “whenever” one party (called the verifier) is “ c ~ n v i n c e d ” ~ then the other party
(called the prover) indeed “knows” “something”. The excessive use of quotation
symbols in the condition of the above statement may provide some indication
to the complexity of the notion. For simplicity, let us consider the special case
in which the “object of knowledge” is a witness for membership of a common
input in some predetermined language in NP. For example, let us consider the
case in which the “object of knowledge” is a satisfying assignment for a CNF
formula (given as input to both parties). Hence, a two-party protocol constitutes
a “system for proofs of knowledge of satisfying assignments” if “whenever” the
verifier is “convinced” then the prover indeed “knows” a satisfying assignment
for the given formula. The clue to a formalization of “proofs of knowledge” is an
appropriate interpretation of the phrases “whenever” and “knows” which appear
in the condition. The phrase “convinced” has the straightforward and standard
interpretation of accepting (i.e., entering a specified state in the computation).

Following zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14] the interpretation of the phrases “whenever” and “knows”
is as follows. Suppose for simplicity that the verifier is always convinced (i.e.
after interaction with the prover the verifier always enters an accepting state).
Saying that the prover “knows” a satisfying assignment means that it “can be
modified” so that it outputs a satisfying assignment. The notion of “possible
modifications of machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ” is captured by efficient algorithms that use iVf
as an oracle. Hence, saying that the prover “knows” a satisfying assignment
means that it is feasible to compute a satisfying assignment by using the prover
as an oracle. Namely, there exists an efficient algorithm, called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknowledge
eilractor, that on input a formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p and given oracle access to a good prover
(i.e. a prover which always convince the verifier on common input (6) is able t o
output a satisfying assignment to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Indeed, this is exactly the interpretation
given in works as [18, 61. The problem is to deal with the general case in which
the prover may convince the verifier with some probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE < 1. Again, for
constant e there is no problem and it can be required that even in this case the
knowledge extractor succeeds in outputting a satisfying assignment in expected
polynomial-time (or alternatively output such an assignment in polynomial t ime
with probability exponentially close to 1). This interpretation is valid also if 6

is any non-negligible function of the length of the input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (a non-negligible
function in n is a function which is asymptotically bounded from below by a
function of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-‘, for some constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc) . But what should be required
if the PTOVer does not convince the .verifier with non-negligible probability? Most

Basic approach i n defining proofs of knowledge

We have replaced the more intuitive but possibly misleading phrase “convinced that
the prover knows something” by the neutral phrase “convinced”

392 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
previous formulations (e.g., j18, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61) require nothing, and hence are unsatisfactory
both from a conceptual point of view and from a practical point of view [i.e., in
view of many known applications). In particular, this inadequacy often appears
when “proofs of knowledge” are used as subprotocols inside larger protocols. In
other words, the inadequate formulations of “proofs of knowledge” drastically
l imit their modular application in the construction of cryptographic protocols.

1.2 Provers which convince with probability that is not

no n- ne gligib zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAle

We start with a n abstract justification of our claim that requiring nothing, in
case the prover does not convince the verifier with non-negligible probability, is
wrong. We first uncover the reason i t has been believed that it is justified to

require nothing. It has been believed that events which occur with probability
which is not non-negligible can be ignored, just as events which occur with
negligible probability can he ignored. However, a key observation, which has been
overlooked by this argument, is that a sequence of probabilities can be neither
negligible (i.e., smaller that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-‘ for all c > 0 and all sufficiently large n’sj nor
non-negligible (i.e., bigger that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-’ for some c > 0 and all sufficiently large n).
Hence, even if it were justified to require nothing in case the prover convinces
the verifier with negligible probability, it is iinjustified to require nothing in case
the probability of being convinced is just not non-negligible!

To demonstrate what is wrong when we require nothing in case the prover
does not convince the verifier with a non-negligible probability, we consider the
following possibility. Suppose that there exist a prover and an infinite sequence of
CNF formulae, {& : nEIN), such that the probability that the prover convinces
the verifier on common input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbn is n-k , where n is the length of q!+, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is
the number of literals in the longest clause of q ! ~ ~ . Furthermore, suppose that,
for every ,k > 0, there exists infinitely many n’s such that k is the number
of literals in the longest clause of &. An important observation is that the
sequence of probabilities (defined by the above prover and formulae) is neither
negligible (i-e., smaller that n-‘ for all c > 0 and all sufficiently large n’s) nor
non-negligible (i.e., bigger that n-‘ for some c > 0 and a11 sufficiently large
n). Hence, previous definitions of “proof of knowledge” require nothing (or too
little) with respect to the above prover. To appreciate the severity of the lack of
requirement with respect to the above prover consider the following application.
Suppose that each (,6n has a unique satisfying assignment, and that a “proof of
knowledge of a satisfying assignment” is used as a subprotocol inside a protocol
in which Alice will send Bob a satisfying assignment to & if she is convinced by
Bob that he already knows this assignment. We would like to argue that in this
application Alice yields no knowledge to Bob (i.e-, Alice is zero-knowledge).
Using a reasonable definition of “proof of knowledge” one should be able to
prove such a statement (and indeed using our definition such a proof can be
presented). Yet, the zero-knowledge property of Alice can not be demonstrated

393

using previous formulations of “proof of k n ~ w l e d g e . ” ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A more concrete and practical setting can help to further clarify our point.

It has been suggested to use a “proof of knowledge” as a subprotocol inside a
multi-round encryption scheme secure against chosen ciphertext attack (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[S,
Sec. 51 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15, Sec. 5.41). Namely, the decryption module returns a decryption
of a chosen ciphertext only if “convinced” that the party asking for it already
“knows i t” . (This is a special case of the application considered in the previous
paragraph). Using previous formalizations of “proof of knowledge” it cannot be
proved that the above “decryption module” is zero-knowledge (i.e., yields no
knowledge) under a chosen ciphertext attack. Yet, the above decrypt,ion module
is zero-knowledge and this zero-knowledge property (though not proven!) has
been used to claim that the particular multi-round encryption scheme is secure
against chosen message attack. We stress that the above mentioned encryption
scheme is indeed secure under such attacks, it is just that its security has not
been proven hut rather “hand-waved”, ar,d that the essential flaw in the hand-
waving is the fact that it is based on an inadequate formalization of proofs of
knowledge.

The above example is very typical. In many (yet not all) applications of
“proofs of knowledge” one relies on their meaningfulness with respect t o arhi-
trary behavior of the prover. Yet as pointed out. above, previous formalizations of
“proof of knowledge” are meaningful only in case the prover convince the verifier
with non-negligible probability. One should not make the mistake of saying that
events which happen with probability that is not non-negligible can be ignored,
since such probabilities are not negligible! Put in other words, negligible is not
the negation of non-negligible!

TO avoid confusion we stress that the definitions of [6] do suffice for the
applications in their paper. Problems (as illustrated above) have arisen when
these same definitions have (later) been used in other applications.

1.3 A few words about the definition presented in this paper

The most important aspect in which our definition (as well as the one of [7])
deviates from the previous ones is that there is no sharp distinction between
provers based on whether they convince the verifier with non-negligible proba-
bility or not. In our case, the requirement is that the knowledge extractor always
succeeds and that the average number of steps it performs is inversely propor-
tional (via a polynomial factor) to the probability that the prover convinces the
verifier.

Over and above this change, we have t aken the opportunity to correct what
we feel are other conceptual drawbacks of previous definitions (including [7]).

Typically, the simulator for the zero-knowledge property uses the knowledge extrac-
tor (for the proof of knowledge) as a subroutine. However, previous formulations
of “proof of knowledge” do not guarantee a knowledge extractor which handles the
entire sequence of formulae. On the other hand, one cannot ignore the case in which
something is sent by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlice since this case is not negligible.

394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Although these other changes are to some extent a matter of taste they are
nonetheless important, and also enable us to obtain definitions that are more
general than previous ones. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs examples, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa few such issues are discussed below;
we refer the reader to §4 for more details as well as for a discussion of the many
other points of difference.

All previous definitions refer only to provers which can be implemented by
probabilistic, polynomial time programs (with auxiliary input). In some works it
is even claimed that it makes no sense to talk of the knowledge of computationally
unrestricted machines. We strongly disagree with such claims, and point out
that previous definitions have considered only computationally restricted provers
because of technical reasons. From a conceptual point of view it is desirable to
have a “uniform” definition of proofs of knowledge which refers to all provers
independently of their complexity, the probability they lead the verifier to accept,
and so on. In fact, ou r definition has this property. A consequence of this property
is that our definition enables one to talk of the “knowledge” of super-polynomial-
time machines. For example, we are able to say in what sense the interactive
proofs introduced by Shamir [17], in order to demonstrate that IP=PSPACE,
constitute “proofs of knowledge.”

Most proofs of knowledge (e.g., the proof of knowledge of an isomorphism
used by [12] - see Appendix E) are constructed by iterating some “atomic” pro-
tocol. Typically, these atomic protocols have the property that one can easily
lead the verifier to accept with some constant probability (say, l/2) even when
having no “knowledge” whatsoever. Yet, these atomic protocols do prove some
“knowledge” of the prover, in case it is able to convince the verifier with higher
probability. However, previous definitions of “proof of knowledge’’ were unable
to capture this phenomenon; they were only able to say what it means for suffi-
ciently (i.e. super-logarithmic) many iterations of these “atomic” protocols to be
“proofs of knowledge.” This belies the basic intuition and also precludes a mod-
ular approach to protocol design. We correct these weaknesses by showing how
to measure the “knowledge error” of a proof, and then showing how composition
reduces it.

A special case of our definition is when the knowledge error is zero. This
special case is important is some applications. In particular, “proofs of knowl-
edge with zero error” are important when using a proof of knowledge inside a
zero-knowledge protocol so that one party sends some information only if he is
convinced that the other party already knows it. A typical example is the zero-

knowledge protocol for graph non-isomorphism of 1121 (cf. 57.1). We stress that
none of the previous definitions could handle “proofs of knowledge with zero
error.” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4 Organization

The main conventions used throughout the paper appear in 82. The new def-
inition (of a proof of knowledge) appears in 53, and $4 contains a discussion
of various aspects of this definition. This main part of the paper is augmented

395 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
by Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, in which previous definitions (of proofs of knowledge) are re-
viewed, and by 57 in which examples of the applications of the new definition
are presented.

The rest of the paper addresses issues which are related to the definition of a
proof of knowledge: $5 addresses the effect of repeating a proof of knowledge, and
$6 presents an equivalent formulation of our definition of a proof of knowledge.

2 Preliminaries

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1}* x {0,1}* be a binary relation. We say that R is polynornially
bounded if there exists a polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp such that (y (zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. p(lz1) for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x , y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R.
We say that R is an NP relation if it is polynomially bounded and, in addition,
there exists a polynomial-time algorithm for deciding membership in R.

If R is a binary relation we let R(zj = { y : (z, y) E R } and

L R = { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 : 3y such that (z, y) E R } .

If (2, y) E R then we call y a wztness for 2.

The proof systems we define are two-party protocols. We model the players in
these protocols not (as is common) as interactive machines, but rather as what
we will call “interactive functions.” The idea is to separate the computational
aspect of the player from its input/output behaviour. We feel that this eases and
clarifies the presentation of the (later) definitions.

Definitionl. An interactive function A associates to each z E (0, l}’ (common
input) and 7 E {0,1>* (prefix of a conversation) a probability distribution on
{ O , l } * which we denote by A,Iv]. We denote by A , (q) an element chosen at
random from this distribution.

Intuitively, A, (q) is A‘s next message when the prefix of the conversation so far
was 7 and the common input is z.

The two players in the protocols we will consider are called the prover and
the verifier. Both are modeled as interactive functions. The interaction between
prover P and verifier V on a common input x consists of a sequence of “moves”
in each of which one player sends a message to the other. The players alternate
moves, and for simplicity we will assume the prover moves first and the verifier
last. We denote by a, (resp. ,LIZ) the random variable which is the message sent by
the prover (resp. verifier) in his i-th move. We assume any prefix of a conversation
can be uniquely parsed into its constituent messages. Then each message is
specified by the prescribed interactive function as a function of the common
input and previous messages. More precisely,

a, = Pz(crlpl...cu,-lpz-l) (i = 1 , 2 ,...)
,a = vz(cylpl . . .cy,- , /3,-1 a,) (2 = 1 , 2 , . . .) .

These random variables are defined over the probabilistic choices of both inter-
active functions.

396

We will adopt the convention that there are special symbols which an inter-
active function may output to indicate things like acceptance or rejection. We
assume there exists a function t v (. j (the number of “rounds”) such that the
tv(z) - th move zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the verifier contains its verdict on acceptance or rejection. (For
simplicity we restrict the number of rounds to be a function of the verifier and
the common input, and do not allow it to depend on the prover. Yet this is with-
out loss of generality). The transcript of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe interaction, denoted trp,V(z), is the
string valued random variable which records the conversation up to the verifier’s
verdict. That is, t rp , v (z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ $ 1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. c Y ~ ~ ~ ~) / ~ ~ , ~ (~ ~ . Note that the transcript of the
interaction between a prover P and verifier V contains the sequence of message
exchanged during the interaction, but not information which is available only to
one party, such as its “auxiliary input“ or its “internal coin tosses,” unless these
were sent to the other party.

Since we have assumed that the transcript contains the verifier’s verdict
on whether to accept or reject, we may. for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, talk of the set of ac-

c e p t i n g t ranscr ipts, denoted ACCv (2 j , and the set of r e j e c t i n g t r a n s c r i p t s , de-
noted R E J ~ (Z) . Thus the “probability that the verifier accepts” is, by definition,
Pr [t rp .v(z) E ACCv(z)].

We stress that the definition of an interactive function makes no reference to
its computational aspects. We may discuss the computational complexity of an
interactive function in a natural way, namely by the complexity of a (probabilis-
tic) Turing machine that computes it. In particular, we say that an interactive
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is computable in probabilistic polynomial t ime if there exists a prob-
abilistic Turing machine which on input z, q outputs an element distributed
uniformly in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , [q] , and runs in time polynomial in the length of 2.

For simplicity we will restrict the verifier’s program to be computable in
probabilistic, polynomial time. (We stress that we do not restrict the computa-
tional power of the party playing the role of the verifier.) We will also restrict
the number of rounds (associated to this verifier program) to be a polynomially
bounded, polynomial time computable function.

Sometimes we wish to discuss probabilistic, polynomial t ime players who
receive a n additional “auxiliary” input (such an input may be, for example, a
witness for the membership of the common input in some predetermined NP
language). We may capture such situations by thinking of the auxiliary input
as being incorporated in the interactive function <i.e. the party’s interaction on
common input z and auxilary y is captured by an oracle indexed by both z and

We will be interested in probabilistic machines which use interactive functions
Y).

as oracles.

Definition2. Let K(. j be a probabilistic oracle machine, and A an interactive
function. Then K A a (z) is a random variable describing the output of K with
oracle A , and input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, the probability being over the random choices of K and
A.

The meaning of having A, as an oracle is that K may specify a string 7 and,
in one (special) step, obtain a random element from A,[q]. We count the steps

397 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
needed to specify 7 (and read the output) , but the oracle invocation is just one
step. I t is understood that an invocation of the oracle on a string zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘I returns a
random element of A, [qj! independently of any previous invocations of the oracle
on other input^.^

We call a function f : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN ++ IR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnegligible if for ail c :> 0 and all sufficiently
large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn we have f (n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc: n-‘. We call a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf : IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) SR non-negligiblc if
there exists c > 0 so that for all sufficiently large n we have f (n) 2 n-‘. We
call f : (0: 1)’- R negligible if the function n +, m a ~ c ~ o , l } , f (z) is negligible,
and non-negligible if the function n ++ min,Eio,l)., f (z) is non-negligible. As
stressed above, non-negligible is not the negation of negligible but rather a very
strong negation of it (and there exist functions which are neither negligible nor
non-negligible). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 A Definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Proof of Knowledge

Let R 5 (0, l}’ x (0, l}’ be a binary relation. Our aim is to define a “sys-
tem of proofs of knowledge for R.” For simplicity, we restrict our attention to
polynomially boiinded relations (and, unless otherwise stated, all relations in
this paper are assumed to be such). Note that the most nat,ural and important
class of proofs of knowledge, namely those of “knowledge of a witness for an NP
statement,” correspond to the special case of NP relations.

The heart of the proof system is the verifier, which remains fixed for oiir
entire discussion. This fixed verifier may interact with arbitrary provers, and
we will relate the behavior of the verifier in these interactions with assertions
concerning knowledge of the corresponding provers.

For the purpose of defining proofs of knowledge there is no need to restrict
the verifier computationally, although in most applications one asks that it be
probabilistic, polynomial time.

We make no assumptions concerning the possible provers (in contrast t o
previous formalizations). We don’t eve11 assume that they send messages that
can be computed (say nothing about efficiently computed) from the informabion
they receive (i.e., their initial input and in-coming messages). That is, provers
are arbitrary interactive functions.

We wish to define the “knowledge of P about L which may be deduced from
the interaction of P with V (on input z)”. Clearly, this knowledge contains the
transcript of the interaction. Yet, in case the interaction is accepting and this
event is not incidental, one can say m o r e 011 the knowledge of P . Namely, the
ability of P to “often” lead the verifier to accept may say something about
the knowledge of P. The crucial observation, originating in [14], is that the
“knowledge of P about ;c (deduced by interaction)” can be captured by whatever
can be eff ic ient ly computed on input 2 and access to the oracle P,.

6
A stricter alternative is obtained by fixing the prover’s sequence of coin tosses and

treating it as auxiliary input to the prover. Note that all known “proofs of knowledge”
satisfy also this more str ict requirement. The fact that the strict requirement implies
the main one can be shown by techniques similar to those used in Appendix C.

398

The phrase “efficiently computed on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and access to an oracle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPZ” is
made precise in the definition of a “knowledge extractor.” The straightforward
approach is to require that the knowledge extractor is a probabilistic polynomial-
time oracle machine. Indeed this is the approach taken in some previous works
(if one translates their ideas to this slightly different setting). We will replace
the strict requirement that the knowledge extractor works in polynomial-time
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa more adaptive requirement which relates the running time of the knowledge
extractor to the probability that the verifier is convinced. The advantages of this
approach have already been discussed and will be further discussed below.

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (z) be the probability that prover P convinces verifier V to accept on
input z. In its simplest form, the requirement we impose is that the extractor
succeed in outputting a witness in (expected) time proportional to l/p(z). In
actuality, we will introduce a “knowledge error function” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (.) and ask that the
extractor succeed in outputting a witness in (expected) time proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l/(p(z) - ~ (z)) . Intuitively, ~ (z) is the probability that the verifier might accept
even if the prover did not in fact “know” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa witness. We note that in applications
~ (z) is small, and often it is zero (cf. 54.4 and §5). The precise definition follows.

Definition3. (System of proofs of knowledge) Let R be a binary relation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K : (0, 1}* -+ [0,1]. Let V be an interactive function which is computable in
probabilistic, polynomial time. We say that a V is a knowledge verifier for the
relation R with knowledge error IC if the following two conditions hold.

- Non-triviality: There exists an interactive function P” so that for all z E LR,
all possible interactions of V with P’ on common input z are accepting (i.e.
P r [t r p , v (z) E ACCv(z)j = 1).

- Validity (with error 6): There exists a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > 0 and a probabilistic oracle
machine K such that for every interactive function P and every z E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALR,
machine K satisfies the following condition:

if p (z) d2f Pr[trp,v(z)EACCV(z)] > ~ (z) then, on input z and access
to oracle P,, machine K outputs a string from the set R (z) within
an expected number of steps bounded by

, X I C

P (C) - 4.) .
The oracle machine K is called a universal knowledge extractor, and K. is called
the knowledge error function.

The next section is devoted to remarks on various features of this definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Remarks

We discuss various features of our definition, with particular regard to how it
differs from previous definitions.

399 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1

Suppose the knowledge error is negligible. Clearly, if the verifier accepts with non-
negligible probability then the knowledge extractor runs in average polynomial
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 time. This conclusion yields essentially what zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6 , 181 have considered as
sufficient. Yet, as we have argued: this conclusion by itself does not suffice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Provers which convince with non-negligible probability

4.2

For the purpose of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdefining proofs of knowledge, there is no need to restrict
the prover to polynomial-time. This is a point on which we disagree with pre-
vious works which claimed that it makes no sense to talk of the knowledge of
unrestricted machines. Our definition is presented without assuming anything
about the power of the prover, and it is a corollary that machines with no time
bounds may know facts which cannot be deduced in (say) double exponential
time (and so on). In particular, as we will see (cf. $7.2), it is meaningful, under
our definition, to say that the prover in Shamir’s interactive proof system for a
PSPACE-complete language “knows” an accepting computation of a polynomial-
space machine. One the other hand, provers which succeed in convincing a verifier
of their knowledge can be reasonably efficient. For example, they may be imple-
mented by polynomial-time programs. Furthermore, all “reasonable” interactive
proofs €or languages in NP (and in particular the zero-knowledge ones [12]) can
be convinced by probabilistic polynomial-time provers which get an NP-witness
as auxiliary input. (However, membership in an N P language can be proven via
Shamir’s result that IP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= PSPACE. The corresponding prover is unlikely to be
implementable in polynomial-time).

Note that we do not ask that the verifier be a probabilistic polynomial time in-
teractive Turing machine, but just that it be an interactive function computable
by one. This distinction is conceptually useful when we consider applications
such as the graph non-isomorphism protocol [12] in which the verifier (of the
proof of knowledge) is the prover of the graph non-isomorphism protocol, and
thus not a probabilistic polynomial time interactive Turing machine. However,
the part of this prover’s program which implements the verifier (of the proof of
knowledge) is indeed computable in probabilistic polynomial time.

The efficiency of the provers and verifier

4.3 The knowledge extractor

What should not be given to the knowledge extractor. We deviate from some
Previous works in that we define the knowledge of the prover only with respect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to what is publicly available (i.e., the common input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, access to an oracle for
the prover, and possibly the transcript). Some other works define the knowledge
of the prover with respect to the auxiliary information available to the prover as

well as its sequence of coin tosses (which may6 not be known to the verifier). TO
justify our choice we remind the reader that the definition of “proof of knowl-
edge” is supposed to capture the knowledge of the prover demonstrated by the -

Using the term “may” is indeed an understatement!

400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
interaction and not merely the knowledge of the prover. Hence, there seems to be
l itt le motivation and/or justification to talk about the knowledge of a machine
with respect to something which is not known to the outside (i.e., verifier). In
particular, only the common input (of the interaction) should be given as input
to the knowledge extractor, and the auxiliary input or local coins of the prover
should certainly not be given.

One thing that the knowledge e x t r a c t o r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan do. In all examples we are aware
of, the knowledge extractor proceeds by trying to find several (not more than
polynomially many) related accepting transcripts. For example, the knowledge
extractor presented in Appendix E tries to find a single accepting transcript in
addition to the one given as input. Clearly such a knowledge extractor succeeds
within an average number of steps which is inversely proportional to the density
of the accepting transcripts (which is in other words the accepting probability).
Note that if the proof of knowledge is zero-knowledge then a single accepting
transcript (and in particular the one given as inpiitj cannot suffice.

Universality of t h e k n o w l e d g e extractor. In the above definition we require the
existence of a universal knowledge extractor which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAworks for all possible in-
teractive functions P . Switching the quant,ifiers (i.e., requiring that for every
interactive function P there exist a knowledge extractor K p) would make lit-
t le sense in practice since P in OUT conventions may depend on (non-uniform)
auxiliary input of the “real” prover (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2). However, the quantifiers may be
switched if one considers only provers which are (uniform) interactive machines.
For further discussion see thf parenthetical subsection in [lo, Sec. 4.11, which
considers an analogous situation in the context of zero-knowledge. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstress

that also in case the quantifiers are switched, the knowledge extractor (although
it may depend on the prover) must be giver1 oracle access to the prover. The
reason being that the prover’s program may he highiy inefficient (and therefore
cannot be “incorporated“ into the extractorj. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.4 The knowledge error function

T h e knowledge error function is a novelty of our d e f i n i t i ~ n . ~ Let us see why i t is
important.

Typically, “proofs of knowledge” are constructed by repeating an “atomic”
protocol sufficiently many times. An atomic protocol for graph isomorphism, for
example, is the following (cf. [la]) .

Example. The input is a pair of (isomorphic) graphs GI and Ga. The prover
generates a szngle random isomorphic copy of GI which we call H , and sends H
to the verifier. The latter responds with a random query i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { 1,2}. The prover
replies to z by presenting an isomorphism between G, and II. The verifier accepts

Although the ideas in [5j may be interpreted as pointing to a similar notion.

401 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if the permutation supplied by the prover is indeed an isomorphism between G,
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH .

Intuitively, this protocol does demonstrate some “knowledge” of an isomorphism
between GI and G2. Yet. previous definitions were unable to capture this fact;
they were only able to show that sufficiently (i.e. super-logarithmic) many it-
erations of this protocol constituted a “proof of knowledge.“ This non-modular
approach belies the basic intuition and is also not the natural approach to pro-
tocol design.

The introduction of the knowledge error function remedies these defects. In
particular, we are able to capture “atomic” proofs of knowledge of the above type.
Indeed, under our definition, the above is a proof of knowledge with knowledge
error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl/2. Furthermore, we are able to prove composition theorems which show
how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO reduce the knowledge error (cf. $5) and thus construct proofs of knowledge
in a modular fashion.

Another motivation of the knowledge error function comes from cases where,
for convenience, we have the verifier accept with some (usually small) probability
even if the evidence supplied by the prover is not convincing. For example, we
may do this to guarantee perfect completeness (i.e., the prover’s ability to alway
convince the verifier of valid statements). In such cases, the knowledge error
can compensate for this small probability. The importance of this aspect of the
knowledge error function, and the perfect completeness example, were pointed
out to us by Feige (private communication, June 1992). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.5 What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabout soundness?

We note that our definition makes no requirement for the case z 6 LR. In
particular, soundness (i.e., a bound on the prover’s ability to lead the verifier
to accept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 @ L R) is not required. Consequently, a knowledge verifier for R
does not necessarily define an interactive proof of membership in LR. This is
in contrast to previous definitions; they had the *‘validity” condition imply the
soundness condition, so that the latter always held. We feel that our “decoupling”
of soundness from validity is justified both conceptually and in the light of certain
applications. Let us see why.

First, conceptually, it seems more natural zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o talk about extracting witnesses
only when these witnesses exist. Furthermore, as long as one property is not
known to imply the other it seems wrong to require the latter unless one really
needs it.

Second, there are some natural applications (e.g., “zero-knowledge based”
identification schemes) in which it is a-priori agreed that the protocol will be
applied only to strings in some NP language (i.e.l z E L R E NP). Such applica-
tions are better modeled by our definition than by previous ones. To be concrete,
consider the following identification scheme based on the hardness of quadratic
residuosity.

Example. A user A (Alice), who wishes to be able to securely remote-login to a
mainframe computer (which we denote by V because it plays the role of verifier)

402 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
chooses at random a pair of large primes and multiplies them to get a modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NA. She also chooses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZk, at random, sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYj mod N A , and gives
the pair (N A , XA) to V . All this is performed once in a life-time, when Alice
is identified by other means. Later, whenever Alice wishes to remote-login, she
sends her name (A) to V, who responds by sending the pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IVA,XA). She now
provides a (zero-knowledge) proof that she “knows” a square root of X A mod
N A . Besides the fact that A can provide the proof (completeness) we require
that if Bob (B # A) were to attempt to remote-login as A then he (B) would
fail. The point to note in (khe formalization of) the latter requirement is that
the interaction of B with V takes place on an input (namely (N A , X A)) which
is in the underlying language L R (the relation R here is { ((N , X), Y) : Y 2 f X
(mod N)) and the underlying language is LR = { (N , X i : X is a square mod
N 1). So it suffices to require that the interaction of B with V on inputs in this
l anguage “proves possession of a witness.” W h a t happens on i n t e r a c t i o n s on input
not in the l anguage is immaterial t o the security of the identification scheme.
Thus the requirements for a secure (zero-knowledge based) identification scheme
are more faithfully modeled by our Definition 3 than by previous definitions
{which required that a n y proof of knowledge of a relation R be an interactive
proof of membership in LR).

We stress that we are not, of course, saying that soundness is a l w a y s redundant.
Rather, the above discussion justifies our choice not to make soundness a part
of the definition of a proof of knowledge. In cases where soundness is necessary,
it can be viewed as a separate, additional property that the knowledge verifier
must satisfy. Furthermore, it is possible that some applications call for other
kinds of conditions on E $ LR. One possibility, which we call strong v a l i d i t y , is
discussed in Appendix B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.6 Relaxing the non-triviality requirement

The prover guaranteed by the non-triviality requirement must convince the ver-
ifier in all interactions of z E LR. This requirement, met in all known protocols,
is not essential to the definition of a proof of knowledge. In general one may re-
quire that the existence of a prover that convinces the verifier, on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , with
probability C(z). As far as polynomial-time (or even more powerful) verifiers
are concerned any choice of a polynomial-time constructible bound, C(-), which
is both non-negligibly greater than K (.) and bounded above by 1 - 2-p01Y(’), is
equivalent.’ In fact, following the ideas in [9], one can eliminate the error prob-
ability in the completeness condition altogether and derive the definition as in
the previous section. However, although the last transformation does preserve

* When saying that these choices are equivalent, as long as the above requirements are
satisfied, we mean that existence of a verifier which satisfies one permissible bound
yields the existence of another verifier which satisfies the second bound. Furthermore,
the complexity both of the verifier and of the prover (meeting the completeness
condition) is preserved (and so are zero-knowledge properties).

403 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
validity, it does not necessarily preserve the complexity of the prover and its
zero-knowledge p r ~ p e r t y . ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.7 A word about cornputationally convincing proofs of knowledge

Some works (cf. [4, 51) consider the situation in which the class of provers for
which the protocol is supposed to be a “proof of knowledge” is restricted to the
class of probabilistic, polynomial time interactive Turing machines with auxiliary
input.” Typically, the protocols in question rely on the use of problems which
are intractable for the prover(s). This is the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomputatzonally convincing
(zero-knowledge) proofs, also known as arguments (cf. [3]).

Our definitions may be adapted to cover such settings as well. We would
restrict the class of provers for which validity is required to hold to the class
of interactive functions computable in probabilistic, polynomial time by inter-
active machines. We would, however, also relax slightly the validity requirement
by asking that it only be true for sufficiently long inputs. More precisely, we
would require that €or each probabilistic, polynomial time computable interac-
tive function P (prover) there exist a constant n p such that for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E L R of
length at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, machine X satisfies the following condition:

def
if p (z) = Pr[t rp,v(z) ACCv(z)] > ~ (z) then, on input z and access
to oracle P,, machine K outputs a string from the set R (z) within an
expected number of steps bounded by Izi ‘ /(p(z) - ~(z)).

In applications, ~ (z) could be set to l /poly(z) for some specific poly(.). Alter-
natively, following [?], one can use &(.) as a shorthand for “smaller than any
function of the form l/poiy(.)”. However, a much better alternative is to set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (-)

to be a specific negligible function (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(Z) = 2- m) related to a specific
intractability assumption concerning the computational problem on which the
scheme is based (e.g.. DLP is intractable with respect to algorithms which run
in time 2 % on inputs of length n).

Some ideas on the subject of “computationally convincing proofs of knowl-
edge” appear in the work of Brassard, Crkpeau, Laplante and LCger [5]. Although
they do not present definitions, it would appear these ideas bear many similari-
ties to ours. We discuss their work in Appendix A.

The fact that some variations are needed to treat the case of “computationally
convincing proofs of knowledge” has been pointed out to us by Feige (private
communication, June 1992).

In this context we note, however, t ha t the zero-knowledge too may be preserved,
as long as one is willing to make a complexity assumption, by further applying the
transformation of [2].
For simplicity we ignore the auxiliary inputs in this discussion. They can be treated
as outlined in $2.

10

404 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReducing the knowledge error via repetitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
One of the reasons to introduce the knowledge error function is the theorems
established here. We show that the knowledge error may be reduced by compo-
si tion.

First we consider sequential composition. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = m(z) independent copies
of the original protocol are executed on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, and the verifier accepts iff all
copies are accepting (we stress that by "independent" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe mean that the verifier
acts in each of the copies independently of the others; of course we don't assume
this about prospective provers). If K was the knowledge error of the original
protocol then the knowledge error the resulting protocol is essentially nm. The
more precise statement follows.

N o t a t i o n a l convent ion: by polyj.) we mean any sufficiently large polynomial in
the length of the input (string).

Required assumplzon: y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R (z) can be found (if such exists) in exponential-time
(i.e., time 2P"'y(I"I)), Finally, we assume of course that m (x) 5 poly(lz/).

Theorem4. Suppose tha t V zs a knowledge verzj ier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the relataon E wzth
er ro r K (.) . Le t V, denote the program that, o n input x, sequentzal ly executes the
program V , o n znpud 2, f o r m (x) t i m e s T h e n V, zs a knowledge verzf ier for the

relatzon R wzih error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,(.) = (1 + l /poly(.)) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(.) " (1.
def

The proof is in Appendix C.1.

With respect to error reduction via parallel repetitions we were only able to prove
a statement concerning a special class of knowledge verifiers (which nonetheless
contains all known verifiers). For further discussion see Appendix C.2.

Finally, we observe that tiny knowledge error can be eliminated.

Proposition5. Suppose tha t a n e lemen t zn Rjz) , if such exists, can be f o u n d
in time at most t (x) , g iven only 3: as i npu t . Suppose V is a knowledge ver i f ier
f o r R w i l h knowledge error smal le r t h a n &. T h e n , V i s a knowledge ver i f ier
for R with knowledge ermr 0 .

We omit the proof which uses methods similar to those used in Appendix B.

The resulting formulation (namely, knowledge error 0) is often the simplest way
of thinking about proofs of knowledge: we are saying that the knowledge extrac-
tor succeeds in time] ~ ~ ~ / l p (x) , where p (z) is as in Definition 3. Many proofs of
knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e . g . , the one presented in Appendix E) are of this type.

6 An equivalent formulation of validity

Following is an equivalent formulation of the validity condition. The new formu-
lation is inspired by (yet is quite different in many respects from) the definition

405

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ (z) be as in Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Instead of asking that the knowledge verifier
always output y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R (z) , we ask only that it output y E R (z) with a probability
bounded below by p (z) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (Z) ~ and otherwise output a special symbol, denoted
1, indicating “failure to find y E R (z) ” . However, whereas originally the ex-
tractor had expected time proportional to l / (p(z j - ~ (z)) , we now give it only
expected polynomial time. More precisely, letting K : (0, 1}* H [0, 11, we have
the following.

- New validity (with error K) : We say that the verifier V satisfies ne’w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalidity
with e m u ? /c if there exists a probabilistic expected polynomial-time oracle
machine K such that for every interactive function P and every z E LR i t
is the case that K p = (z) E R (z) u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{i} and

Pr[Kpz(z) E R(;c)] 2 Pr[trp,v(z)EACCv(rc)] - ~ (z) .

Proposition6. The n e w validity cond.it io.n as eq.uz-valent t o the o n e g i v e n in
D e f i n i t i o n 3.

Here we give the proof for the case K (Z) = 0. The proof for the general case is
more complex and is in Appendix D.

Suppose, first, that K is a knowledge extractor satisfying the new defini-
tion. We construct a knowledge extractor K‘ that, on input z repeatedly in-
vokes K (on z) until K (z) # 1. Clearly, K’ always outputs a string in R (z) ,
halting in expected time poly(z) /Pr [K(z) E R (z)] , which is bounded above by
poly(z)/Pr[trp,V[z) E ACCv(z)]. Hence. K’ satisfies the condition in Definition 3 .

Suppose, now, that K is a knowledge extractor satisfying Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 . We con-
struct a knowledge extractor K’ that , on input ;c first generates a random tran-
script (i,e.] t rp ,v(z)) and activates K (z) if this transcript is accepting (i.e., in
A C C v (z)). Otherwise, K‘ halts immediately outputting 1. One can easily verify
that K’ runs in expected polynomial-time and outputs y E R (z) with probability
exactly Pr [t rp ,v(z) EACCv(z)].

7 Applications

Our formalization, as well as that of [Y, do suffice to prove the security of those
schemes for encryption secure against chosen-cyphertcxt attack which rely on
zero-knowledge proofs of knowledge (cf. f j l .2) . However, we prefer to describe
here two applications to which our definition of “proof of knowledge” can be
applied, whereas all the previous formalizations fail. The first application is a
modular description of the zero-knowledge proof for Graph Non-Isomorphism
(of [12]) which uses a “proof of knowledge of an isomorphism” as a subprotocol.
The second application is to Shamir’s interactive proof for PSPACE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.1

The second author first realized the inadequacy of previous formulations of
“proofs of knowledge” when Leonid Levin insisted that the zero-knowledge in-
teractive proof for Graph Non-Isomorphism (of [la]) should be presented in

Zero-Knowledge proof of Graph Pion-Isomorphism

406 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a modular manner.ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs many people noticed, the intuition behind this zero-
knowledge proof is that the verifier first proves to the prover that it “knows”
an isomorphism between one of the input graphs and the query graph that it
presents to the prover.” If the prover is convinced then it answers the query by
indicating t o which of the two input graphs the query graph is isomorphic. By
doing SO the prover yields no knowledge to the verifier, since the verifier “knows”
to which of the two input graphs the query is isomorphic, yet the prover’s answer
supplies statistical evidence that the two input graphs are not isomorphic. This
intuitive idea, taken from the Quadratic Non-Residousity zero-knowledge proof
of [14], has indeed guided the development of the zero-knowledge proof system
for GNI, but plays no part in the formal description and proof of correctness
appearing in [12] (and [14]). Levin complained, rightfully, against this inelegant
and non-modular approach. The second author’s answer, at the time, was that
an elegant proof which uses the subprotocol and its properties in a modular
fashion is not possible due to lack of appropriate definition^.'^

One definition that was lacking a t the time was that of the information hiding
property of the subprotocol used to prove ‘Lpossession of knowledge”. Specifically,
that subprotocol, which consists of the parallel version of the zero-knowledge
proof of Graph Isomorphism, is not known to be zero-knowledge (and in light
of [ll] it is unlikely that a proof that it is zero-knowledge can ever be given).
Nevertheless, this subprotocol is “witness indistinguishable” (in the sense defined
latter by Feige and Shamir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]) and this property suffices to the soundness of the
interactive proof of GNI. However this entire issue is irrelevant to the current
paper.

The other definition that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas lacking at that time was an adequate defini-
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa proof of knowledge. An adequate definition of a “proof of knowledge”
is needed to ensure that if the GNI-prover is convinced that the GNI-verifier
“knows” a n isomorphism between the query graph and one of the input graphs
then indicating to which input graph the query graph is isomorphic yields no
knowledge to the GNI-~erif ier. ‘~ To this end, the simulator (constructed to meet
the zero-knowledge clause) uses the knowledge extractor guaranteed by the def-
inition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa uproof of knowledge”. However, as pointed out above, previous def-
initions of ”proof of knowledge” are useless in the case the GNI-prover is not
convinced with non-negligible probability. It follows that the simulator will fail
to construct the interactions in these cases which may occur with probability
that is neither non-negligible nor negligible (see 5 1.2). In particular, consider
the situation where for every c > 0 there exists an infinite sequence of inputs to
the protocol such that on input of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn the GNI-prover is convinced with

For sake of self-containment, this protocol is presented in Appendix E
The prover in the zero-knowledge proof for GNI is the verifier in a “proof of knowledge
of an isomorphism between two graphs”; whereas the verifier in the zero-knowledge
proof for GNI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the party claiming and proving knowledge of an NP-witness for GI.
It should be stressed that a proof of correctness of (the zero-knowledge property of)
the protocol of does appear in [la]. The criticism points to the fact that the proof of

correctness in [12] does not reflect the intuition just outlined.

12

13

l4 The reader may find it useful at this point to consult Appendix E.

407

probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-’.

On the other hand, one can show that the subprotocol “for proof of knowledge
of isomorphism” (presented in [la] and Appendix E) constitutes a (sound) proof
of knowledge, according to the definitions presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83. It follows that the run-
ning time of the knowledge extractor is inversely proportional to the probability
that the GNI-prover is convinced. Hence, the simulator for the GNI-protocol will
run in expected polynomial-time and produce a perfect simulation of the inter-
action. Furthermore, it can be easily shown that the GNI-prover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhzle playing
the Tole of the GI-verzfier an the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproof of knowledge yields no knowledge to the
GNI-verifier (since its messages are generated in probabilistic polynomial-time
from its inputs).

7.2

Using our definition, it is possible to say that. the verifier in Shamir’s interactive
proof for a PSPACE-complete language L is a knowledge verifier for the relation
RL consisting of pairs (r , c) where c is the middle configuration in the com-
putation of a fixed machine accepting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E L . Hence, one can say that (in some
meaningful sense) any prover which convinces this verifier (with, say, probability
1) on input z, does know a n acc.epting computation on input z.

Let us show how a knowledge extractor may find the middle configuration.
For the rest of this subsection, we assume that the reader is very familiar with
the interactive proof for QBF as presented in [17, Section 51. The standard re-
duction of a PSPACE language to QBF associates the middle configuration in
an accepting poly-space computation with the first block o f t existential quan-
tifiers in the formula. So in the rest of this subsection we will consider only the
problem of retrieving a sequence of truth-values so that assigning these values
to the above mentioned variables yields value t r ue €or the resulting formula.

First, we consider a straightforward method for retrieving these t boolean
values. This method does work in case the prover convinces the verifier with
probability 1 (but will have to be modified to deal with arbitrary provers).
First the knowledge extractor asks the oracle for the first message of the prover
which is a pair (N, VO), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is a large prime and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvo is a non-zero residue
mod N (the value of the arithmetic expression mod N) . Next, the knowledge
extractor proceeds in t rounds. In the ith round, the extractor feeds the oracle
the sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI, ..., ~ i - ~ E Z N and gets the polynomial, pi, which corresponds
to the opening of the ith variable, when the previous i - 1 variables are set t o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T I , ..., ~ i - 1 , respectively. The extractor then finds a pa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0 , l) so that p ; (p i) is
not equal to zero modulo N (such pl must exist since C + L E (O , l) p i (p) ~ ~ i - ~ $ 0
(mod N)) . Round i is completed by setting r; = pi and ui = p % (~ i) .

In general the above method may fail as i t relies too heavily on the answers of
the prover on boolean T,’s. An alternative approach is to select the T % ’ S uniformly
in Z N . The problem is that the resulting residual arithmetic expression no longer
reflects the truth value of the residual boolean formula. To solve the problem we
need to find the polynomial resulting by setting the T ~ ’ S to pi’s by examining
the polynomials which result by random settings of the rT’s. To see how this can

What does the prover of a PSPACE language know?

408 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
be done, we need to take a closer look at the formula used by Shamir and its
arithmetization. It can be seen that the polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, received from the prover
in round zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 has coefficients which are polynomials in r1 through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ - 1 . Denote by
c ~ , ~ (TI, ...(~ ~ - 1) the polynomial in rl through ~ , - 1 representing the lth coefficient
of p z . The ctl3‘s are polynomials each of total degree at most 2(2- 1) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2t - 1, and
we are interested in the values of c,,,(nl) ..., uZd1) . Using the ideas of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I] these
values c a n be found via “interpolation” a t 2t uniformly selected (yet dependent)
points. Finally, we note that the knowledge extractor can tell whether it is given
the correct polynomial at a point by carrying on the rest of the interactive proof
using the oracle to the function P,. Further details are omitted. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc kn ow le dg e m ent s

The second author thanks Leonid Levin for his interest in “proofs of knowledge”
and his insistence that they have to b e formalized in a sufficiently robust manner
so that they can be used in applications such as the Graph Non-Isomorphism
protocol.

We are grateful to Uri Feige for valuable criticisms of an earlier version of
this paper. Specific credit to Feige’s suggestions is given in the relevant places
of the current manuscript.

References

1. D. Beaver, and J. Feigenbaum, “Hiding Instances in Multioracle Queries,” Proc.
of the 7th STACs, 1990, pp. 37-48.

2. N. Bellare, S. Micah and R. Ostrovsky, “The True Complexity of Statistical Zero-
Knowledge,” Proceedznys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof’ the 22nd An7iual -4CM Sympnszurn o n the Theory of
Compufzny , ACM (1990). pp. 494-502.

3 . G. Brassard, D. Chaum, and C. Cripeau, “Nlinimum Disclosure Proofs of knowl-
edge,” JCSS, Vol. 37, No. 2 , 1988, pp. 156-189.

4. J . Boyar, C. Lund and R. Peralta, “On the Communication Complexity of Zero-
Knowledge Proofs.” 1989.

5. G. Brassard, C. Crdpeau, S. Laplante and C. L iger , “Computationally Convincing
Proofs of Knowledge,” PTOC. of the 8 th STACS, 1991.

6 . U. Feige, A . Fiat , and A . Shamir, “Zero-Knowledge Proofs of Identity”, Journal
of Cryptology, Vol. 1, 1988, pp. 77-94.

7. U. Feige, and A . Shamir, “Witness Indistinguishability and Witness Hiding Pro-
tocols,” Proceedzngs of the 2dnd Annuul ACM Symposzum on the Theory of Com-
put ing, ACM (1990), pp 416-426.

8. Z. Galil, S. Haber, and M. Yung, “Symmetric Public-Key Encryption”, Advances
zn Cryptohgy - CTypt085 proceedings. Lecture Notes in Computer Science, Vol.
218, Springer-Verlag, 1986, pp. 128-137.

9. M. Furer, 0. Goldreich, Y . Mansour, M. Sipser, and S. Zachos, “On Completeness
and Soundness in Interactive Proof Systems”, Advances ‘m Computing Research:
a research annual, Vol. 5 (S. Micah, ed.), pp. 429-442, 1989.

10. 0. Goldreich, “A Uniform-Complexity Treatment of Encryption and Zero-
Knowledge”, J . of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACryptology, to appear.

409 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. 0. Goldreich, and H. Krawczyk, “On Sequential and Parallel Composition of Zero-

Knowledge Protocols”, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17th ICA LP, Lecture Notes in Computer Science, Vol. 443,
Springer-Verlag, 1990, pp. 268-282.

12. 0. Goldreich, S. Micah, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Wigderson, “Proofs that Yields Nothing but Their
Validity or All Languages in N P Have Zero-Knowledge Proof Systems”, JACM,
Vol. 38, No. 1, July 1991.

1 3 . 0. Goldreich, and Y. Oren, “Definitions and Properties of Zero-Knowledge Proof
Systems”, TR-610, Computer Science Dept., Technion, Haifa, Israel. Submitted
to Jour . of Cryptology.

14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Goldwasser, S. Micali, and C . Rackoff, “The Knowledge Complexity of Interac-
tive Proof Systems”, SIAM J . on Comput ing, Vol. 18, No. 1, 1989, pp. 186-208

15. S. Haber, “Multi-Party Cryptographic Computations: Techniques and Applica-
t ions”, P h D Dissertation, Computer Science Dept., Columbia University, Nov.
1987.

16. Y. Oren, “On the Cunning Power of Cheating Verifiers: Some Observations about
Zero-Knowledge Proofs,” Proceedings of the 28th Annual I E E E Sympostum o n the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Foundations of Computer Science, IE,EE (1987), pp. 462-471.

17. A . Shamir, “IP=PSPflCE,” Proceedzngs of the 3 l s t Annual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Symposium o n
the Foundations o f Computer Sczence, IEEE (1990), pp. 11-15.

18. M. Tompa and H. Woll, “Random Self-Reducibility and Zero-Knowledge Inter-
active Proofs of Possession of Information,” University of California (San Diego)
Computer Science and Engineering Dept. Technical Report Number CS92-244
(June 1992). (Preliminary version in Proceedzngs of the 28th Annual I E E E Sym-
pos ium on the Foundatzons of Computer Sczence. IEEE (198i), pp. 472-482.)

A Previous Definitions of Proofs of Knowledge

For sake of self-containment we review below the definitions of “proof of know!-
edge” appearing in the literature. In general there are two generally cited for-
mulations appearing in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6] and in [18]. In addition, there is the better (but lesser
known) formulation of Feige and Shamir [7] . Finally, there is work on ‘‘compu-
tationally convincing proofs of knowledge” [4, 51.

“Proof of Knowledge” according to Feige, Fiat and Shamir [6] The
definition presented in [6] refers only to parties which work in probabilistic
polynomial-time, yet may have auxiliary input (which is not necessarily gen-
erated efficiently). The knowledge extractor is given the prover’s program and
auxiliary input and may run the prover’s program as a subroutine (yet being
charged for the time).15 The knowledge extractor is required to produce good
output only for provers and inputs for which the prover has a non-negligible
probability of convincing the verifier on that input. Specifically, it is required
that

T h e extractor may try to analyze the prover’s program by other means but Feige,
Fiat and Shamir claim that this does not make sense. In any case the knowledge
extractors that they present only use the prover’s program as a “black-box’’. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for every constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 there exists a probabilistic polynomial-time ex-
tractor M so that for all constants b > 0 , all provers PI and all sufficiently
large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , r , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk , if Pr[(P, V) (z , r , k) = ACC] > /z1-‘ then P r [M(desc (P) , 2 , T , k) E
R(z)] > 1 - I z I - ~ . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(desc(P) denotes the description of P) .

The string k in the above definition denotes a-priori knowledge of P (given
in the form of auxiliary input) where T denotes the prover’s sequence of coin
tosses. The fact that k is given to the knowledge extractor, though being indeed
conceptually disturbing, can be justified in several applications (and in particular
those in [S]). We stress that the definition of [6] does not guarantee one knowledge
extractor which works regardless of the prover’s success probability but rather a
sequence of extractors each relevant for a different “measure” of non-negligence.
As claimed in the our text this is conceptually unsatisfactory and inadequate
for many applications in which a proof of knowledge is used as a subroutine. I t
should be said that “proofs of knowledge” are not used as subprotocols in [S],
but rather as the “thing itself” (and hence our critic of their definition is only
weakly relevant, if at all, to the results of that paper).

“Proof of Knowledge” a c c o r d i n g to Tompa and Woll [18] The defini-
tion presented in [18! differs slightly from the one of [6] . I t allows the verifier to
run for an arbitrary (not necessarily polynomial) amount of time. The running
time of the knowledge extractor is polynomial in the length of the input and
in the running time of the verifier. As explained in $4.3, we don’t believe that
this choice is justified. The knowledge extractor in the [18] definition is given
as input the prover’s view of the interaction with the verifier, which contains
among other things the prover’s auxiliary input (denoted k in the definition of
[6] presented above). The requirement concerning the output of the verifier is
that the event “on input z the verifier is convinced yet the knowledge extractor
fails to find y E R(z)” happens very rarely (i.e. with probability smaller than E

for some E < 1). The probability is taken over the random coin tosses of both
parties (for any fixed input z and fixed auxiliary input k). Clearly, this defini-
tion suffers from all the disadvantages of the definition of [6] discussed above.
Furthermore, if E is indeed fixed, as suggested by the definition in [18], then pro-
tocols satisfying their definition are useless even in a stronger sense: the prover
may convince the verifier with probability ~ / 2 and yet the knowledge extractor
is required nothing. Tompa and Woll were indeed aware of this point and seem

to suggest to eliminate the problem by applying the protocol iteratively suffi-
ciently many times. This is indeed a good suggestion. However, several problems
remain. First a conceptual problem: their Lemma 3 (hereafter referred to as the
Composzlion Lemma) indeed offers a useful tool, but it does not provide a gen-
eral satisfactory definition of a “proof of knowledge”. More annoying is the fact
that the Composition Lemma constructs better protocols via sequential compo-
sition of worse ones. It is not clear (and furthermore it seems unlikely) that a
parallel composition will have the same affect. Finally, the Composition Lemma
is applicable only to relations R which are in BPP.

31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“Proof of Knowledge” according to Feige and Shamir [7] The definition
presented in [7] looks similar to the one in [6], but in fact it is fundamentally
different. The critical point is that the definition in [7] treats potential provers
uniformly with respect to the probability they lead the verifier to accept. In this
sense, the definition in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi‘] is similar to our definition. Specifically, the knowledge
extractor, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALV, runs in expected polynomial-time (rather than in strict
polynomial-time as in 161) and outputs an element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (z) with probability that
is at most non-negligibly smaller than the probability that the verifier accepts
on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. Specifically, it is required that

there exists a probabilistic ezpected polynomial-time extractor M so that
for all constants b > 0, all provers P , and all sufficiently large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , r, k ,

Pr[(P,V)(z,T,k)=ACC] > Pr[il/l(desc(P),z,r,Ic)€R(a:)j -

Consequently this definition does not suffer from the main criticism raised against
the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]. However, it still suffers from the other problems such as the
fact that Ic is given to M. Furthermore, it does not capture “knowledge” of
super-polynomial-time provers.

Work on “computationally convincing proofs of knowledge”. Brassard,
Crkpeau, Laplante and Leger [5] study “computationally convincing proofs of
knowledge” (the “validity” condition refers only to probabilistic, polynomial-
time provers). They do not present formal definitions so we found it difficult to
compare their work to ours, but the ideas appear to have some relation. They
too propose an “adaptive” requirement linking the running time of the extractor
to the success of the prover. Specifically, they appear to consider a particular
class of protocols, namely those consisting of k rounds, each of which contains
a “challenge” {from verifier to prover) which the prover may correctly answer
with probability 1/2 if he correctly “guesses” a coin toss of the verifier. They
require that the extractor succeed in time linear in l / y , where 2 + cp is the
“probability of undetected cheating.” The quantity in quotes was not defined
precisely, particularly for the case of the input being in the language, but if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 - k + ‘p is interpreted as the probability that the verifier accepts, then it is like
our definition with the knowledge error set to 2 - k .

Brassard et. al. [5] also raise some criticisms of the definitions of [6, IS], but their
criticism is the opposite of ours: whereas we suggest that the previous definitions
are too weak (and propose a stronger definition) they suggest that the previous
definitions are already too strong.

I3 Soundness and Strong Validity

For completeness, we state here also the standard soundness condition (for in-
teractive proof systems). We remind the reader that we view soundness as an
additional property that a knowledge verifier may (or may not) satisfy.

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Additional possible properties of a system of proofs of knowledge)
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR be a binary relation, and suppose that V is a knowledge verifier for the
relation R with knowledge error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. We define two additional properties that V
may satisfy:

- soundness: For every interactive function P , and for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE $! L R , most of
the possible interactions of I/ with P on common input I are rejecting (i.e.>
Pr [t rp ,v(z) EACCv(zj] < 1 /2) .

- strong validity (with error K } : Let K be the universal knowledge extractor, and
c > 0 be the constant guaranteed by the validity condition of Definition 3.
Then, for every interactive function P and every .c $! L R , machine K satisfies
the following condition:

if p (~) d&f Pr[t rp,v(z) E ACCv(rc)] > K (Z) then, on input z and access
to oracle P,, machine K outputs the special symbol I within an
expected number of steps bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\xi':

P(.) - 4 . x)

As usual, the completeness (or non-triviality) and soundness conditions merely
state that there is a gap between the probability that a prover may convince
the verifier on x E L R (which by the completeness condition is exactly 1) and
the probability that a prover may convince the verifier on x cf L R (which by the
soundness condition is a t most l / Z) . Validity (resp., strong validity) is a more
refined condition regarding the behavior of arbitrary provers on 3 E L R (resp.,
arbitrary strings). Specifically, validity relates the probability that the prover
convinces the verifier on z E L R and the average time it takes the knowledge
extractor to find a y~ R (z) in the case x LR. Strong validity is an analogous
requirement regarding x LR. Validity, soundness, and strong validity are not
always independent. Namely,

Propositions. Validity and soundness imply stTong validity for NP relations.

The proof that follows is for the case K = 0.

Recall that an NP relation is a polynomially bounded relation R(. , .) which is
decidable in polynomial time. Suppose an NP relation R possesses a knowledge
verifier which (in addition) satisfies the soundness condition. Without loss of
generality16, we may assume the error probability in the soundness condition is
a t most 2 - p (n) , where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (-) is a polynomial bounding the length of witnesses as a
function of the length of the input. Let K be the universal knowledge extractor
(satisfying the validity condition). Fix a deterministic procedure, with running-
t ime 2P(*).poly(n), for deciding L R (e.g., the one which scans through all possible
witnesses for the given input).

The error pxobabihty in the soundness condition may be reduced, as usual, by
repetitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16

3 : 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We construct a new knowledge extractor, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ' , for the above proof of

knowledge, satisfying also strong validity. On input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and oracle access to Pz,
machine K' runs in parallel the extractor K (with input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and oracle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPL) and
the decision procedure for L R , fixed above. Suppose K halts before the deci-
sion procedure terminates, and yields an output y. Machine K' checks whether
R (z , y) is true (it can do this in polynomial t ime) and if so outputs y; otherwise
it outputs 1. On the other hand, suppose the decision procedure halts while K
is still running. If the decision is negative (E @ L A) then K' oiutputs I; else it
continues to run K to whatever outcome this might yield.

We note that the running time of K' is (within a polynomial factor of) that
of K when E E L R , and at most (within a polynomiaifactot of) 2 P j l ' l) otherwise.
But in the latter case, the probability p (x) = Pr[trp%v(z:j E ACCv(rc)] is a t most
2-P(iz1), so that the running time of K' is expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zIo(l)/p(x) in both cases.
The fact that K' is a knowledge extractor for R which satisfies (validity and)
strong validity follows.

Finally, we note that the above transformation preserves (upto polynomial
factors) the running time of the knowledge verifier, and, as long as we do the
error-reduction in a suitable way (for example, by serial composition), it also
preserves zero-knowledge.

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReducing the Knowledge Error via Repetitions

We prove the claims of §5. Let us first recali the notation and assumptions intro-
duced there. By poly!.) we mean any sufficiently large polynomial in the length of
the input (string). By assumption the messages of the verifier can be computed in
polynomial-time, and y E E (z) can be found (if such exists) in exponential-time
(i.e., time 2PoiY(")) . Consequently, failure of the knowledge extractor occurring
with exponentially small probability (i.e., probability 2-po1y(')) can be ignored.
Finally, we assume of course that m(z) <: poly(xj.

C . l

Suppose that V is a knowledge verifier with error K (-) for the relation R, and
let K be a knowledge extractor witnessing this fact. Let V, denote the program
that, on input z! sequentially executes the program V , on input z, for m (~)

times. Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 asserts that V,,, is a knowledge verifier with error xCm(.) =
(1'. l /po ly(-)) .~(-) " (.) for the relation R. The theorem is proven by constructing
a knowledge extractor, denoted K,, as described below.

Suppose that P, is a prover which, on input E , leads V, to accept with
probability p m (z) > tcm(z). Loosely speaking, we observe that there exists an
i , 0 5 i 5 m (z) - 1, and a partial transcript of i iterations so that, relative to
this partial transcript, the i + 1%' iteration is accepting with probability a t least
" ' (z ~ ~ . The idea is to use the guaranteed knowledge extractor, K , on the
i + 1'' iteration of V,, relative to an appropriate partial Literat im transcript.
Details follow.

Reducing the Knowledge Error via Sequential Compos i t i on

def

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3

For simplicity, we assume here that all transcripts are equally likely. Let
denote the set of all possible partial transcripts of the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi iterations, and
A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, denote the set of partial (%-iteration) transcripts in which all the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi

iterations are accepting. Let a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- JA,//JT,J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a0 = 1). For every a E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, , let
q(a) denote the accepting probability of the i + lst iteration relative to a partial
transcript a , and c,+1 denote the average of q(a) taken over all a E A , .

The following sequence of claims lead to the construction of the knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAex-
tractor K,.

Clazm I : for every i, O<z<m(r), it holds that a,,l = a, . c,+1.

Proof: Clearly,

def def

and the claim follows. z]

Clazm 2: there exists an i, 0 5 i < rn(z), such that

1. C z + l 2 -'?yrn.
2. a, . (c,+1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIc (I)>$?$& 2

Proof: By Claim 1, p , (z) = nz(:)c2, and Part (1) follows. Using p m (z) >
n,(z), we get

C z t l > - " ' " i / l s l / p o l y (q ~ K (Z)

= (1 + --) 1 . K (2)
POlY(4

and hence c , + ~ - ~ (z) 2 c,+l/poly(z). Using a, . c t t l 2 p,(r), Part (2) follows.
0

Notation: Let z be m guaranteed by Claim 2, and denote &+I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,+1- ~ (2) - Let
A,,t denote the set of partial transcripts in A, containing only partial transcripts
relative to which the i + lst iteration accepts with probability bounded below
by ~ (z) + 2t6,+l/poly(z) and above by ~ (z) + 2tt16,+l/poly(z), where poly(.)
is a specific polynomial which depends on m(.) and the time required to find
y E R(z) . Namely,

dLf

CEaim 3: Let i and
that JA,,tJ 2 2Yt . \ A l \ .

be as above. Then there exists an t , 15 t<poly(z) , such

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof: Assume, on the contrary, that the current claim does not hold. Then

and contradiction follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Claim 4: There exists an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5 i < m i x) , and an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj , 1 < j < poly(z), such that a t
least a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 3 fraction of the cy E T, satisfy

Proof: Let i as guaranteed by Claim 2. Rephrasing Claim 3, we get that there
exists an t , 15 t < poly(z), such that a t least a 2-t . a, fraction of the a E T,
satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(a) > ~ (x) + 2 ~ .6,+l/poly(z). Substituting j = t + l o g z (l j a ,) and using
Part (2) of Claim 2 , the claim follows. 0

Using Claim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we are now ready to present the knowledge extractor K,.
Machine K, runs in parallel m (z) . poly(a) copies of the following procedure,
each with a different pair (z , j) , 1 5 i 5 m (z) and 1 5 J 5 polyjz). By saying
“run several copies in parallel” we mean execute these copies so that t steps are
executed in each copy before step t + 1 is executed in any other copy17.

poly(z) random
partial transcripts of i-iterations, denoted yl, ...,y&f, and runs 1M copies of the

knowledge extractor K in parallel, each using a corresponding partial transcript
(n). The sub-procedure, indexed by the triple (2 , j , k), uses the partial transcript
~k to convert queries of the basic knowledge extractor (i.e.) K) into queries
concerning the i + lSt iteration. Namely, when K is invoked it asks queries to
an oracle describing the messages of a prover interacting with V. However, K ,
has access to an oracle describing prover Pm (which is supposedly interacting
with Vm). Hence, K, needs to simulate an oracle describing a basic prover
(interacting with V) , by using an oracle describing P,. This is done by prefixing
each query of K with the i-iteration partial transcript ~k generated above.

To analyze the performance of K, consider the copy of the procedure run-
ning with a pair (i , j) satisfying the conditions of Claim 4. If this is the case,
then with very high probability (i.e., exponentially close to 1) at least one of the
partial transcripts generated by this copy has the property that , relative to it,

Actually, the condition can be related. For example, it suffices to require that at
least t steps are executed in each copy before step 2 t is executed in any other COPY.

def The copy running with the pair (2 , j) , generates M = 2.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

17

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlSt iteration accepts with probability at least ~ (z) + 2Jpm(z)/poly(z). It
follows that the corresponding copy of the sub-procedure will halt, outputting
y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (e) , within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApoly(aj steps (on the average). Since the (i , j) th copy of the

procedure consists of 2' .poly(z) copies of the sub-procedure running in parallel,

entire knowledge ext,ractor consists of polynomially many copies of the proce-

as required.

2 3 . ~ 4 3 :)

this copy of the procedure will halt in expected time L' PO1Y(l) . The
< F m (Z) - K m (Z)

dure, running in parallel, and hence it also runs in expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA09kL time
P m (2 j - - K m - (Z)

Remark: We believe that V, is a knowledge verifier with error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (.) " (') for the
relation R (rather than just being a knowledge verifier wit11 error (1 + l /polyj.)).
.(.)"('I for this relation). The difference is of little practical importance, yet we
consider the question to be of theoretical interest.

C.2 Reducing the Knowledge Error via Parallel Composition

A fundamental problem with presenting a parallel analogue of the above argu-
ment is that we cannot fix a partial transcript for the other iterations while
working with one selected iteration (which was possible and crucial to the proof
used in the sequential case). Furthermore, even analyzing the profile of accepting
transcripts is more complex.

As before, let pm(z j denote the accepting probability, here abbreviated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p(;c) , and let S(z) = p(z) - ~ ~ (z) . Consider a m(z)-dimensional table in which

the dimensions correspond to the n d;f m (z) parallel executions, where the
(7-1, ..., ?,)-entry in the table corresponds to the transcript when the verifier uses
coin tosses r1 in the first execution, r2 in the second execution, and so on. Since
a p (z) fraction of the entries are accepting transcripts, it follows that there exists
a dimension i so that a t least a "'jr+'p(;c) - 6 / 2) / 2 fraction of the rows in the
ith dimension contain a t least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (E) / 2 m (x) accepting entries. Furthermore, there
exists a j , 0 ~ j ~ l o g , (p o l y (~) / O , (~) j , so that at least a 2j . " ("up(z) - 6(z)/2

def

p (~) - 6 (~) / 2

2Jpo ly (z) . " ' ~ " i / p (+) - 6 (z) / Z
fraction of the rows in the ith dimension contain at least

accepting entries.
Getting back to the problem of using the knowledge extractor K (of the basic

verifier V) , we note that we need to simulate an oracle to K using an oracle
describing P,. The idea used in the sequential case is to augment all queries to
the P-oracle by the same partial transcript. However, we can no longer guarantee
high accepting probability for one execution relative t o a fix transcript of the
other (parallel) executions.

We can however treat the special case in which the basic knowledge extractor,
K , operates by generating random transcripts and keeping a new transcript only
if it satisfies some polynomial-time predicate with respect to the transcripts kept
so far. Details omitted. We remark that the known knowledge extractors do
operate in such a manner.

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Error

Equivalence of Two Formulations of Validity with

We now prove the equivalence of the definitions of validity with error given in
Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 6 , respectively. We assume that whenever Pr [t rp ,v (z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE
ACCv(z)] > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (z) , we have Pr [t rp , v (z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt A C C V (z) ! > ~(z) + 2- poiY(z) as well.
Alternatively, we may assume tha t there exist an exponential t ime algori thm €or
solving the relation R (i.e., finding y E R (z) if such exists within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2PG'Y(") steps).
The proof extends the argument presented in $6, for the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 0, yet
in one direction an additional idea is required.

Let US star t with the easy direction. Suppose that a verifier V satisfies validity
with knowledge error K (.) by the definition in $6. Let K be a knowledge extractor
satisfying this definition. We construct a knowledge extractor K' that , on input
z repeatedly invokes K (on z) until K (x) # 1. Clearly, K' always ou tpu ts
a str ing in R (z) , halting in expected t ime po ly jz) /Pr [K(z) E R (z)] which is
bounded above by po ly (x) l (Pr [t rp . ,v l : z~ c: A C C v (. c)] - ~ (z)) . Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh" satisfies
the condition in Definition 3 .

Suppose that a verifier V satisfies validity with knowledge error K (.) by
Definition 3 , and let K be a knowledge extractor witnessing this fact. Let c > 0
be the constant satisfying the condition on the running-time of K . Namely, tha t
i ts expected running-time is bounded above by lx l ' / ' (Pr~t rp~v(x) E A C C V (r)] -
K (z)). Assume, without loss of generality, that. with very high probability (i.e.!
exponentially close to 1) K halts within a t most 2P01Y(") steps". Vie construct
a knowledge extractor K' tha t , on input z runs K (z) with the following modifi-
cation. Machine K ' proceeds in iterations, starting with i = 1, and terminating
after at most po ly jz) iterations. In iteration i, machine h" executes K (z) with
t ime bound 2z 3 ,zjc. If K halts with some output y then K' outputs y a n d halts.
Otherwise (i.e., K ' does not halt within . Iz ! ' steps), machine K' halts with
probability with output i and otherwise proceeds to iteration i + 1. We stress
tha t in all i terations, K uses the same internai coin tosses. In fact, we can record
the configuration a t the end of iteration i and consequently save half of t he t ime
spent in iteration i + 1. Clearly, the expected running-time of K ' (z) is bounded
above by

POlY(Z) c __ . (2" I+) = poly(.cj
2 2 - 1

i = l

We now evaluate the probability t ha t , on input z, machine K' outputs y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt
R (z) . It is guaranteed tha t , on input x , the extractor I(outputs y E R (z)
within T (r) 5 j z : /c / (Pr [t rp ,v(z) E ACCv(z)] ~ ~ (z)) steps on the average (and

by hypothesis T (z) < 2P0'Y(')). Hence, with probability at least +, on input 2,

machine K outputs y E R (z) within 2 . T(a) steps. The probability t h a t K'
conducts 2 - T (z) steps (i.e., K' reaches iteration log2(7'(z)/\z\'}) is]z \ ' /T(;c) >_
Pr [t rp , v (z) E A C C v (z)] - ~ (z) . Hence, K' satisfies the condition in 56.

This can be achieved by running the exponential time solver in parallel to K . Alterna-
tively, assuming that if Pr[trp,v(z)EACC~(z)] > ~ (z) then Pr[trp,v(z) EACCv(Z)] >
~ (z) + 2-p"1'("), we can implement a probabilistic exponential-time solver using K .

18

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E The Zero-Knowledge proof of Graph Non-Isomorphism

Following is the basic ingredient of the zero-knowledge proof for Graph Non-
Isomorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GMI) presented in [12].

Common input: Two graphs GI and G2 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn vertices each.
Objective: In case the graphs are not isomorphic, supply (statistical) evidence
to that affect.

Step V1: The GNI- uerzfierselects uniformly i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { 1, a} , and a random isomorphic
copy of G,, hereafter denoted H and called the query, and sends H to the GNI-
prover. Namely, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is obtained by selecting a random permutation T, over the
vertex-set, and letting the edge-set of H consist of pairs (T (U) , T (V)) for every
pair (u , v) in the edge-set of Gi.
Step TIP: The GNI-verifier “convinces” the GNI-prover that he (i.e., the GNI-
verifier) “knows” an isomorphism between H and one of the input graphs. To
this end the two parties execute a witness indistinguishable proof of knowledge
(with zero error) for graph isomorphism. (Such a protocol is described below.) In
that proof of knowledge the GNI-verifier acts as the prover while the GNI-prover
acts as the verifier.

Step P1: If the GNI-prover is convinced by the proof given at step VP, then he
finds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj such that H is isomorphic to G,, and sends zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj to the GNI-verifier. (If H
is isomorphic to neither graphs or to both the GNI-prover sets j = 1; this choice
is arbitrary.)

Step V2: If j (received in step P1) equals i (chosen in step V1) then the GNI-
verifier accepts, else he rejects.

I t is easy to see that if the input graphs are not isomorphic then there exists
a GNI-prover which always convinces the GNI-verifier. This meets the com-
pleteness condition of interactive proofs. To show that some sort of soundness
is achieved we use the witness indistinguishability of the subprotocol used in
Step VP. Loosely speaking, it follows that no information about i is revealed to
the GNI-prover and therefore if the input graphs are isomorphic then the GNI-
verifier rejects with probability at least one half (no matter what the prover
does). l9

The demonstration that the GNI-prover is zero-knowledge is the place where
the notion of proof of knowledge plays a central role. As required by the zero-
knowledge condition we have to construct, for every efficient program playing
the role of the GNI-verifier, an efficient simulator which outputs a distribution
equal to that of the interaction of the verifier program with the GNI-prover.
Following is a description of such a simulator. The simulator starts by invoking
the verifier’s program and obtaining a query graph, H I and a transcript of the
execution of step VP (this is obtained when the simulator plays the role of the
GNI-prover which is the knowledge-verifier in this subprotocol). If the transcript

l9 Reducing the cheating probabhty further can be done by iterating the above protocol
either sequentially or in paIalle1. However, this is not our concexn here.

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9

is not accepting then the simulator halts and outputs it (thus perfectly simulating
the real interaction). However, if the transcript is accepting the simulator must
proceed (otherwise its output will not be correctly distributed). The simulator
needs now to simulate step PI, but, unlike the real GNI-prover, the simulator
does not “know” to which graph H is isomorphic. The key observation is that the
simulator can obtain this information (i.e,, the isomorphism) from the knowledge
extractor guaranteed for the proof of knowledge (taking place in step VP), and
once the isomorphism is found producing the rest of the interaction (i.e., the
bit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj) is obvious. Using our definition (of proof of knowledge with zero error),
the simulator can find the isomorphism in expected poly(n)/p(Gl, Gz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH) time,
where p(G1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG2, H) is the probability that the GNI-prover is convinced by the
proof of knowledge in step VP. Since this module in the simulator is invoked only
with probability p(G1, Gal H), the simulator runs in expected polynomial-time,
and the zero-knowledge property follows. W e stress that carrying out this plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis

not possible when using any of the previous definitions of “proof of knowledge”.

To complete the description of the above protocol we present a (witness indis-
tinguishable) proof of knowledge of Graph Isomorphism. This proof of knowledge
can be easily adapted to a proof of knowledge of an isomorphism between the
first input graph and one of the other two input graphs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Common input: Two graphs H and G of n vertices each.
Objective: In case the graphs are isomorphic, the GI-prover has to “prove
knowledge of $”, where q5 is an isomorphism between H and G.

Note: In our application the GNI-verifier plays the role of the GI-prover, while
the GNI-prover plays the role of the GI-verifier.

Notation: Let t = t (n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 2 .

Step pl : The GI-prover selects uniformly t random isomorphic copies of H ,
denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I , ..., Kt and called the medzu iars , and sends these graphs to the GI-
verifier. Namely, Ki is obtained by selecting a random permutation x, over the
vertex-set, and letting the edge-set of K, consist of pairs (~ i (u) , xi(.)) for every
pair (u , v) in the edge-set of H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Step vl : The GI-verifier selects uniformly a subset S of {1,2, ..., t } and sends
S to the GI-prover.

Step p2: For every i E S, the GI-prover sets aZ = xi, where x; is the permutation
selected in step p l to form K,. For every i E (1, ..., t } - S , the GI-pTOUeT sets
ai = 7ri$, where a; is as before, is the isomorphism between G and H (known to
the GI-prover), and 7r$ denotes composition of permutations (or isomorphisms).
The GI-prover sends a l , u2, ..., at to the GI-verifier.

Step v2: The GI-verifier checks if, for every i E S , the permutation a, (supplied
in step p2) is indeed an isomorphism between the graphs H and Ki. In addition,
the GI-verifier checks if, for every i E { 1,2, ..., t)-S, the permutation ai (supplied
in step p2) is indeed an isomorphism between the graphs G and K,. If both
conditions are satisfied (i.e., all t permutations are indeed what they are supposed

def def

42 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t o be) then the GI-verifier accepts (i.e., is convinced that the GI-prover knows
a n isomorphism between G and H).

One can show that the above GI-verifier constitutes a knowledge-verifier (with
zero error) for Graph Isomorphism. This is done by considering all possible
choices of S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC {1,2, ..., t>€or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafixed set of mediators K1, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKt. Denote by s the
number of subsets S for which the GI-verifier accepts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA knowledge extractor,
given one accepting interaction (i.e., containing a good S) tries to find another
one (i.e. a good subset different from 5). Having two good subsets clearly yields
a n isomorphism between G and H (i.e., using any index in the symmetric dif-
ference between the good subsets). Clearly, if s = 1 then there exists no good
subset other than S. In this case the extractor finds a n isomorphism by ex-
haustive search (which is always performed in parallel to the attempts of the
extractor to find a different good subset). The exhaustive search requires less
than 2t steps, but dominates the total running time only in case s = 1 (in which
case the accepting probability is 1/2'). Yet, for any s > 1, the expected number
of tries required to find a different good subset is

2t 2 , a t < - < - 1
(s - 1) / (2 t - 1) s - 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS

(the last inequality follows from s 2 2) . Since s,/2' is the probability that the
GI-verifier accepts, the extractor described above indeed runs in expected time
inversely proportional to the accepting probability of the GI-verifier. Our claim
follows.

	On Defining Proofs of Knowledge
	1 Introduction
	1.1Basic approach in defining proofs of knowledge
	1.2 Provers which convince with probability that is notno n- ne gligible
	1.3 A few words about the definition presented in this paper
	1.4 Organization

	2 Preliminaries
	3 A Definition of a Proof of Knowledge
	4 Remarks
	4.1 Provers which convince with non-negligible probability
	4.2The efficiency of the provers and verifier
	4.3 The knowledge extractor
	4.4 The knowledge error function
	4.5 What about soundness?
	4.6 Relaxing the non-triviality requirement
	4.7 A word about cornputationally convincing proofs of knowledge

	5 Reducing the knowledge error via repetitions
	6 An equivalent formulation of validity
	7 Applications
	7.1 Zero-Knowledge proof of Graph Pion-Isomorphism
	7.2 What does the prover of a PSPACE language know?

	Acknowledgements
	References

