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Abstract. T h e  notion of a “proof of knowledge,” suggested by Gold- 
wasser, Micali and Rackoff, has been used in many works as a tool for 
the construction of cryptographic protocols and other schemes. Yet the 
commonly cited formalizations of this notion are unsatisfactory and in 
particular inadequate for some of the applications in which they are used. 
Consequently, new researchers keep getting misled by existing literature. 
The purpose of this paper is to indicate the source of these problems and 
suggest a definition which resolves them. 

1 Introduction 

The introduction of the concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa LLproof of knowledge” is one of the many 
conceptual contributions of the work of Goldwasser, Micali and Rackoff 1141. This 
fundamental work, though containing intuition and clues towards a definition of 
the notion of a “proof of knowledge,” does not provide a formal definition of 
i t .  Furthermore, in our opinion, the commonly cited formal definitions, namely 
those of Feige, Fiat and Shamir [6] and Tornpaand Woll [18], are not satisfactory, 
and, in particular, inadequate for some of the applications in which they have 
been used. 

The purpose of this paper is two-fold. First, we would like to describe whence 
stem the flaws in the previous definitions and why these definitions do not suffice 
for some applications. We then propose a definition which we feel remedies these 
defects and also has other advantages. 

We note that  a definition which is much better than those of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 6 ,  181 has 
appeared in the work of Feige and Shamir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7 ] ,  but the communityseems unaware 
of the fact that  the definition in [7] is fundamentally different from, and preferable 
to, the one in [6] (in particular, this fact is not stated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[i’]). The definition 
we present differs in many ways from that of 171 which we feel still has some 
conceptual problems. Yet both have in common the attempt to capture provers 
who convince with probabilities that are not non-negligible, thereby correctly 
addressing what we believe is one of the main flaws in the definitions of [6,  181. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ Research was partially supported by grant No. 89-00312 from the US-Israel Bina- 
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Among the novel features of our new definition is that it allows us also to  
talk of the knowledge of machines which operate in super-polynomial-time. But 
this (and other novel features) we will discuss later; let us begin with the basics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1 

Intuitively, a two-party protocol constitutes a “system for proofs of knowledge” 
if “whenever” one party (called the verifier) is “ c ~ n v i n c e d ” ~  then the other party 
(called the prover) indeed “knows” “something”. The excessive use of quotation 
symbols in the condition of the above statement may provide some indication 
to  the complexity of the notion. For simplicity, let us consider the special case 
in which the “object of knowledge” is a witness for membership of a common 
input in some predetermined language in NP. For example, let us consider the 
case in which the “object of knowledge” is a satisfying assignment for a CNF 
formula (given as input to both parties). Hence, a two-party protocol constitutes 
a “system for proofs of knowledge of satisfying assignments” if “whenever” the 
verifier is “convinced” then the prover indeed “knows” a satisfying assignment 
for the given formula. The clue to a formalization of “proofs of knowledge” is an 
appropriate interpretation of the phrases “whenever” and “knows” which appear 
in the condition. The phrase “convinced” has the straightforward and standard 
interpretation of accepting (i.e., entering a specified state in the computation). 

Following zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14] the interpretation of the phrases “whenever” and “knows” 
is as follows. Suppose for simplicity that  the verifier is always convinced (i.e. 
after interaction with the prover the verifier always enters an accepting state). 
Saying that the prover “knows” a satisfying assignment means that it “can be 
modified” so that it outputs a satisfying assignment. The notion of “possible 
modifications of machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ”  is captured by efficient algorithms that use iVf 
as an oracle. Hence, saying that the prover “knows” a satisfying assignment 
means that it is feasible to compute a satisfying assignment by using the prover 
as an oracle. Namely, there exists an efficient algorithm, called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknowledge 
eilractor, that on input a formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p and given oracle access to a good prover 
(i.e. a prover which always convince the verifier on common input (6) is able t o  
output a satisfying assignment to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.  Indeed, this is exactly the interpretation 
given in works as [18, 61. The problem is to  deal with the general case in which 
the prover may convince the verifier with some probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE < 1. Again, for 
constant e there is no problem and it can be required that even in this case the 
knowledge extractor succeeds in outputting a satisfying assignment in expected 
polynomial-time (or alternatively output such an assignment in polynomial t ime 
with probability exponentially close to 1). This interpretation is valid also if 6 

is any non-negligible function of the length of the input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (a non-negligible 
function in n is a function which is asymptotically bounded from below by a 
function of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-‘, for some constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ) .  But what should be required 
if the PTOVer does not convince the .verifier with non-negligible probability? Most 

Basic approach i n  defining proofs of knowledge 

We have replaced the more intuitive but possibly misleading phrase “convinced that 
the prover knows something” by the  neutral phrase “convinced” 
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previous formulations (e.g., j18, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61) require nothing, and hence are unsatisfactory 
both from a conceptual point of view and from a practical point of view [i.e., in 
view of many known applications). In particular, this inadequacy often appears 
when “proofs of knowledge” are used as subprotocols inside larger protocols. In 
other words, the inadequate formulations of “proofs of knowledge” drastically 
l imit their modular application in the construction of cryptographic protocols. 

1.2 Provers which convince with probability that is not 

no n- ne gligib zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAle 

We start  with a n  abstract justification of our claim that requiring nothing, in 
case the prover does not convince the verifier with non-negligible probability, is 
wrong. We first uncover the reason i t  has been believed that it is justified to 

require nothing. It has been believed that events which occur with probability 
which is not non-negligible can be ignored, just as events which occur with 
negligible probability can he ignored. However, a key observation, which has been 
overlooked by this argument, is that a sequence of probabilities can be neither 
negligible (i.e., smaller that  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-‘ for all c > 0 and all sufficiently large n’sj nor 
non-negligible (i.e., bigger that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-’ for some c > 0 and all sufficiently large n). 
Hence, even if it were justified to require nothing in case the prover convinces 
the verifier with negligible probability, it is iinjustified to require nothing in case 
the probability of being convinced is just not non-negligible! 

To demonstrate what is wrong when we require nothing in case the prover 
does not convince the verifier with a non-negligible probability, we consider the 
following possibility. Suppose that there exist a prover and an infinite sequence of 
CNF formulae, {& : nEIN),  such that the probability that  the prover convinces 
the verifier on common input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbn is n-k ,  where n is the length of q!+, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is 
the number of literals in the longest clause of q ! ~ ~ .  Furthermore, suppose that,  
for every ,k > 0,  there exists infinitely many n’s such that k is the number 
of literals in the longest clause of &. An important observation is that  the 
sequence of probabilities (defined by the above prover and formulae) is neither 
negligible (i-e., smaller that n-‘ for all c > 0 and all sufficiently large n’s) nor 
non-negligible (i.e., bigger that n-‘ for some c > 0 and a11 sufficiently large 
n). Hence, previous definitions of “proof of knowledge” require nothing (or too 
little) with respect to the above prover. To appreciate the severity of the lack of 
requirement with respect to  the above prover consider the following application. 
Suppose that each (,6n has a unique satisfying assignment, and that  a “proof of 
knowledge of a satisfying assignment” is used as a subprotocol inside a protocol 
in which Alice  will send Bob a satisfying assignment to  & if she is convinced by 
Bob that  he already knows this assignment. We would like to argue that in this 
application Alice  yields no knowledge to Bob (i.e-, Alice  is zero-knowledge). 
Using a reasonable definition of “proof of knowledge” one should be able to  
prove such a statement (and indeed using our definition such a proof can be 
presented). Yet, the zero-knowledge property of Alice  can not be demonstrated 
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using previous formulations of “proof of k n ~ w l e d g e . ” ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A more concrete and practical setting can help to  further clarify our point. 

It has been suggested to  use a “proof of knowledge” as a subprotocol inside a 
multi-round encryption scheme secure against chosen ciphertext attack (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[S, 
Sec. 51 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15, Sec. 5.41). Namely, the decryption module returns a decryption 
of a chosen ciphertext only if “convinced” that the party asking for it already 
“knows i t” .  (This is a special case of the application considered in the previous 
paragraph). Using previous formalizations of “proof of knowledge” it cannot be 
proved that the above “decryption module” is zero-knowledge (i.e., yields no 
knowledge) under a chosen ciphertext attack. Yet, the above decrypt,ion module 
is zero-knowledge and this zero-knowledge property (though not proven!) has 
been used to claim that the particular multi-round encryption scheme is secure 
against chosen message attack. We stress that the above mentioned encryption 
scheme is indeed secure under such attacks, it is just that its security has not 
been proven hut rather “hand-waved”, ar,d that the essential flaw in the hand- 
waving is the fact that it is based on an inadequate formalization of proofs of 
knowledge. 

The above example is very typical. In many (yet not all) applications of 
“proofs of knowledge” one relies on their meaningfulness with respect t o  arhi- 
trary behavior of the prover. Yet as pointed out. above, previous formalizations of 
“proof of knowledge” are meaningful only in case the prover convince the verifier 
with non-negligible probability. One should not make the mistake of saying that 
events which happen with probability that is not non-negligible can be ignored, 
since such probabilities are not negligible! Put in other words, negligible is not 
the negation of non-negligible! 

TO avoid confusion we stress that the definitions of [6] do suffice for the 
applications in their paper. Problems (as illustrated above) have arisen when 
these same definitions have (later) been used in other applications. 

1.3 A few words about the definition presented in this paper 

The most important aspect in which our definition (as well as the one of [7]) 
deviates from the previous ones is that there is no sharp distinction between 
provers based on whether they convince the verifier with non-negligible proba- 
bility or not. In our case, the requirement is that  the knowledge extractor always 
succeeds and that the average number of steps it performs is inversely propor- 
tional (via a polynomial factor) to the probability that the prover convinces the 
verifier. 

Over and above this change, we have t aken  the opportunity to correct what 
we feel are other conceptual drawbacks of previous definitions (including [7]). 

Typically, the simulator for the zero-knowledge property uses the knowledge extrac- 
tor (for the proof of knowledge) as a subroutine. However, previous formulations 
of “proof of knowledge” do  not guarantee a knowledge extractor which handles the 
entire sequence of formulae. On the other hand, one cannot ignore the case in which 
something is sent by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlice since this case is not negligible. 
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Although these other changes are to some extent a matter of taste they are 
nonetheless important, and also enable us to obtain definitions that  are more 
general than previous ones. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs examples, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa few such issues are discussed below; 
we refer the reader to §4 for more details as well as for a discussion of the many 
other points of difference. 

All previous definitions refer only to provers which can be implemented by 
probabilistic, polynomial time programs (with auxiliary input). In some works it 
is even claimed that it makes no sense to talk of the knowledge of computationally 
unrestricted machines. We strongly disagree with such claims, and point out 
that  previous definitions have considered only computationally restricted provers 
because of technical reasons. From a conceptual point of view it is desirable to 
have a “uniform” definition of proofs of knowledge which refers to all provers 
independently of their complexity, the probability they lead the verifier to accept, 
and so on. In fact, ou r  definition has this property. A consequence of this property 
is that our definition enables one to talk of the “knowledge” of super-polynomial- 
time machines. For example, we are  able to  say in what sense the interactive 
proofs introduced by Shamir [17], in order to demonstrate that IP=PSPACE, 
constitute “proofs of knowledge.” 

Most proofs of knowledge (e.g., the proof of knowledge of an isomorphism 
used by [12] - see Appendix E) are constructed by iterating some “atomic” pro- 
tocol. Typically, these atomic protocols have the property that one can easily 
lead the verifier to accept with some constant probability (say, l/2) even when 
having no “knowledge” whatsoever. Yet, these atomic protocols do prove some 
“knowledge” of the prover, in case it is able to convince the verifier with higher 
probability. However, previous definitions of “proof of knowledge’’ were unable 
to capture this phenomenon; they were only able to say what it means for suffi- 
ciently (i.e. super-logarithmic) many iterations of these “atomic” protocols to be 
“proofs of knowledge.” This belies the basic intuition and also precludes a mod- 
ular approach to protocol design. We correct these weaknesses by showing how 
to measure the “knowledge error” of a proof, and then showing how composition 
reduces it. 

A special case of our definition is when the knowledge error is zero. This 
special case is important is some applications. In particular, “proofs of knowl- 
edge with zero error” are important when using a proof of knowledge inside a 
zero-knowledge protocol so that one party sends some information only if he is 
convinced that the other party already knows it. A typical example is the zero- 

knowledge protocol for graph non-isomorphism of 1121 (cf. 57.1). We stress that  
none of the previous definitions could handle “proofs of knowledge with zero 
error.” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4 Organization 

The main conventions used throughout the paper appear in 82. The new def- 
inition (of a proof of knowledge) appears in 53, and $4 contains a discussion 
of various aspects of this definition. This main part of the paper is augmented 
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by Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, in which previous definitions (of proofs of knowledge) are re- 
viewed, and by 57 in which examples of the applications of the new definition 
are presented. 

The rest of the paper addresses issues which are related to  the definition of a 
proof of knowledge: $5 addresses the effect of repeating a proof of knowledge, and 
$6 presents an equivalent formulation of our definition of a proof of knowledge. 

2 Preliminaries 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1}* x {0,1}* be a binary relation. We say that R is polynornially 
bounded if there exists a polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp such that ( y (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. p(lz1) for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x ,  y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R. 
We say that R is an NP relation if it is polynomially bounded and, in addition, 
there exists a polynomial-time algorithm for deciding membership in R. 

If R is a binary relation we let R(zj  = { y : (z, y) E R } and 

L R  = { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 : 3y such that (z, y) E R }  . 

If (2, y) E R then we call y a wztness for 2. 

The proof systems we define are two-party protocols. We model the players in 
these protocols not (as is common) as interactive machines, but rather as what 
we will call “interactive functions.” The idea is to  separate the computational 
aspect of the player from its input/output behaviour. We feel that this eases and 
clarifies the presentation of the (later) definitions. 

Definitionl. An interactive function A associates to each z E (0, l}’ (common 
input) and 7 E {0,1>* (prefix of a conversation) a probability distribution on 
{ O , l } *  which we denote by A,Iv]. We denote by A , ( q )  an element chosen at  
random from this distribution. 

Intuitively, A, (q )  is A‘s next message when the prefix of the conversation so far 
was 7 and the common input is z. 

The two players in the protocols we will consider are called the prover and 
the verifier. Both are modeled as interactive functions. The interaction between 
prover P and verifier V on a common input x consists of a sequence of “moves” 
in each of which one player sends a message to the other. The players alternate 
moves, and for simplicity we will assume the prover moves first and the verifier 
last. We denote by a, (resp. ,LIZ) the random variable which is the message sent by 
the prover (resp. verifier) in his i-th move. We assume any prefix of a conversation 
can be uniquely parsed into its constituent messages. Then each message is 
specified by the prescribed interactive function as a function of the common 
input and previous messages. More precisely, 

a, = Pz(crlpl...cu,-lpz-l) ( i  = 1 , 2  ,...) 
,a = vz(cylpl . . .cy,- , /3,-1 a,) ( 2  = 1 , 2  , . . . ) .  

These random variables are defined over the probabilistic choices of both inter- 
active functions. 
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We will adopt the convention that there are special symbols which an inter- 
active function may output to indicate things like acceptance or rejection. We 
assume there exists a function t v ( . j  (the number of “rounds”) such that the 
tv(z) - th  move zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the verifier contains its verdict on acceptance or  rejection. (For 
simplicity we restrict the number of rounds to be a function of the verifier and 
the common input, and do not allow it to depend on the prover. Yet this is with- 
out loss of generality). The transcript of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe interaction, denoted trp,V(z), is the 
string valued random variable which records the conversation up to  the verifier’s 
verdict. That  is, t rp , v (z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ $ 1 . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. c Y ~ ~ ~ ~ ) / ~ ~ , ~ ( ~ ~ .  Note that  the transcript of the 
interaction between a prover P and verifier V contains the sequence of message 
exchanged during the interaction, but not information which is available only to  
one party, such as its “auxiliary input“ or its “internal coin tosses,” unless these 
were sent to  the other party. 

Since we have assumed that the transcript contains the verifier’s verdict 
on whether to  accept or reject, we may. for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  talk of the set of ac-  

c e p t i n g  t ranscr ipts,  denoted ACCv ( 2  j ,  and the set of r e j e c t i n g  t r a n s c r i p t s ,  de- 
noted R E J ~ ( Z ) .  Thus the “probability that the verifier accepts” is, by definition, 
Pr [ t rp .v(z)  E ACCv(z)]. 

We stress that  the definition of an interactive function makes no reference to 
its computational aspects. We may discuss the computational complexity of an 
interactive function in a natural way, namely by the complexity of a (probabilis- 
tic) Turing machine that computes it. In particular, we say that  an interactive 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is computable in probabilistic polynomial t ime if there exists a prob- 
abilistic Turing machine which on input z, q outputs an element distributed 
uniformly in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , [ q ] ,  and runs in time polynomial in the length of 2. 

For simplicity we will restrict the verifier’s program to be computable in 
probabilistic, polynomial time. (We stress that we do not restrict the computa- 
tional power of the party playing the role of the verifier.) We will also restrict 
the number of rounds (associated to this verifier program) to be a polynomially 
bounded, polynomial time computable function. 

Sometimes we wish to discuss probabilistic, polynomial t ime players who 
receive a n  additional “auxiliary” input (such an input may be, for example, a 
witness for the membership of the common input in some predetermined NP 
language). We may capture such situations by thinking of the auxiliary input 
as being incorporated in the interactive function <i.e. the party’s interaction on 
common input z and auxilary y is captured by an oracle indexed by both z and 

We will be interested in probabilistic machines which use interactive functions 
Y). 

as oracles. 

Definition2. Let K(. j  be a probabilistic oracle machine, and A an interactive 
function. Then K A a ( z )  is a random variable describing the output of K with 
oracle A ,  and input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, the probability being over the random choices of K and 
A.  

The meaning of having A,  as an oracle is that K may specify a string 7 and, 
in one (special) step, obtain a random element from A,[q]. We count the steps 
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needed to  specify 7 (and read the output) ,  but the oracle invocation is just one 
step. I t  is understood that an invocation of the oracle on a string zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘I returns a 
random element of A, [qj! independently of any previous invocations of the oracle 
on other  input^.^ 

We call a function f :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN ++ IR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnegligible if for ail c :> 0 and all sufficiently 
large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn we have f ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc: n-‘. We call a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf :  IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC )  SR non-negligiblc if 
there exists c > 0 so that for all sufficiently large n we have f (n)  2 n-‘. We 
call f :  (0: 1)’- R negligible if the function n +, m a ~ c ~ o , l } ,  f ( z )  is negligible, 
and non-negligible if the function n ++ min,Eio,l)., f ( z )  is non-negligible. As 
stressed above, non-negligible is not the negation of negligible but rather a very 
strong negation of it (and there exist functions which are neither negligible nor 
non-negligible). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 A Definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Proof of Knowledge 

Let R 5 (0, l}’ x (0, l}’ be a binary relation. Our aim is to define a “sys- 
tem of proofs of knowledge for R.” For simplicity, we restrict our  attention to 
polynomially boiinded relations (and, unless otherwise stated, all relations in 
this paper are assumed to be such). Note that the most nat,ural and important 
class of proofs of knowledge, namely those of “knowledge of a witness for an NP 
statement,” correspond to  the special case of NP relations. 

The heart of the proof system is the verifier, which remains fixed for oiir 
entire discussion. This fixed verifier may interact with arbitrary provers, and 
we will relate the behavior of the verifier in these interactions with assertions 
concerning knowledge of the corresponding provers. 

For the purpose of defining proofs of knowledge there is no need to restrict 
the verifier computationally, although in most applications one asks that it be 
probabilistic, polynomial time. 

We make no assumptions concerning the possible provers (in contrast t o  
previous formalizations). We don’t eve11 assume that  they send messages that 
can be computed (say nothing about efficiently computed) from the informabion 
they receive (i.e., their initial input and in-coming messages). That  is, provers 
are arbitrary interactive functions. 

We wish to  define the “knowledge of P about L which may be deduced from 
the interaction of P with V (on input z)”. Clearly, this knowledge contains the 
transcript of the interaction. Yet, in case the interaction is accepting and this 
event is not incidental, one can say m o r e  011 the knowledge of P .  Namely, the 
ability of P to “often” lead the verifier to accept may say something about 
the knowledge of P.  The crucial observation, originating in [14], is that  the 
“knowledge of P about ;c (deduced by interaction)” can be captured by whatever 
can be eff ic ient ly computed on input 2 and access to the oracle P,. 

6 
A stricter alternative is obtained by fixing the prover’s sequence of coin tosses and 

treating it as auxiliary input to the prover. Note that  all known “proofs of knowledge” 
satisfy also this more str ict requirement. The  fact that the strict requirement implies 
the main one can be shown by techniques similar to those used in Appendix C. 
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The phrase “efficiently computed on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and access to an oracle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPZ” is 
made precise in the definition of a “knowledge extractor.” The straightforward 
approach is to require that the knowledge extractor is a probabilistic polynomial- 
time oracle machine. Indeed this is the approach taken in some previous works 
(if one translates their ideas to this slightly different setting). We will replace 
the strict requirement that the knowledge extractor works in polynomial-time 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa more adaptive requirement which relates the running time of the knowledge 
extractor to the probability that the verifier is convinced. The advantages of this 
approach have already been discussed and will be further discussed below. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( z )  be the probability that prover P convinces verifier V to accept on 
input z. In its simplest form, the requirement we impose is that the extractor 
succeed in outputting a witness in (expected) time proportional to l/p(z). In 
actuality, we will introduce a “knowledge error function” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( . )  and ask that the 
extractor succeed in outputting a witness in (expected) time proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l/(p(z) - ~ ( z ) ) .  Intuitively, ~ ( z )  is the probability that  the verifier might accept 
even if the prover did not in fact “know” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa witness. We note that in applications 
~ ( z )  is small, and often it is zero (cf. 54.4 and §5). The precise definition follows. 

Definition3. (System of proofs of knowledge) Let R be a binary relation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K :  (0, 1}* -+ [0,1]. Let V be an interactive function which is computable in 
probabilistic, polynomial time. We say that a V is a knowledge verifier for the 
relation R with knowledge error IC if the following two conditions hold. 

- Non-triviality: There exists an interactive function P” so that for all z E LR, 
all possible interactions of V with P’ on common input z are accepting (i.e. 
P r [ t r p , v ( z )  E ACCv(z)j = 1). 

- Validity (with error 6): There exists a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > 0 and a probabilistic oracle 
machine K such that for every interactive function P and every z E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALR, 
machine K satisfies the following condition: 

if p ( z )  d2f Pr[trp,v(z)EACCV(z)] > ~ ( z )  then, on input z and access 
to oracle P,, machine K outputs a string from the set R ( z )  within 
an expected number of steps bounded by 

, X I C  

P ( C )  - 4.) . 
The oracle machine K is called a universal knowledge extractor, and K. is called 
the knowledge error function. 

The next section is devoted to remarks on various features of this definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Remarks 

We discuss various features of our definition, with particular regard to how it 
differs from previous definitions. 
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4.1 

Suppose the knowledge error is negligible. Clearly, if the verifier accepts with non- 
negligible probability then the knowledge extractor runs in average polynomial 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 time. This conclusion yields essentially what zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6 ,  181 have considered as 
sufficient. Yet, as we have argued: this conclusion by itself does not suffice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Provers which convince with non-negligible probability 

4.2 

For the purpose of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdefining proofs of knowledge, there is no need to restrict 
the prover to polynomial-time. This is a point on which we disagree with pre- 
vious works which claimed that it makes no sense to talk of the knowledge of 
unrestricted machines. Our definition is presented without assuming anything 
about the power of the prover, and it is a corollary that machines with no time 
bounds may know facts which cannot be deduced in (say) double exponential 
time (and so on). In particular, as we will see (cf. $7.2), it is meaningful, under 
our definition, to say that the prover in Shamir’s interactive proof system for a 
PSPACE-complete language “knows” an accepting computation of a polynomial- 
space machine. One the other hand, provers which succeed in convincing a verifier 
of their knowledge can be reasonably efficient. For example, they may be imple- 
mented by polynomial-time programs. Furthermore, all “reasonable” interactive 
proofs €or languages in NP (and in particular the zero-knowledge ones [12]) can 
be convinced by probabilistic polynomial-time provers which get an NP-witness 
as auxiliary input. (However, membership in an N P  language can be proven via 
Shamir’s result that IP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= PSPACE. The corresponding prover is unlikely to  be 
implementable in polynomial-time). 

Note that we do not ask that the verifier be a probabilistic polynomial time in- 
teractive Turing machine, but just that it be an interactive function computable 
by one. This distinction is conceptually useful when we consider applications 
such as the graph non-isomorphism protocol [12] in which the verifier (of the 
proof of knowledge) is the prover of the graph non-isomorphism protocol, and 
thus not a probabilistic polynomial time interactive Turing machine. However, 
the part of this prover’s program which implements the verifier (of the proof of 
knowledge) is indeed computable in probabilistic polynomial time. 

The efficiency of the provers and verifier 

4.3 The knowledge extractor 

What should not be given to the knowledge extractor. We deviate from some 
Previous works in that we define the knowledge of the prover only with respect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to what is publicly available (i.e., the common input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  access to an oracle for 
the prover, and possibly the transcript). Some other works define the knowledge 
of the prover with respect to the auxiliary information available to the prover as 

well as its sequence of coin tosses (which may6 not be known to the verifier). TO 
justify our choice we remind the reader that  the definition of “proof of knowl- 
edge” is supposed to capture the knowledge of the prover demonstrated by the - 

Using the term “may” is indeed an understatement! 
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interaction and not merely the knowledge of the prover. Hence, there seems to be 
l itt le motivation and/or justification to  talk about the knowledge of a machine 
with respect to something which is not known to the outside (i.e., verifier). In 
particular, only the common input (of the interaction) should be given as input 
to the knowledge extractor, and the auxiliary input or local coins of the prover 
should certainly not be given. 

One thing that the  knowledge e x t r a c t o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan do. In all examples we are aware 
of, the knowledge extractor proceeds by trying to find several (not more than 
polynomially many) related accepting transcripts. For example, the knowledge 
extractor presented in Appendix E tries to  find a single accepting transcript in 
addition to the one given as input. Clearly such a knowledge extractor succeeds 
within an average number of steps which is inversely proportional to  the density 
of the accepting transcripts (which is in other words the accepting probability). 
Note that  if the proof of knowledge is zero-knowledge then a single accepting 
transcript (and in particular the one given as inpiitj cannot suffice. 

Universality of t h e  k n o w l e d g e  extractor.  In the above definition we require the 
existence of a universal knowledge extractor which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAworks for all possible in- 
teractive functions P .  Switching the quant,ifiers (i.e., requiring that  for every 
interactive function P there exist a knowledge extractor K p )  would make lit- 
t le sense in practice since P in OUT conventions may depend on (non-uniform) 
auxiliary input of the “real” prover (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2). However, the quantifiers may be 
switched if one considers only provers which are (uniform) interactive machines. 
For further discussion see thf parenthetical subsection in [lo, Sec. 4.11, which 
considers an analogous situation in the context of zero-knowledge. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstress 

that  also in case the quantifiers are switched, the knowledge extractor (although 
it may depend on the prover) must be giver1 oracle access to the prover. The 
reason being that the prover’s program may he highiy inefficient (and therefore 
cannot be “incorporated“ into the extractorj. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.4 The knowledge error function 

T h e  knowledge error function is a novelty of our d e f i n i t i ~ n . ~  Let us see why i t  is 
important. 

Typically, “proofs of knowledge” are constructed by repeating an “atomic” 
protocol sufficiently many times. An atomic protocol for graph isomorphism, for 
example, is the following (cf. [ la ] ) .  

Example. The input is a pair of (isomorphic) graphs GI and Ga. The prover 
generates a szngle random isomorphic copy of GI which we call H ,  and sends H 
to the verifier. The latter responds with a random query i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { 1,2}. The prover 
replies to z by presenting an isomorphism between G, and II. The verifier accepts 

Although the ideas in [5j may be interpreted as pointing to a similar notion. 
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if the permutation supplied by the prover is indeed an isomorphism between G, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH .  

Intuitively, this protocol does demonstrate some “knowledge” of an isomorphism 
between GI and G2. Yet. previous definitions were unable to capture this fact; 
they were only able to show that sufficiently (i.e. super-logarithmic) many it- 
erations of this protocol constituted a “proof of knowledge.“ This non-modular 
approach belies the basic intuition and is also not the natural approach to pro- 
tocol design. 

The introduction of the knowledge error function remedies these defects. In 
particular, we are able to  capture “atomic” proofs of knowledge of the above type. 
Indeed, under our definition, the above is a proof of knowledge with knowledge 
error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl/2. Furthermore, we are able to prove composition theorems which show 
how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO reduce the knowledge error (cf. $5) and thus construct proofs of knowledge 
in a modular fashion. 

Another motivation of the knowledge error function comes from cases where, 
for convenience, we have the verifier accept with some (usually small) probability 
even if the evidence supplied by the prover is not convincing. For example, we 
may do this to guarantee perfect completeness (i.e., the prover’s ability to  alway 
convince the verifier of valid statements). In such cases, the knowledge error 
can compensate for this small probability. The importance of this aspect of the 
knowledge error function, and the perfect completeness example, were pointed 
out to us by Feige (private communication, June 1992). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.5 What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabout soundness? 

We note that our definition makes no requirement for the case z 6 LR. In 
particular, soundness (i.e., a bound on the prover’s ability to lead the verifier 
to accept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 @ L R )  is not required. Consequently, a knowledge verifier for R 
does not necessarily define an interactive proof of membership in LR. This is 
in contrast to previous definitions; they had the *‘validity” condition imply the 
soundness condition, so that the latter always held. We feel that our “decoupling” 
of soundness from validity is justified both conceptually and in the light of certain 
applications. Let us see why. 

First, conceptually, it seems more natural zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  talk about extracting witnesses 
only when these witnesses exist. Furthermore, as long as one property is not 
known to imply the other it seems wrong to require the latter unless one really 
needs it. 

Second, there are some natural applications (e.g., “zero-knowledge based” 
identification schemes) in which it is a-priori agreed that  the protocol will be 
applied only to strings in some NP language (i.e.l z E L R  E NP). Such applica- 
tions are better modeled by our definition than by previous ones. To be concrete, 
consider the following identification scheme based on the hardness of quadratic 
residuosity. 

Example. A user A (Alice), who wishes to be able to securely remote-login to a 
mainframe computer (which we denote by V because it plays the role of verifier) 
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chooses at random a pair of large primes and multiplies them to get a modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NA. She also chooses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZk, at random, sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX A  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYj mod N A ,  and gives 
the pair ( N A ,  XA) to V .  All this is performed once in a life-time, when Alice 
is identified by other means. Later, whenever Alice wishes to remote-login, she 
sends her name ( A )  to V, who responds by sending the pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IVA,XA). She now 
provides a (zero-knowledge) proof that she “knows” a square root of X A  mod 
N A .  Besides the fact that A can provide the proof (completeness) we require 
that  if Bob ( B  # A )  were to attempt to remote-login as A then he (B) would 
fail. The point to note in (khe formalization of) the latter requirement is that 
the interaction of B with V takes place on an input (namely ( N A ,  X A ) )  which 
is in the underlying language L R  (the relation R here is { ( ( N ,  X), Y )  : Y 2  f X 
(mod N )  ) and the underlying language is LR = { ( N ,  X i  : X is a square mod 
N 1). So it suffices to require that the interaction of B with V on inputs in this 
l anguage “proves possession of a witness.” W h a t  happens on i n t e r a c t i o n s  on input 
not in the l anguage is immaterial t o  the security of the identification scheme. 
Thus the requirements for a secure (zero-knowledge based) identification scheme 
are more faithfully modeled by our Definition 3 than by previous definitions 
{which required that a n y  proof of knowledge of a relation R be an interactive 
proof of membership in LR).  

We stress that we are not, of course, saying that soundness is a l w a y s  redundant. 
Rather, the above discussion justifies our choice not to make soundness a part 
of the definition of a proof of knowledge. In cases where soundness is necessary, 
it can be viewed as a separate, additional property that the knowledge verifier 
must satisfy. Furthermore, it is possible that some applications call for other 
kinds of conditions on E $ LR.  One possibility, which we call strong v a l i d i t y ,  is 
discussed in Appendix B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.6 Relaxing the non-triviality requirement 

The prover guaranteed by the non-triviality requirement must convince the ver- 
ifier in all interactions of z E LR.  This requirement, met in all known protocols, 
is not essential to the definition of a proof of knowledge. In general one may re- 
quire that the existence of a prover that convinces the verifier, on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  with 
probability C(z). As far as polynomial-time (or even more powerful) verifiers 
are concerned any choice of a polynomial-time constructible bound, C(-), which 
is both non-negligibly greater than K ( . )  and bounded above by 1 - 2-p01Y(’), is 
equivalent.’ In fact, following the ideas in [9], one can eliminate the error prob- 
ability in the completeness condition altogether and derive the definition as in 
the previous section. However, although the last transformation does preserve 

* When saying that these choices are equivalent, as long as the above requirements are 
satisfied, we mean that existence of a verifier which satisfies one permissible bound 
yields the existence of another verifier which satisfies the second bound. Furthermore, 
the complexity both of the verifier and of the prover (meeting the completeness 
condition) is preserved (and so are zero-knowledge properties). 
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validity, it does not necessarily preserve the complexity of the prover and its 
zero-knowledge p r ~ p e r t y . ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.7 A word about cornputationally convincing proofs of knowledge 

Some works (cf. [4, 51) consider the situation in which the class of provers for 
which the protocol is supposed to be a “proof of knowledge” is restricted to the 
class of probabilistic, polynomial time interactive Turing machines with auxiliary 
input.” Typically, the protocols in question rely on the use of problems which 
are intractable for the prover(s). This is the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomputatzonally convincing 
(zero-knowledge) proofs, also known as arguments (cf. [3]). 

Our definitions may be adapted to cover such settings as well. We would 
restrict the class of provers for which validity is required to hold to the class 
of interactive functions computable in probabilistic, polynomial time by inter- 
active machines. We would, however, also relax slightly the validity requirement 
by asking that it only be true for sufficiently long inputs. More precisely, we 
would require that €or each probabilistic, polynomial time computable interac- 
tive function P (prover) there exist a constant n p  such that for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E L R  of 
length at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, machine X satisfies the following condition: 

def 
if p ( z )  = Pr[t rp,v(z)  ACCv(z)] > ~ ( z )  then, on input z and access 
to oracle P,, machine K outputs a string from the set R ( z )  within an 
expected number of steps bounded by Izi ‘ /(p(z) - ~(z)). 

In applications, ~ ( z )  could be set to l /poly(z) for some specific poly(.). Alter- 
natively, following [?], one can use &(.) as a shorthand for “smaller than any 
function of the form l/poiy(.)”.  However, a much better alternative is to set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( - )  

to be a specific negligible function (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(Z) = 2- m) related to a specific 
intractability assumption concerning the computational problem on which the 
scheme is based (e.g.. DLP is intractable with respect to algorithms which run 
in time 2 %  on inputs of length n). 

Some ideas on the subject of “computationally convincing proofs of knowl- 
edge” appear in the work of Brassard, Crkpeau, Laplante and LCger [5]. Although 
they do not present definitions, it would appear these ideas bear many similari- 
ties to  ours. We discuss their work in Appendix A. 

The fact that  some variations are needed to  treat the case of “computationally 
convincing proofs of knowledge” has been pointed out to us by Feige (private 
communication, June 1992). 

In this context  we note, however, t ha t  the zero-knowledge too may be preserved, 
as long as one is willing to make a complexity assumption, by further applying the 
transformation of [2]. 
For simplicity we ignore the auxiliary inputs in this discussion. They can be treated 
as outlined in $2. 

10 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReducing the knowledge error via repetitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
One of the reasons to introduce the knowledge error function is the theorems 
established here. We show that the knowledge error may be reduced by compo- 
si tion. 

First we consider sequential composition. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = m(z) independent copies 
of the original protocol are executed on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, and the verifier accepts iff all 
copies are accepting (we stress that by "independent" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe mean that the verifier 
acts in each of the copies independently of the others; of course we don't assume 
this about prospective provers). If K was the knowledge error of the original 
protocol then the knowledge error the resulting protocol is essentially nm. The 
more precise statement follows. 

N o t a t i o n a l  convent ion:  by polyj.) we mean any sufficiently large polynomial in 
the length of the input (string). 

Required assumplzon: y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R ( z )  can be found (if such exists) in exponential-time 
(i.e., time 2P"'y(I"I)), Finally, we assume of course that m ( x )  5 poly(lz/). 

Theorem4. Suppose tha t  V zs a knowledge verzj ier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the relataon E wzth 
er ro r  K ( . ) .  Le t  V, denote the  program that, o n  input x,  sequentzal ly executes the  
program V ,  o n  znpud 2, f o r  m ( x )  t i m e s  T h e n  V, zs a knowledge verzf ier for the  

relatzon R wzih error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,(.) = (1 + l /poly( . ) )  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK( . ) " (  1.  
def 

The proof is in Appendix C.1. 

With respect to error reduction via parallel repetitions we were only able to prove 
a statement concerning a special class of knowledge verifiers (which nonetheless 
contains all known verifiers). For further discussion see Appendix C.2. 

Finally, we observe that tiny knowledge error can be eliminated. 

Proposition5. Suppose tha t  a n  e lemen t  zn Rjz ) ,  if such exists,  can  be f o u n d  
in time at most  t ( x ) ,  g iven only 3: as i npu t .  Suppose V is a knowledge ver i f ier  
f o r  R w i l h  knowledge error smal le r  t h a n  &. T h e n ,  V i s  a knowledge ver i f ier  
for R with knowledge ermr 0 .  

We omit the proof which uses methods similar to those used in Appendix B.  

The  resulting formulation (namely, knowledge error 0) is often the simplest way 
of thinking about proofs of knowledge: we are saying that the knowledge extrac- 
tor succeeds in time ] ~ ~ ~ / l p ( x ) ,  where p ( z )  is as in Definition 3. Many proofs of 
knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( e . g . ,  the one presented in Appendix E) are of this type. 

6 An equivalent formulation of validity 

Following is an equivalent formulation of the validity condition. The new formu- 
lation is inspired by (yet is quite different in many respects from) the definition 
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in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7].  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( z )  be as in Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Instead of asking that the knowledge verifier 
always output y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R ( z ) ,  we ask only that it output y E R ( z )  with a probability 
bounded below by p ( z )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( Z ) ~  and otherwise output a special symbol, denoted 
1, indicating “failure to  find y E R ( z ) ” .  However, whereas originally the ex- 
tractor had expected time proportional to l / (p( z j  - ~ ( z ) ) ,  we now give it only 
expected polynomial time. More precisely, letting K :  (0, 1}* H [0, 11, we have 
the following. 

- New validity (with error K ) :  We say that the verifier V satisfies ne’w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalidity 
with e m u ?  /c if there exists a probabilistic expected polynomial-time oracle 
machine K such that for every interactive function P and every z E LR i t  
is the case that K p = ( z )  E R ( z )  u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{i} and 

Pr[Kpz(z) E R(;c)] 2 Pr[trp,v(z)EACCv(rc)] - ~ ( z ) .  

Proposition6. The n e w  validity cond.it io.n as eq.uz-valent t o  the o n e  g i v e n  in 
D e f i n i t i o n  3. 

Here we give the proof for the case K ( Z )  = 0. The proof for the general case is 
more complex and is in Appendix D. 

Suppose, first, that K is a knowledge extractor satisfying the new defini- 
tion. We construct a knowledge extractor K‘ that, on input z repeatedly in- 
vokes K (on z) until K ( z )  # 1. Clearly, K’ always outputs a string in R ( z ) ,  
halting in expected time poly(z) /Pr [K(z)  E R ( z ) ] ,  which is bounded above by 
poly(z)/Pr[trp,V[z) E ACCv(z)]. Hence. K’ satisfies the condition in Definition 3 .  

Suppose, now, that K is a knowledge extractor satisfying Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  We con- 
struct a knowledge extractor K’ that ,  on input ;c first generates a random tran- 
script (i,e.] t rp ,v(z) )  and activates K ( z )  if this transcript is accepting (i.e., in 
A C C v  (z)).  Otherwise, K‘ halts immediately outputting 1. One can easily verify 
that  K’ runs in expected polynomial-time and outputs y E R ( z )  with probability 
exactly Pr [ t rp ,v(z)  EACCv(z)]. 

7 Applications 

Our formalization, as well as that of [Y, do suffice to prove the security of those 
schemes for encryption secure against chosen-cyphertcxt attack which rely on 
zero-knowledge proofs of knowledge (cf. f j l .2) .  However, we prefer to  describe 
here two applications to  which our definition of “proof of knowledge” can be 
applied, whereas all the previous formalizations fail. The first application is a 
modular description of the zero-knowledge proof for Graph Non-Isomorphism 
(of [12]) which uses a “proof of knowledge of an isomorphism” as a subprotocol. 
The second application is to  Shamir’s interactive proof for PSPACE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.1 

The second author first realized the inadequacy of previous formulations of 
“proofs of knowledge” when Leonid Levin insisted that the zero-knowledge in- 
teractive proof for Graph Non-Isomorphism (of [la]) should be presented in 

Zero-Knowledge proof of Graph Pion-Isomorphism 
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a modular manner.ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs many people noticed, the intuition behind this zero- 
knowledge proof is that the verifier first proves to the prover that it “knows” 
an isomorphism between one of the input graphs and the query graph that it 
presents to  the prover.” If the prover is convinced then it answers the query by 
indicating t o  which of the two input graphs the query graph is isomorphic. By 
doing SO the prover yields no knowledge to the verifier, since the verifier “knows” 
to which of the two input graphs the query is isomorphic, yet the prover’s answer 
supplies statistical evidence that the two input graphs are not isomorphic. This 
intuitive idea, taken from the Quadratic Non-Residousity zero-knowledge proof 
of [14], has indeed guided the development of the zero-knowledge proof system 
for GNI, but plays no part in the formal description and proof of correctness 
appearing in [12] (and [14]). Levin complained, rightfully, against this inelegant 
and non-modular approach. The second author’s answer, at the time, was that 
an elegant proof which uses the subprotocol and its properties in a modular 
fashion is not possible due to  lack of appropriate  definition^.'^ 

One definition that was lacking a t  the time was that of the information hiding 
property of the subprotocol used to prove ‘Lpossession of knowledge”. Specifically, 
that subprotocol, which consists of the parallel version of the zero-knowledge 
proof of Graph Isomorphism, is not known to be zero-knowledge (and in light 
of [ll] it is unlikely that a proof that it is zero-knowledge can ever be given). 
Nevertheless, this subprotocol is “witness indistinguishable” (in the sense defined 
latter by Feige and Shamir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7 ] )  and this property suffices to the soundness of the 
interactive proof of GNI. However this entire issue is irrelevant to the current 
paper. 

The other definition that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas lacking at that time was an adequate defini- 
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa proof of knowledge. An adequate definition of a “proof of knowledge” 
is needed to ensure that if the GNI-prover is convinced that the GNI-verifier 
“knows” a n  isomorphism between the query graph and one of the input graphs 
then indicating to  which input graph the query graph is isomorphic yields no 
knowledge to the GNI-~erif ier. ‘~ To this end, the simulator (constructed to meet 
the zero-knowledge clause) uses the knowledge extractor guaranteed by the def- 
inition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa uproof of knowledge”. However, as pointed out above, previous def- 
initions of ”proof of knowledge” are useless in the case the GNI-prover is not 
convinced with non-negligible probability. It follows that the simulator will fail 
to construct the interactions in these cases which may occur with probability 
that is neither non-negligible nor negligible (see 5 1.2). In particular, consider 
the situation where for every c > 0 there exists an infinite sequence of inputs to 
the protocol such that on input of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn the GNI-prover is convinced with 

For sake of self-containment, this protocol is presented in Appendix E 
The prover in the zero-knowledge proof for GNI is the verifier in a “proof of knowledge 
of an isomorphism between two graphs”; whereas the verifier in the zero-knowledge 
proof for GNI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the party claiming and proving knowledge of an NP-witness for GI. 
It should be stressed that a proof of correctness of (the zero-knowledge property of) 
the protocol of does appear in [la]. The criticism points to the fact that the proof of 

correctness in [12] does not reflect the intuition just outlined. 

12 

13 

l4 The reader may find it useful at this point to consult Appendix E. 
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probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-’. 

On the other hand, one can show that  the subprotocol “for proof of knowledge 
of isomorphism” (presented in [ la] and Appendix E) constitutes a (sound) proof 
of knowledge, according to the definitions presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83. It follows that the run- 
ning time of the knowledge extractor is inversely proportional to the probability 
that the GNI-prover is convinced. Hence, the simulator for the GNI-protocol will 
run in expected polynomial-time and produce a perfect simulation of the inter- 
action. Furthermore, it can be easily shown that the GNI-prover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhzle playing 
the Tole of the GI-verzfier an the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproof of knowledge yields no knowledge to  the 
GNI-verifier (since its messages are generated in probabilistic polynomial-time 
from its inputs). 

7.2 

Using our definition, it is possible to say that. the verifier in Shamir’s interactive 
proof for a PSPACE-complete language L is a knowledge verifier for the relation 
RL consisting of pairs ( r , c )  where c is the middle configuration in the com- 
putation of a fixed machine accepting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E L .  Hence, one can say that (in some 
meaningful sense) any prover which convinces this verifier (with, say, probability 
1) on input z, does know a n  acc.epting computation on input z. 

Let us show how a knowledge extractor may find the middle configuration. 
For the rest of this subsection, we assume that the reader is very familiar with 
the interactive proof for QBF as presented in [17, Section 51. The standard re- 
duction of a PSPACE language to QBF associates the middle configuration in 
an accepting poly-space computation with the first block o f t  existential quan- 
tifiers in the formula. So in the rest of this subsection we will consider only the 
problem of retrieving a sequence of truth-values so that assigning these values 
to the above mentioned variables yields value t r ue  €or the resulting formula. 

First, we consider a straightforward method for retrieving these t boolean 
values. This method does work in case the prover convinces the verifier with 
probability 1 (but will have to be modified to deal with arbitrary provers). 
First the knowledge extractor asks the oracle for the first message of the prover 
which is a pair (N, VO), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is a large prime and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvo is a non-zero residue 
mod N (the value of the arithmetic expression mod N ) .  Next, the knowledge 
extractor proceeds in t rounds. In the ith round, the extractor feeds the oracle 
the sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI, ..., ~ i - ~  E Z N  and gets the polynomial, pi, which corresponds 
to the opening of the ith variable, when the previous i - 1 variables are set t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T I ,  ..., ~ i - 1 ,  respectively. The extractor then finds a pa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( 0 , l )  so that p ; ( p i )  is 
not equal to zero modulo N (such pl must exist since C + L E ( O , l ) p i ( p ) ~ ~ i - ~  $ 0  
(mod N ) ) .  Round i is completed by setting r; = pi  and ui = p % ( ~ i ) .  

In general the above method may fail as i t  relies too heavily on the answers of 
the prover on boolean T,’s. An alternative approach is to  select the T % ’ S  uniformly 
in Z N .  The problem is that the resulting residual arithmetic expression no longer 
reflects the truth value of the residual boolean formula. To solve the problem we 
need to find the polynomial resulting by setting the T ~ ’ S  to pi’s by examining 
the polynomials which result by random settings of the rT’s. To see how this can 

What does the prover of a PSPACE language know? 
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be done, we need to take a closer look at the formula used by Shamir and its 
arithmetization. It can be seen that the polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  received from the prover 
in round zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 has coefficients which are polynomials in r1 through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ - 1 .  Denote by 
c ~ , ~  (TI, ...( ~ ~ - 1 )  the polynomial in rl through ~ , - 1  representing the lth coefficient 
of p z .  The ctl3‘s are polynomials each of total degree at most 2(2- 1) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2t -  1, and 
we are interested in the values of c,,,(nl) ..., uZd1) .  Using the ideas of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I] these 
values c a n  be found via “interpolation” a t  2t uniformly selected (yet dependent) 
points. Finally, we note that the knowledge extractor can tell whether it is given 
the correct polynomial at a point by carrying on the rest of the interactive proof 
using the oracle to the function P,. Further details are omitted. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc kn ow le dg e m ent s 

The second author thanks Leonid Levin for his interest in “proofs of knowledge” 
and his insistence that they have to b e  formalized in a sufficiently robust manner 
so that they can be used in applications such as the Graph Non-Isomorphism 
protocol. 

We are grateful to Uri Feige for valuable criticisms of an earlier version of 
this paper. Specific credit to Feige’s suggestions is given in the relevant places 
of the current manuscript. 
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A Previous Definitions of Proofs of Knowledge 

For sake of self-containment we review below the definitions of “proof of know!- 
edge” appearing in the literature. In general there are two generally cited for- 
mulations appearing in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6] and in [18]. In addition, there is the better (but lesser 
known) formulation of Feige and Shamir [7 ] .  Finally, there is work on ‘‘compu- 
tationally convincing proofs of knowledge” [4, 51. 

“Proof of Knowledge” according to Feige, Fiat and Shamir [6] The 
definition presented in [6] refers only to parties which work in probabilistic 
polynomial-time, yet may have auxiliary input (which is not necessarily gen- 
erated efficiently). The knowledge extractor is given the prover’s program and 
auxiliary input and may run the prover’s program as a subroutine (yet being 
charged for the time).15 The knowledge extractor is required to produce good 
output only for provers and inputs for which the prover has a non-negligible 
probability of convincing the verifier on that input. Specifically, it is required 
that 

T h e  extractor may try to analyze the prover’s program by other means but Feige, 
Fiat and Shamir claim that this does not make sense. In any case the knowledge 
extractors that  they present only use the prover’s program as a “black-box’’. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 
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for every constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 there exists a probabilistic polynomial-time ex- 
tractor M so that for all constants b > 0 ,  all provers PI and all sufficiently 
large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  if Pr[(P, V ) ( z ,  r ,  k )  = ACC] > /z1-‘ then P r [M(desc (P) ,  2 ,  T ,  k )  E 
R(z)]  > 1 - I z I - ~ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(desc(P) denotes the description of P ) .  

The string k in the above definition denotes a-priori knowledge of P (given 
in the form of auxiliary input) where T denotes the prover’s sequence of coin 
tosses. The fact that k is given to  the knowledge extractor, though being indeed 
conceptually disturbing, can be justified in several applications (and in particular 
those in [S]). We stress that  the definition of [6] does not guarantee one knowledge 
extractor which works regardless of the prover’s success probability but rather a 
sequence of extractors each relevant for a different “measure” of non-negligence. 
As claimed in the our text this is conceptually unsatisfactory and inadequate 
for many applications in which a proof of knowledge is used as a subroutine. I t  
should be said that “proofs of knowledge” are not used as subprotocols in [S], 
but rather as the “thing itself” (and hence our critic of their definition is only 
weakly relevant, if at all, to the results of that  paper). 

“Proof of Knowledge”  a c c o r d i n g  to Tompa and Woll [18] The defini- 
tion presented in [18! differs slightly from the one of [ 6 ] .  I t  allows the verifier to 
run for an arbitrary (not necessarily polynomial) amount of time. The running 
time of the knowledge extractor is polynomial in the length of the input and 
in the running time of the verifier. As explained in $4.3, we don’t believe that 
this choice is justified. The knowledge extractor in the [18] definition is given 
as input the prover’s view of the interaction with the verifier, which contains 
among other things the prover’s auxiliary input (denoted k in the definition of 
[6] presented above). The requirement concerning the output of the verifier is 
that  the event “on input z the verifier is convinced yet the knowledge extractor 
fails to find y E  R(z)”  happens very rarely (i.e. with probability smaller than E 

for some E < 1). The probability is taken over the random coin tosses of both 
parties (for any fixed input z and fixed auxiliary input k). Clearly, this defini- 
tion suffers from all the disadvantages of the definition of [6] discussed above. 
Furthermore, if E is indeed fixed, as suggested by the definition in [18], then pro- 
tocols satisfying their definition are useless even in a stronger sense: the prover 
may convince the verifier with probability ~ / 2  and yet the knowledge extractor 
is required nothing. Tompa and Woll were indeed aware of this point and seem 

to suggest to eliminate the problem by applying the protocol iteratively suffi- 
ciently many times. This is indeed a good suggestion. However, several problems 
remain. First a conceptual problem: their Lemma 3 (hereafter referred to as the 
Composzlion Lemma) indeed offers a useful tool, but it does not provide a gen- 
eral satisfactory definition of a “proof of knowledge”. More annoying is the fact 
that the Composition Lemma constructs better protocols via sequential compo- 
sition of worse ones. It is not clear (and furthermore it seems unlikely) that a 
parallel composition will have the same affect. Finally, the Composition Lemma 
is applicable only to relations R which are in BPP. 
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“Proof of Knowledge” according to Feige and Shamir [7] The definition 
presented in [7] looks similar to the one in [6], but in fact it is fundamentally 
different. The critical point is that the definition in [7] treats potential provers 
uniformly with respect to the probability they lead the verifier to accept. In this 
sense, the definition in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi‘] is similar to our definition. Specifically, the knowledge 
extractor, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALV, runs in expected polynomial-time (rather than in strict 
polynomial-time as in 161) and outputs an element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( z )  with probability that 
is at most non-negligibly smaller than the probability that the verifier accepts 
on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. Specifically, it is required that 

there exists a probabilistic ezpected polynomial-time extractor M so that 
for all constants b > 0, all provers P ,  and all sufficiently large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  r, k ,  

Pr[(P,V)(z,T,k)=ACC] > Pr[il/l(desc(P),z,r,Ic)€R(a:)j - 

Consequently this definition does not suffer from the main criticism raised against 
the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]. However, it still suffers from the other problems such as the 
fact that Ic is given to M. Furthermore, it does not capture “knowledge” of 
super-polynomial-time provers. 

Work on “computationally convincing proofs of knowledge”. Brassard, 
Crkpeau, Laplante and Leger [5] study “computationally convincing proofs of 
knowledge” (the “validity” condition refers only to probabilistic, polynomial- 
time provers). They do not present formal definitions so we found it difficult to 
compare their work to ours, but the ideas appear to have some relation. They 
too propose an “adaptive” requirement linking the running time of the extractor 
to the success of the prover. Specifically, they appear to consider a particular 
class of protocols, namely those consisting of k rounds, each of which contains 
a “challenge” {from verifier to prover) which the prover may correctly answer 
with probability 1/2  if he correctly “guesses” a coin toss of the verifier. They 
require that the extractor succeed in time linear in l / y ,  where 2 + cp is the 
“probability of undetected cheating.” The quantity in quotes was not defined 
precisely, particularly for the case of the input being in the language, but if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 - k  + ‘p is interpreted as the probability that the verifier accepts, then it is like 
our definition with the knowledge error set to 2 - k .  

Brassard et. al. [5] also raise some criticisms of the definitions of [6, IS], but their 
criticism is the opposite of ours: whereas we suggest that the previous definitions 
are too weak (and propose a stronger definition) they suggest that the previous 
definitions are already too strong. 

I3 Soundness and Strong Validity 

For completeness, we state here also the standard soundness condition (for in- 
teractive proof systems). We remind the reader that we view soundness as an 
additional property that a knowledge verifier may (or may not) satisfy. 
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Definition7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Additional possible properties of a system of proofs of knowledge) 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR be a binary relation, and suppose that V is a knowledge verifier for the 
relation R with knowledge error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. We define two additional properties that  V 
may satisfy: 

- soundness: For every interactive function P ,  and for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE $! L R ,  most of 
the possible interactions of I/ with P on common input I are rejecting (i.e.> 
Pr [ t rp ,v(z)  EACCv(zj] < 1 /2 ) .  

- strong validity (with error K } :  Let K be the universal knowledge extractor, and 
c > 0 be the constant guaranteed by the validity condition of Definition 3.  
Then, for every interactive function P and every .c $! L R ,  machine K satisfies 
the following condition: 

if p ( ~ )  d&f Pr[t rp,v(z)  E ACCv( rc ) ]  > K ( Z )  then, on input z and access 
to oracle P,, machine K outputs the special symbol I within an 
expected number of steps bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\xi': 

P(.) - 4 . x )  

As usual, the completeness (or non-triviality) and soundness conditions merely 
state that  there is a gap between the probability that a prover may convince 
the verifier on x E L R  (which by the completeness condition is exactly 1) and 
the probability that a prover may convince the verifier on x cf L R  (which by the 
soundness condition is a t  most l / Z ) .  Validity (resp., strong validity) is a more 
refined condition regarding the behavior of arbitrary provers on 3 E L R  (resp., 
arbitrary strings). Specifically, validity relates the probability that the prover 
convinces the verifier on z E L R  and the average time it takes the knowledge 
extractor to  find a y~ R ( z )  in the case x LR.  Strong validity is an analogous 
requirement regarding x LR. Validity, soundness, and strong validity are not 
always independent. Namely, 

Propositions. Validity and soundness imply stTong validity for NP relations. 

The proof that  follows is for the case K = 0. 

Recall that an NP relation is a polynomially bounded relation R(. ,  .) which is 
decidable in polynomial time. Suppose an NP relation R possesses a knowledge 
verifier which (in addition) satisfies the soundness condition. Without loss of 
generality16, we may assume the error probability in the soundness condition is 
a t  most 2 - p ( n ) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( - )  is a polynomial bounding the length of witnesses as a 
function of the length of the input. Let K be the universal knowledge extractor 
(satisfying the validity condition). Fix a deterministic procedure, with running- 
t ime 2P(*).poly(n), for deciding L R  (e.g., the one which scans through all possible 
witnesses for the given input). 

The error pxobabihty in the soundness condition may be reduced, as usual, by 
repetitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 
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We construct a new knowledge extractor, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ' ,  for the above proof of 

knowledge, satisfying also strong validity. On input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and oracle access to Pz, 
machine K' runs in parallel the extractor K (with input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and oracle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPL) and 
the decision procedure for L R ,  fixed above. Suppose K halts before the deci- 
sion procedure terminates, and yields an output y. Machine K' checks whether 
R ( z ,  y) is true (it can do this in polynomial t ime) and if so outputs y; otherwise 
it outputs 1. On the other hand, suppose the decision procedure halts while K 
is still running. If the decision is negative ( E  @ L A )  then K' oiutputs I; else it 
continues to run K to  whatever outcome this might yield. 

We note that  the running time of K' is (within a polynomial factor of) that  
of K when E E L R ,  and at most (within a polynomiaifactot of) 2 P j l ' l )  otherwise. 
But in the latter case, the probability p ( x )  = Pr[trp%v(z:j  E ACCv(rc)] is a t  most 
2-P(iz1), so that  the running time of K' is expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zIo(l)/p(x) in both cases. 
The fact that K' is a knowledge extractor for R which satisfies (validity and) 
strong validity follows. 

Finally, we note that  the above transformation preserves (upto polynomial 
factors) the running time of the knowledge verifier, and, as long as we do the 
error-reduction in a suitable way (for example, by serial composition), it also 
preserves zero-knowledge. 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReducing the  Knowledge Error via Repetitions 

We prove the claims of §5. Let us first recali the notation and assumptions intro- 
duced there. By poly!.) we mean any sufficiently large polynomial in the length of 
the input (string). By assumption the messages of the verifier can be computed in 
polynomial-time, and y E E ( z )  can be found (if such exists) in exponential-time 
(i.e., time 2PoiY( " ) ) .  Consequently, failure of the knowledge extractor occurring 
with exponentially small probability (i.e., probability 2-po1y(')) can be ignored. 
Finally, we assume of course that m(z)  <: poly(xj. 

C . l  

Suppose that V is a knowledge verifier with error K ( - )  for the relation R,  and 
let K be a knowledge extractor witnessing this fact. Let V, denote the program 
that,  on input z! sequentially executes the program V ,  on input z, for m ( ~ )  

times. Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 asserts that V,,, is a knowledge verifier with error xCm(.) = 
(1'. l /po ly( - ) ) .~( - ) " ( . )  for the relation R. The theorem is proven by constructing 
a knowledge extractor, denoted K,, as described below. 

Suppose that  P, is a prover which, on input E ,  leads V, to accept with 
probability p m ( z )  > tcm(z). Loosely speaking, we observe that there exists an 
i ,  0 5 i 5 m ( z )  - 1, and a partial transcript of i iterations so that,  relative to 
this partial transcript, the i + 1%' iteration is accepting with probability a t  least 
" ' ( z ~ ~ .  The idea is to  use the guaranteed knowledge extractor, K ,  on the 
i + 1'' iteration of V,, relative to an appropriate partial Literat im transcript. 
Details follow. 

Reducing the Knowledge Error via Sequential Compos i t i on  

def 
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For simplicity, we assume here that all transcripts are equally likely. Let 
denote the set of all possible partial transcripts of the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi iterations, and 
A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, denote the set of partial (%-iteration) transcripts in which all the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

iterations are accepting. Let a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- JA,//JT,J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a0 = 1). For every a E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, ,  let 
q(a) denote the accepting probability of the i + lst iteration relative to a partial 
transcript a ,  and c,+1 denote the average of q(a) taken over all a E A , .  

The following sequence of claims lead to the construction of the knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAex- 
tractor K,. 

Clazm I :  for every i, O<z<m(r), it holds that  a,,l = a, . c,+1. 

Proof: Clearly, 

def def 

and the claim follows. z] 

Clazm 2: there exists an i, 0 5 i <  rn(z), such that 

1. C z + l  2 -'?yrn. 
2. a, . (c,+1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIc (I)>$?$& 2 

Proof: By Claim 1, p , ( z )  = nz(:)c2, and Part (1) follows. Using p m ( z )  > 
n,(z), we get 

C z t l  > - " ' " i / l s l / p o l y ( q ~  K ( Z )  

= (1 + --) 1 . K ( 2 )  
POlY(4 

and hence c , + ~  - ~ ( z )  2 c,+l/poly(z). Using a, . c t t l  2 p,(r), Part (2) follows. 
0 

Notation: Let z be m guaranteed by Claim 2, and denote &+I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,+1- ~ ( 2 ) -  Let 
A,,t denote the set of partial transcripts in A, containing only partial transcripts 
relative to which the i + lst iteration accepts with probability bounded below 
by ~ ( z )  + 2t6,+l/poly(z) and above by ~ ( z )  + 2tt16,+l/poly(z), where poly(.) 
is a specific polynomial which depends on m(.) and the time required to find 
y E R(z ) .  Namely, 

dLf 

CEaim 3: Let i and 
that JA,,tJ 2 2Yt . \ A l \ .  

be as above. Then there exists an t ,  15 t<poly(z) ,  such 
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Proof: Assume, on the contrary, that the current claim does not hold. Then 

and contradiction follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Claim 4: There exists an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5 i < m i x ) ,  and an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  1 < j  < poly(z), such that a t  
least a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 3  fraction of the cy E T, satisfy 

Proof: Let i as guaranteed by Claim 2.  Rephrasing Claim 3, we get that there 
exists an t ,  15 t < poly(z), such that a t  least a 2-t  . a, fraction of the a E T, 
satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(a) > ~ ( x ) + 2 ~  .6,+l/poly(z). Substituting j = t + l o g z ( l j a , )  and using 
Part (2)  of Claim 2 ,  the claim follows. 0 

Using Claim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we are now ready to present the knowledge extractor K,. 
Machine K,  runs in parallel m ( z )  . poly(a) copies of the following procedure, 
each with a different pair ( z , j ) ,  1 5 i 5 m ( z )  and 1 5 J 5 polyjz). By saying 
“run several copies in parallel” we mean execute these copies so that t steps are 
executed in each copy before step t + 1 is executed in any other copy17. 

poly(z) random 
partial transcripts of i-iterations, denoted yl, ...,y&f, and runs 1M copies of the 

knowledge extractor K in parallel, each using a corresponding partial transcript 
(n). The sub-procedure, indexed by the triple ( 2 ,  j ,  k), uses the partial transcript 
~k to  convert queries of the basic knowledge extractor (i.e.) K )  into queries 
concerning the i + lSt iteration. Namely, when K is invoked it asks queries to 
an oracle describing the messages of a prover interacting with V. However, K ,  
has access to an oracle describing prover Pm (which is supposedly interacting 
with Vm). Hence, K, needs to  simulate an oracle describing a basic prover 
(interacting with V ) ,  by using an oracle describing P,. This is done by prefixing 
each query of K with the i-iteration partial transcript ~k generated above. 

To analyze the performance of K,  consider the copy of the procedure run- 
ning with a pair ( i , j )  satisfying the conditions of Claim 4. If this is the case, 
then with very high probability (i.e., exponentially close to 1) at  least one of the 
partial transcripts generated by this copy has the property that ,  relative to it, 

Actually, the condition can be related. For example, it suffices to require that at 
least t steps are executed in each copy before step 2 t is executed in any other COPY. 

def The copy running with the pair ( 2 ,  j ) ,  generates M = 2.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

17 



the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlSt iteration accepts with probability at least ~ ( z )  + 2Jpm(z)/poly(z). It 
follows that the corresponding copy of the sub-procedure will halt, outputting 
y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( e ) ,  within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApoly(aj steps (on the average). Since the ( i , j ) th copy of the 

procedure consists of 2' .poly(z) copies of the sub-procedure running in parallel, 

entire knowledge ext,ractor consists of polynomially many copies of the proce- 

as required. 

2 3 . ~ 4 3 : )  

this copy of the procedure will halt in expected time L' PO1Y(l) . The 
< F m ( Z ) - K m ( Z )  

dure, running in parallel, and hence it also runs in expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA09kL time 
P m ( 2 j - - K m - ( Z )  

Remark: We believe that V, is a knowledge verifier with error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( . ) " ( ' )  for the 
relation R (rather than just being a knowledge verifier wit11 error (1 + l /polyj.)).  
.(.)"('I for this relation). The difference is of little practical importance, yet we 
consider the question to  be of theoretical interest. 

C.2 Reducing the Knowledge Error via Parallel Composition 

A fundamental problem with presenting a parallel analogue of the above argu- 
ment is that we cannot fix a partial transcript for the other iterations while 
working with one selected iteration (which was possible and crucial to the proof 
used in the sequential case). Furthermore, even analyzing the profile of accepting 
transcripts is more complex. 

As before, let pm(z j  denote the accepting probability, here abbreviated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p(;c) ,  and let S(z) = p(z) - ~ ~ ( z ) .  Consider a m(z)-dimensional table in which 

the dimensions correspond to the n d;f m ( z )  parallel executions, where the 
(7-1, ..., ?,)-entry in the table corresponds to the transcript when the verifier uses 
coin tosses r1 in the first execution, r2  in the second execution, and so on. Since 
a p ( z )  fraction of the entries are accepting transcripts, it follows that there exists 
a dimension i so that  a t  least a "'jr+'p(;c) - 6 / 2 ) / 2  fraction of the rows in the 
ith dimension contain a t  least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (  E ) / 2 m ( x )  accepting entries. Furthermore, there 
exists a j ,  0 ~ j ~ l o g , ( p o l y ( ~ ) / O , ( ~ ) j ,  so that at least a 2j . " ( "up(z )  - 6(z)/2 

def 

p ( ~ ) - 6 ( ~ ) / 2  

2Jpo ly (z ) .  " ' ~ " i / p ( + ) - 6 ( z ) / Z  
fraction of the rows in the ith dimension contain at least 

accepting entries. 
Getting back to the problem of using the knowledge extractor K (of the basic 

verifier V) ,  we note that  we need to simulate an oracle to K using an oracle 
describing P,. The idea used in the sequential case is to augment all queries to  
the P-oracle by the same partial transcript. However, we can no longer guarantee 
high accepting probability for one execution relative t o  a fix transcript of the 
other (parallel) executions. 

We can however treat the special case in which the basic knowledge extractor, 
K ,  operates by generating random transcripts and keeping a new transcript only 
if it satisfies some polynomial-time predicate with respect to the transcripts kept 
so far. Details omitted. We remark that the known knowledge extractors do 
operate in such a manner. 
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D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Error 

Equivalence of Two Formulations of Validity with 

We now prove the equivalence of the definitions of validity with error given in 
Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 6 ,  respectively. We assume that  whenever Pr [ t rp ,v (z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
ACCv(z)] > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ( z ) ,  we have Pr [ t rp , v (z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt A C C V ( z ) !  > ~(z)  + 2- poiY(z) as well. 
Alternatively, we may assume tha t  there exist an  exponential t ime algori thm €or 
solving the relation R (i.e., finding y E R ( z )  if such exists within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2PG'Y(") steps). 
The  proof extends the argument presented in $6, for the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 0, yet 
in one direction an  additional idea is required. 

Let US star t  with the easy direction. Suppose that  a verifier V satisfies validity 
with knowledge error K ( . )  by the definition in $6. Let K be a knowledge extractor 
satisfying this definition. We construct a knowledge extractor K'  that ,  on  input  
z repeatedly invokes K (on z) until K ( x )  # 1. Clearly, K' always ou tpu ts  
a str ing in R ( z ) ,  halting in expected t ime po ly jz ) /Pr [K(z )  E R ( z ) ]  which is 
bounded above by po ly (x ) l (Pr [ t rp . ,v l : z~  c: A C C v ( . c ) ]  - ~ ( z ) ) .  Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh" satisfies 
the condition in Definition 3 .  

Suppose that  a verifier V satisfies validity with knowledge error K ( . )  by 
Definition 3 ,  and let K be a knowledge extractor witnessing this fact. Let c > 0 
be the constant satisfying the condition on the running-time of K .  Namely, tha t  
i ts  expected running-time is bounded above by lx l ' / ' (Pr~t rp~v(x)  E A C C V ( r ) ]  - 
K (  z)). Assume, without loss of generality, that. with very high probability (i.e.! 
exponentially close to 1) K halts within a t  most 2P01Y(") steps". Vie construct 
a knowledge extractor K' tha t ,  on input z runs K ( z )  with the following modifi- 
cation. Machine K '  proceeds in iterations, starting with i = 1, and terminating 
after at most po ly jz)  iterations. In  iteration i, machine h" executes K ( z )  with 
t ime bound 2z 3 ,zjc. If K halts with some output  y then K' outputs y a n d  halts. 
Otherwise (i.e., K '  does not halt within . Iz ! '  steps), machine K' halts with 
probability with output  i and otherwise proceeds to iteration i +  1. We stress 
tha t  in all i terations, K uses the same internai coin tosses. In fact, we can record 
the configuration a t  the end of iteration i and consequently save half of t he  t ime 
spent in iteration i + 1. Clearly, the expected running-time of K ' ( z )  is bounded 
above by 

POlY(Z )  c __ . (2" I+) = poly(.cj 
2 2 - 1  

i = l  

We now evaluate the probability t ha t ,  on input z, machine K' outputs  y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
R ( z ) .  It is guaranteed tha t ,  on input x ,  the extractor I( outputs  y E R ( z )  
within T ( r )  5 j z : /c / (Pr [ t rp ,v(z)  E ACCv(z)] ~ ~ ( z ) )  steps on the average (and 

by hypothesis T ( z )  < 2P0'Y(')). Hence, with probability at least +, on input 2, 

machine K outputs  y E R ( z )  within 2 . T(a) steps. The probability t h a t  K' 
conducts 2 - T ( z )  steps (i.e., K' reaches iteration log2(7'(z)/\z\'}) is ]z \ ' /T( ;c)  >_ 
Pr [ t rp , v (z )  E A C C v ( z ) ]  - ~ ( z ) .  Hence, K' satisfies the condition in 56. 

This can be achieved by running the exponential time solver in parallel to K .  Alterna- 
tively, assuming that  if Pr[trp,v(z)EACC~(z)] > ~ ( z )  then Pr[trp,v(z) EACCv(Z)] > 
~ ( z )  + 2-p"1'("), we can implement a probabilistic exponential-time solver using K .  

18 
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E The Zero-Knowledge proof of Graph Non-Isomorphism 

Following is the basic ingredient of the zero-knowledge proof for Graph Non- 
Isomorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GMI)  presented in [12]. 

Common input: Two graphs GI and G2 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn vertices each. 
Objective: In case the graphs are not isomorphic, supply (statistical) evidence 
to  that affect. 

Step V1: The GNI- uerzfierselects uniformly i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { 1, a} ,  and a random isomorphic 
copy of G,, hereafter denoted H and called the query, and sends H to the GNI- 
prover. Namely, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is obtained by selecting a random permutation T, over the 
vertex-set, and letting the edge-set of H consist of pairs ( T ( U ) , T ( V ) )  for every 
pair (u ,  v )  in the edge-set of Gi. 
Step TIP: The GNI-verifier “convinces” the GNI-prover that he (i.e., the GNI- 
verifier) “knows” an isomorphism between H and one of the input graphs. To 
this end the two parties execute a witness indistinguishable proof of knowledge 
(with zero error) for graph isomorphism. (Such a protocol is described below.) In 
that  proof of knowledge the GNI-verifier acts as the prover while the GNI-prover 
acts as the verifier. 

Step P1: If the GNI-prover is convinced by the proof given at step VP, then he 
finds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj such that H is isomorphic to G,, and sends zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj to the GNI-verifier. (If H 
is isomorphic to neither graphs or to both the GNI-prover sets j = 1; this choice 
is arbitrary.) 

Step V2: If j (received in step P1) equals i (chosen in step V1) then the GNI- 
verifier accepts, else he rejects. 

I t  is easy to see that if the input graphs are not isomorphic then there exists 
a GNI-prover which always convinces the GNI-verifier. This meets the com- 
pleteness condition of interactive proofs. To show that some sort of soundness 
is achieved we use the witness indistinguishability of the subprotocol used in 
Step VP. Loosely speaking, it follows that no information about i is revealed to 
the GNI-prover and therefore if the input graphs are isomorphic then the GNI- 
verifier rejects with probability at  least one half (no matter what the prover 
does). l9 

The demonstration that  the GNI-prover is zero-knowledge is the place where 
the notion of proof of knowledge plays a central role. As required by the zero- 
knowledge condition we have to  construct, for every efficient program playing 
the role of the GNI-verifier, an efficient simulator which outputs a distribution 
equal to that  of the interaction of the verifier program with the GNI-prover. 
Following is a description of such a simulator. The simulator starts by invoking 
the verifier’s program and obtaining a query graph, H I  and a transcript of the 
execution of step VP (this is obtained when the simulator plays the role of the 
GNI-prover which is the knowledge-verifier in this subprotocol). If the transcript 

l9 Reducing the cheating probabhty further can be done by iterating the above protocol 
either sequentially or in paIalle1. However, this is not our concexn here. 
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is not accepting then the simulator halts and outputs it (thus perfectly simulating 
the real interaction). However, if the transcript is accepting the simulator must 
proceed (otherwise its output will not be correctly distributed). The simulator 
needs now to simulate step PI,  but, unlike the real GNI-prover, the simulator 
does not “know” to which graph H is isomorphic. The key observation is that the 
simulator can obtain this information (i.e,, the isomorphism) from the knowledge 
extractor guaranteed for the proof of knowledge (taking place in step VP), and 
once the isomorphism is found producing the rest of the interaction (i.e., the 
bit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj )  is obvious. Using our definition (of proof of knowledge with zero error), 
the simulator can find the isomorphism in expected poly(n)/p(Gl, Gz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH )  time, 
where p(G1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG2, H )  is the probability that the GNI-prover is convinced by the 
proof of knowledge in step VP. Since this module in the simulator is invoked only 
with probability p(G1, Gal H), the simulator runs in expected polynomial-time, 
and the zero-knowledge property follows. W e  stress that carrying out this plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 

not possible when using any of the previous definitions of “proof of knowledge”. 

To complete the description of the above protocol we present a (witness indis- 
tinguishable) proof of knowledge of Graph Isomorphism. This proof of knowledge 
can be easily adapted to a proof of knowledge of an isomorphism between the 
first input graph and one of the other two input graphs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Common input: Two graphs H and G of n vertices each. 
Objective: In case the graphs are isomorphic, the GI-prover has to “prove 
knowledge of $”, where q5 is an isomorphism between H and G. 

Note: In our application the GNI-verifier plays the role of the GI-prover, while 
the GNI-prover plays the role of the GI-verifier. 

Notation: Let t = t ( n )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 2 .  

Step pl :  The GI-prover selects uniformly t random isomorphic copies of H ,  
denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I ,  ..., Kt and called the medzu iars ,  and sends these graphs to the GI- 
verifier. Namely, Ki is obtained by selecting a random permutation x, over the 
vertex-set, and letting the edge-set of K, consist of pairs ( ~ i ( u ) ,  xi(.)) for every 
pair ( u ,  v) in the edge-set of H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Step vl :  The GI-verifier selects uniformly a subset S of {1,2, ..., t }  and sends 
S to the GI-prover. 

Step p2: For every i E S,  the GI-prover sets aZ = xi, where x; is the permutation 
selected in step p l  to form K,. For every i E (1, ..., t } -  S ,  the GI-pTOUeT sets 
ai = 7ri$, where a; is as before, is the isomorphism between G and H (known to 
the GI-prover), and 7r$ denotes composition of permutations (or isomorphisms). 
The GI-prover sends a l ,  u2, ..., at to the GI-verifier. 

Step v2: The GI-verifier checks if, for every i E S ,  the permutation a, (supplied 
in step p2) is indeed an isomorphism between the graphs H and Ki. In addition, 
the GI-verifier checks if, for every i E { 1,2, ..., t)-S, the permutation ai (supplied 
in step p2) is indeed an isomorphism between the graphs G and K,. If both 
conditions are satisfied (i.e., all t permutations are indeed what they are supposed 

def def 
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t o  be) then the GI-verifier accepts (i.e., is convinced that the GI-prover knows 
a n  isomorphism between G and H). 

One can show that the above GI-verifier constitutes a knowledge-verifier (with 
zero error) for Graph Isomorphism. This is done by considering all possible 
choices of S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC {1,2, ..., t>€or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafixed set of mediators K1, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKt.  Denote by s the 
number of subsets S for which the GI-verifier accepts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA knowledge extractor, 
given one accepting interaction (i.e., containing a good S) tries to find another 
one (i.e. a good subset different from 5). Having two good subsets clearly yields 
a n  isomorphism between G and H (i.e., using any index in the symmetric dif- 
ference between the good subsets). Clearly, if s = 1 then there exists no good 
subset other than S. In this case the extractor finds a n  isomorphism by ex- 
haustive search (which is always performed in parallel to the attempts of the 
extractor to find a different good subset). The exhaustive search requires less 
than 2t steps, but dominates the total running time only in case s = 1 (in which 
case the accepting probability is 1/2'). Yet, for any s > 1, the expected number 
of tries required to find a different good subset is 

2t 2 ,  a t  < - < -  1 
( s  - 1) / (2 t  - 1) s - 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 

( the last inequality follows from s 2 2) .  Since s,/2' is the probability that the 
GI-verifier accepts, the extractor described above indeed runs in expected time 
inversely proportional to the accepting probability of the GI-verifier. Our claim 
follows. 
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