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Knuth has introduced attribute grammars (AGs) as a tool to define the semantics of 

context-free languages. The use of AGs in connection with programming language 

definitions has mostly been to define the context-sensitive syntax of the language 

and to define a translation into code for a hypothetical machine. The semantics of a 

program is then defined by the interpreter for this machine ([Knuth 68], [Wilner 72], 

[Marcotty et al. 76]). This is a rather compiler oriented approach to semantics but 

it has among others resulted in a number of translator writing systems based upon 

AGs. 

Defining semantics this way is useful for an implementer of a language but is less 

useful for a user or designer of a language. It is often assumed that this is the 

only way that AGs can be used to define semantics and for this reason AGs are not 

really considered as an acceptable way of defining semantics. AGs are viewed as a 

compiler writing tool. One of the reasons for this may be that AGs were not in- 

troduced as a complete formalism in the sense that it is not part of the formalism 

how to define the domains of the attributes. 

We would like to point out that we find AGs to be a very useable tool for defining 

the context-sensitive syntax of a programming language. See e.g. the definition of 

Pascal in [Watt 78]. 

In the original paper by Knuth it was stated that any semantics for a language which 

can be defined as a function of the set of parse trees can be defined by an AG. The 

purpose of this paper is to demonstrate different ways and techniques for using AGs 

to define different kinds of semantics. 

The motivation for this work comes from an interest in practical translator writing 

systems (TWSs). Having a TWS intended for implementing (parts of) practical compilers 

it would be desirable if the same TWS could also be used to make an experimental im- 

plementation based on a formal semantics of the language. This will ease experiments 

with definitions of new languages. 

If several different kinds of complementary formal semantics can be used in the same 

TWS then one may start with a rather human oriented semantics as the basis for an 
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initial (and inefficient) implementation. One may then successively develop more im- 

plementation oriented semantics that give more efficient implementations, and if 

still too inefficient it may be used as an 'implementation guide' for a hand written 

implementation. 

In this paper we shall investigate the possibilities of defining predicate transfor- 

mers, denotational semantics, and operational semantics. The approach to operational 

semantics is to specify an AG that defines the possible transformations upon a 

representation of the program. The operational approach is used (I) to specify ab- 

stract data types, (2) to specify semantics of programming languages, and (3) as a 

model for defining nondeterministic and concurrent computations. 

As mentioned we are interested in exploring the possible uses of an AG based TWS, so 

we are concerned with what is possible to define by means of AGs, i.e. ~p£e~- 

~ b ~  We are however just as well interested in the ways things are done with 

respect to ~j~j~, ~ad~bj£~E, e~n~E, etc. This is often a matter of per- 

sonal opinion. In connection with this there is no single way of using AGs. The at- 

tributes may be used in different ways just as it may be natural to use a translation 

grammar instead of having the translation as a synthesised attribute. 

The power (or expressibility) of AGs is dependent upon the actual domains available. 

We propose that the domains shall be defined by other AGs. In this way AGs become 

multi-level instead of two-level. At the bottom we define pure AGs which have a 

'built in' set of domain types. We have chosen tree languages as this basic domain. 

Pure AGs are then quite similar to vW-grammars ([van Wijngaarden et al. 75]), and ex- 

tended affix grammars [Watt 74a], where the basic domains are context-free (string) 

languages. 

We use a version of AGs called extended attribute grammars (EAGs) ([Watt & Madsen 

77]). EAGs are generative in the same sense as affix-grammars ([Koster 71]) and 

vW-grammars, whilst retaining the essential advantages of AGs. In our opinion EAGs 

are better suited for analysis and lead to more readable and natural descriptions. 

The notions of pure AG and multi-level AG are further refinements of EAGs. 

In [Watt & Madsen 77] it is also mentioned that the idea of EAGs can be carried over 

to translation grammars. We shall also make use of these extended attributed trans- 

lation grammars (EATGs). EATGs may be a useful tool to define programming languages 

where the (context-sensitive) syntax and one or more semantics are defined by an in- 

tegrated formalism. We imagine that the input grammar defines the syntax and a par- 

ticular semantics is defined by a particular output grammar. 

It is still an open problem how to make a general and efficient implementation of AGs 

without enforcing strange requirements upon the dependencies allowed between at- 

tributes. Such requirements are often introduced in order to have a well defined (and 
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efficient) order of evaluation of the attributes. We give an evaluator for AGs where 

the order of evaluation of attributes is no problem. The evaluator is general as is 

accepts all AGs and it is 'very fast'. However it still needs space proportional to 

the size of the parse tree. 

We hope to achieve the following: 

- demonstrate that AGs are a very powerful meta language for defining different 

kinds of semantics, 

- demonstrate that a TWS based upon AGs can be used for many purposes, 

contribute to a better understanding of AGs and to the theory of AGs and show 

how AGs may be turned into a complete formalism, 

contribute to a unification of different formal semantics. We do not claim that 

we add anything new to these methods, 

present a general and fast evaluator for AGs. 

The rest of the paper is organised as follows: 

Section 2 reviews the basic terminology being used. The sections 3-7 fall into three 

parts: Part I (section 3-5) is about semantic definitions. Verification generators 

are treated in section 3, denotational semantics in section 4 and operational seman- 

tics in section 5. Part II (section 6) is a concluding section about the AG for- 

malisms. Part III (section 7) describes a general evaluator for AGs called the 

DAG-evaluator. The paper is concluded in section 8. 

6£~!~Q~N~- I am grateful to Brian Mayoh and Mogens NieLsen for their advice 

during the preparation of this paper. The following people have also made useful 

contributions by participating in discussions or by giving comments: Poul Jesper- 

sen, Kurt Jensen, Niel Jones, Michael Madsen, Robin Milner, Peter Mosses, Hanne Riis, 

Erik Meineche Schmidt, Sven Skyum, and David Watt. 

We use a generative version of AGs called ~d~d ~!~Ei~ ~ £ ~  (EAGs) ([Watt 

& Madsen 77]) with the modification that we allow the start symbol to have syn- 

thesised attributes. The definition of EAG is repeated below. For a more expository 

exposition, the reader is referred to [Watt & Madsen 77] or [Madsen 79a]. 

G = ( D, V, Z, B, R) 

whose elements are defined in the following paragraphs. 
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D = (D ,D2,...,flrf2,...) is an algebraic structure with domains D , D , ..., and 
I I 2 

(partial) functions fl,f2, ... operating on Cartesian products of these domains. Each 

object in one of these domains is called an ~[~b~. 

V is the vocabulary of G, a finite set of symbols which is partitioned into the ~D- 

~e~m~a~ vocabulary V and the ~ Z ~  vocabulary V . Associated with each symbol in 
N T 

V is a fixed number of ~ L ~ - ~ g D ~ -  Each attribute-position has a fixed 

domain chosen from D, and is classified as either ~ e d  or ~zD~h~ed. 

Z, a member of VN, is the ~-~bg~ of G. 

The start-symbol Z and the terminal symbols have only synthesised attribute- 

positions. 

B is a finite collection of a~E~b~ ~[~ab~§ (or simply variables ). Each variable 

has a fixed domain chosen from D. 

An ~ £ J ~ - ~ £ ~ D  is one of the foLlowing: 

(a) a constant attribute, or 

(b) an attribute variable, or 

(c) a function application f(e ,...,e ), where e , ..., e are attribute expressions 
1 m I m 

and f is an appropriate (partial) function chosen from D. 

In the examples, we shall make use of infix operators where convenient. 

Let v ~ V, and let v have p 

respectively. If al ,  . . ° ,  ap 

then 

<v~a . . .~a > 
I p 

attribute-positions whose domains are D , ..., D , 
I p 

are attributes in the domains D , ..., D , respectively, 
I p 

is an ~ ~  ~Z~ corresponding to v. In particular, it is an attributed non- 

terminal (terminal) if v is a nonterminal (terminal). Each ~ stands for either ~ of 

~, prefixing an inherited or synthesised attribute=position as the case may be. 

AV (AV) stands for the set of attributed nonterminals (terminals) , AV = AV U AV , 
N T N T 

and AZ i s  t he  se t  o f  a t t r i b u t e d  n o n t e r m i n a l s  c o r r e s p o n d i n g  t o  t he  s t a r t - s y m b o l  Z. 

I f  e , . . . ,  e a re  a t t r i b u t e  e x p r e s s i o n s  whose ranges  a re  i n c l u d e d  i n  D , . . . ,  D , 
I p I p 

r e s p e c t i v e l y ,  t hen  

<vCe I ... Ce > 
P 
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is an ~ b ~ d  ~b~ ~ .  

R is a finite set of ~ d ~  E~ ~E~ (or simply £~e~ ), each of the form 

F ::= F ...... F 
1 m 

where m~O, and F, F , ..., F are attributed symbol forms, F being a nonterminal. 
I m 

A production rule form defines a set of ~£~d~ £ ~  in the following way: 

Let F ::= F .... F be a rule. Take a variable x which occurs in this rule, select 
I m 

any attribute a in the domain of x, and systematically substitute a for x throughout 

the rule. Re~eat such substitutions until no variables remain, then evaluate all the 

attribute expressions. Provided all the attribute expressions have defined values, 

this yields a ~Z~!~ £~ , which will be of the form 

A ::= A ..... A 
I m 

where m~O, and A, A , ..., A are attributed symbols. 
I m 

The relation => is defined as follows: 

Let a,g ~ AV , A £ AVN, and let A ::= b be a production rule, 

then ~ A ~ => ~ b Q 

, + 

=> and => are define in the usual way. 

, 

The language generated by G, L(G) a subset of AV , is defined as 
T 

L(G) = { w I S => w and S £ AZ } 

Let DI, ..., D be the attribute domains of Z. The translation defined by G, T(G) a 
P 

subset of AV X(D X...XD ), is defined as 
T I p 

T(G) = { (w,m) I m=(al,...,a ), <Z~a ...~a > => 
p I p 

If (w,m) ~ T(G) then m is a meaning of w. 

The relation => defines in the usual way an ~ i ~  

parse 

CFG. 

w} 

~C~ ~E~- An attributed 

tree defines in a unique way a corresponding parse tree from its underlying 
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One may distinguish between the following three kinds of ambiguity/unambiguity of an 

EAG: 

(1) G is §~ma~a~ a__mb~ if there are meanings ml,m2, ml~m2 and (w,ml) ~ T(G) 

and (w,m2) ~ T(G). 

(2) G is § ~ £ ~  amb~g~o~ if there is a w ~ L(G) and w is the frontier of two 

or more distinct attributed parse trees. 

(3) G is ~ £ ~  ~E~9~£~ if the underlying CFG of G is ambiguous. 

Observe that the distinction between inherited and synthesised attribute makes no 

difference to the language and translation defined by the EAG. The distinction is 

traditional, may improve the readability and is important when considering implemen- 

tations of EAGs. This is also the case for the following definitions. 

Inherited attribute-positions on the left-side and synthesised attribute-positions on 

the right-side of a rule are called ~ 9  ~ 3 ~  - Synthesised attribute- 

positions on the left-side and inherited attribute-positions on the right-side are 

called ~E~ ~!~!~. 

An EAG is ~ - ~ E ~  iff 

(a) every variable occurs in at least one defining position in each rule in which it 

is used; and 

(b) every function used in the composition of an attribute expression in a defining 

position is injective. 

// 

We shall also use the EAG meta syntax for ordinary Knuth-like AGs, which we define 

in the following way 

[2.2] A Knuth-like AG (or just an AG) is an EAG that satisfies: (1) it is well-for- 

med, (2) only (attribute-) variables appear in defining positions, and (3) the 

same variable appears in only one defining position. 

This definition of an AG differs form the one in [Knuth 68] in the following ways: 

[2.3a] In Knuth's definition terminals cannot have synthesised attributes. 

[2.3b] In Knuth's definition the semantic functions are apparently required to be 

total whereas [2.2] allows them to be partial. 

[2.3c] AGs defined by [2.2] are always in normal form ([Bochmann 76]). By requiring 

normal form we avoid a number of tedious (and unimportant) complications in 

the following sections and we exclude only some obscure AGs. 
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[2.3d] 

[2.3el 

[2.3f] 

In Knuth's definition, a string is assigned a meaning in the following well 

known way: (I) A parse tree for the string is constructed. (2) A node in the 

parse tree and an applied attribute-position of that node is selected. If the 

attribute-positions referred to (through attribute variables) in the expres- 

sion of the selected attribute have defined values then the selected at- 

tribute-position is assigned the value of the expression. (3) Step (2) is 

repeated until either all attribute-positions have been assigned a value or no 

more attribute-position can be assigned a value by this process. (4) The 

value of a distinguished attribute-position of the root in the parse tree con- 

stitutes the meaning of the string corresponding to that parse tree. 

Knuth defines an AG to be ~-d~ed if all attributes can always be 

defined, in any conceivable parse tree using the strategy in [2.3d]. He then 

shows that an AG is well-defined if and only if it is non-circular. 

Knuth's model is intended to define ~he ~ m a ~  ~ Eo~e~-~ ~Q~QQ~ in 

the sense that all parse trees may be assigned a meaning in all well-defined 

AGs. Other AG formalisms, such as EAGs (and [2.2]) may be viewed as a language 

generating device in the sense that not all parse trees of the underlying CFG 

may get values assigned to its attributes. Knuth suggests to let an attribute- 

position in the root of the parse tree decide whether the parse tree (string) 

is 'malformed' or not. 

The use of partial functions in [2.2] implies that not all parse trees may be 

assigned attribute values, even if the AG is non-circular. Furthermore a par- 

se tree may be assigned attribute values even if the AG is circular. Thus cir- 

cularity is not an inherent problem in EAGs and AGs as defined in [2.2]. We 

return to that later in the paper. 

One may reformulate Knuth's definition (2.3d) in order to obtain a definition that is 

equivalent to [2.2]: 

[2.4] A string is assigned a meaning in the following way: (1) A parse tree for the 

string is constructed. (2) A set of equations corresponding to the parse tree 

is constructed. Each attribute-position is an unknown; each attribute expres- 

sion determines an equation in the sense that if a is an attribute expression 

occupied by the expression e, then a=e is an equation; variables in the expres- 

sions are also unknowns and may have to be renamed properly. (3) The parse tree 

may be assigned attribute values if and only if the equations have a solution. 

(4) The attributes of the root in a solution constitute the meaning of the 

string corresponding to the parse tree. 

In some definitions of AGs ([Marcotty et al 76]) an AG rule has an associated ~D- 

~E~ which is a predicate over attribute values. This constraint must be true in 
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order that the attributes of the rule can be assigned values. We interpret con- 

straints in the following way: 

[2.5] Each symbol is given a synthesised attribute with a domain consisting of one 

value. The constraint is converted to a partial function that assigns the 

value to this attribute of the left side symbol if the constraint is true. 

Consequently if some constraint is false there is an attribute that cannot be assig- 

ned a value and this is now captured by the definition of AGs in [2.2] or [2.4]. 

In [Watt & Madsen 77] it is shown how to convert an EAG into an AG by using con- 

straints. 

We also make use of ~nded ~ i ~  ~ ~  QZ~E~ (EATGs) ([Watt & Madsen 

77]). An EATG consists of a translation grammar (like syntax directed translation 

schemes in [Aho & Ullman 72]) equipped with attributes in the same way as an EAG is a 

CFG equipped with attributes. An EATG is naturally divided into an i~N~-Q£amm~ and 

an ~-9£N~Z- The terminals of the input-grammar (output-grammar) are called 

i~NN~-~mb~ ( ~u~-~mbo!~ ). As with EAGs input-symbols may have synthesised 

attributes whereas output-symbols may have only inherited attributes. Each rule in 

the input-grammar has an associated rule in the output-grammar. The output rule may 

refer to attribute variables in the input rule but not vice versa. Pairs of input 

production rules and output production rules are obtained by applying the systematic 

substitution rule to both the input rule and the corresponding output rule taken 

together. 

When requiring the restrictions in [2.2] to EATGs one obtains ~ Z ! ~  ~E~!~ 

~famma£§ similar to those in [Lewis et al. 74]. 

An EATG defines a translation from strings of attributed input-symbols to strings of 

attributed output-symbols. 

There is a choice between defining a translation by using an EATG or by using syn- 

thesised attributes of an EAG as in definition 2.2. The actual choice depends upon 

the kind of semantics (or translation) to be defined. It is often a matter of 

modularity and by using EATGs one may separate the definition of the (context-sen- 

sitive) syntax from the definition of the semantics. 

As attribute domain constructors we make use of dj~£jmj~a!Nd y~jNDN, ~f~N~jaD 

~£o~J_~, ~e~e~e~, and ~£!J~ ~ J ~  which (among others) may be found in [Watt 

& Madsen 77] and [Madsen 79a]. 
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Here we treat the possibilities of expressing predicate transformer semantics by 

means of EAGs. It is well known that any predicate transformer semantics may be 

reformulated as a denotational semantics. In section 4 it is shown how any 

denotational semantics may be defined by an AG. The technique of that section may 

then be used to define any predicate transformer semantics. 

A predicate transformer semantics may be used as a basis for a system which generates 

verification conditions. In this section we sketch an example on how such a 

verification generator may be defined by means of an EATG. The example is based upon 

a forward predicate transformer for partial correctness in the style of [Gerhart 76]. 

If P is a predicate which is supposed to be true before the execution of a statement 

S, then the value of the ~gf~f~ £f~JE~ ~£~f~f FPT(P,S) is a predicate which 

is true after the execution of S. 

Consider the statements : 

J~ B ~h~ $I ~e $2 and 

~J!~ B ~f~ A d~ s. 

~e£~ A defines an invariant which must be supplied by the programmer. We may define 

the following FPTs: 

FPT(P, i! B lh~ $1 ~ $2) = 

FPT(P AND B, $I) OR FPT(P AND NON B, $2) 

FPT(P, ~hj~ B ~fl A d~ S) = A AND NON B 

verify: P => A , FPT(B AND A, S) => A. 

The FPT for the while-statement is only true if the so-called ~m~i!inm!i2m ~en~i!imm 

following verify can be proved to be true. 

A verification generator for a language can be defined by an EATG, where the input 

grammar defines the (context-sensitive) syntax. The output grammar generates a se- 

quence of verification conditions, and the symbols have predicates as attributes. If 

<stmt> is the nonterminal generating statements, then in the output grammar <stmt> 

may typically have two attributes: 

<stmt~P tP > 
before after 

where P is the predicate which is true before the execution of the statement 
before 
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generated by <stmt> and P a predicate which is true after. 
after 

An output rule for if-then-else and while-assert-do might Look like (in order to ease 

the reading, the input symbols are included in the rule): 

<stmtfPfQ OR R> ::= 

!~ <exp~B> ~h~ <stmt~P AND B fQ> 

~L~ <stmt~P AND NON B ~R> 

<stmt~P ~A AND NON B> ::= 

whi~e <exp~B> a~e~ <predicatefA> 

<stmt~A AND B ~Q> <verify fP => A, Q => A> 

<exp> has a synthesised attribute B which is the predicate corresponding to the ex- 

pression generated by <exp> and similarly the synthesised attribute of <predicate> is 

the invariant supplied by the programmer. 

<verify> is an output symbol. 

If <prg> is the start symbol of the grammar then we may have a rule 

<prg~P> ::= <stmtf true ~P>, 

where P then will be a predicate which is true after the execution of the program. 

Instead of initialising the inherited attribute of <stmt> with true one might as well 

do as follows: 

<prg~P> ::= a~Ee~ <predicate~A> <stmt~A ~P>, 

where A then is an input assertion. 

The idea of generating a verifier from a grammar appears in [Mayoh 76] and is used in 

the JQNS-system [Nielsen 75]. Most verifiers are designed for a specific language. By 

means of a TWS based on AGs such verifiers can be automatically constructed from an 

AG description. 

An attribute domain for predicates must be available, in JQNS predicates are basical- 

ly text strings with an associated set of operations. This is a simple solution. It 

might be desirable to have a more structural definition of predicates, especially if 

the verifier is combined with a theorem prover. The domains mentioned in chap. 2 

should be sufficient for this. 

By using an EATG to define the syntax and a verification generator for a language it 

should be possible to tie the two definitions together. This is e.g. not the case 

with the original definition of Pascal where the context-free syntax is defined by 

BNF, an axiomatic definition appears in [Hoare & Wirth 73], but the context-sensitive 
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part of the syntax is only informally and very imprecisely defined in [Wirth 71]. 

The output grammar of the EATG defining semantics could rely upon the input grammar 

defining the syntax. Type checking would normally appear in the input grammar. In 

case of Pascal the input grammar could check certain other assumptions made by the 

semantics. E.g. that aliasing does not appear. The input grammar will normally have 

attributes corresponding to a symbol table to collect declared identifiers. If the 

semantics needs a renaming of all identifiers then this may be done using the 'symbol 

table' of the input grammar. 

In [Mayoh 78] it is shown that any AG can be reformulated into an equivalent 

Denotational Semantics (DS) ([Tennent 76]). An algebraic formulation of AGs is given 

in [Chirica 76]. In this section we shall discuss the possibilities of reformulating 

a Denotational Semantics within AGs. 

In [Knuth 68] it was proposed that one let a 'meaning' of a string generated by an 

AG be the synthesised attributes of the start symbol in a parse tree for the string. 

Furthermore it was shown that this meaning could be any function of the parse tree. 

According to Knuth an AG defines a function from the set of parse trees into some 

domain. So AGs are in fact a meta language for defining a kind of mathematical seman- 

tics. Reformulation is then a question of using a different meta language. 

Another result in [Knuth 68] is that any AG has an equivalent one using only syrr 

thesised attributes. The reformulation of AGs as defined by Chirica and Mayoh can be 

used in order to transform any AG into an equivalent one using only synthesised at- 

tributes. This transformation is more natural and constructive compared to the one of 

Knuth. 

~m!ini~imn ~-1- ~ni~m!~ m~m~m~n mm~g!i2a- 

Let A be a symbol of an AG. Define 

INH(A) = ID X ID k ... X ID , and SYN(A) = SD 
I 2 k I 

where ID , ID2,  . . . ,  IDk ,  SDt ,  SD , . . .  SD 
1 ~ n 

thesised attributes of A. 

X SD k ..~ k SD , 

2 n 

are the domains of the inherited and syn- 

Let A -> A A ... A be the p~th production in an AG. Define 
0 12 m 

DEF(p) = INH(A ) X SYN(A ) k SYN(A ) X ... SYN(A ) , and 
0 I 2 m 
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APP(p) = SYN(A ) X INH(A ) X INH(A ) X ... INH(A ). 
0 1 2 m 

In general the attributes of rule p are defined by a function: 

F : DEF(p) X APP(p) -> APP(p) 
P 

However we assume (as mentioned in chap. 2) that our AGs are in normal form, i.e. 

is defined by 

F : DEF(p) -> APP(p). 

P 

F 

P 

There is a canonical correspondence between sets of functions 

fo : DEF(p) -> SYN(Ao) , fi : DEF(p) -> INH(A ),i i=1,2...,m, 

and F . 

P 

If D=(Io,S1,...,Sm), where I0 is a value of the inherited attributes of AO and Si is 

a value of the s y n t h e s i s e d  a t t r i b u t e s  of A., i = 1 , 2 , . . . m ,  then the a t t r i b u t e s  of an 
3 

instance of rule p are defined as follows: 

S = f (D), I = f (D), i=1,2,.o.,m, and then 
0 0 i i 

F (D) = <fo(D),f1(D),...,f (D)> 
p m 

If f (i=0,1...,m) defines k attributes then f is defined by k functions f , 
i i il 

...,f each defining an attribute. (In practice the functions fil,...f will not 
ik ik 

depend upon the whole of DEF(p).) 

Let G be an AG. G is an AG with only synthesised attributes and defined by the 
s 

following transformations. 

Each symbol A will have one synthesised attribute with domain [INH(A) -> SYN(A)]. 

Each production has one function that defines the synthesised attribute of the 

leftside in terms of the synthesised attributes of the right side. 

For rule p we get 

[4.2*] S' = ~I.fo(I,S'l(I w (I)),...,S' (I' (I))), where 
0 I m m 
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I' = ~I.f (I,S' (I' (1)),...S' (I' (I))), i=1,2,...,m, 
i i I I m m 

and S' is the value of the synthesised attribute of A , i=0,1,2,...,m, 
i l 

rule p of the reformulated AG, G . 
s 

// 

in 

As mentioned in def. 4.1 each f (iE[O..n]) defines a number of attributes, thus each 
i 

of the above equations defines a number of equations corresponding to the attributes 

defined by each f . Thus if rule p has k defining positions then the above m+1 
i 

equations define k equations. 

Below we formulate in what sense G is equivalent to G . This is similar to the for- 
s 

mulations in [Chirica 76] and [Mayoh 78]. 

For each parse tree, [4.2*] defines a set of equations. Each instance of a production 

p defines a set of equations using [4.2*]. These equations have exactLy one solution 

if the AG is non-circular. 

!he orem_ 4_.3_- 

Let G be a non-circular AG with all semantic functions being total and let G be 
s 

the corresponding AG defined by 4.2. Let t be a parse tree of the underlying CFG, 

and let A -> A A ... A be production p and let an instance of p appear in t. 
0 12 m 

AO is then a node in t with sons AI, A2" "''" Am. 

Let I., S be the unique values of the inherited and synthesised attributes of Ao, 
i i i 

i=0,1,2,...,m. The equations associated with p have exactly one solution, and 

S' (I) = S and I' (I) = I., i=1,2,...,m. 
0 0 0 i 0 I 

~roof: 

We use structural induction on t. 

B_ott_o_m : Assume that A , A2r...,A are terminals, i.e. leaves in t. The only 
I m 

unknown in the equations is S' which is well defined as it only depends on Z and 
0 0 

S ,...S , and clearly S = S' (I). 
I m 0 0 0 

~D~!i~ ~!~: Assume that S t (i~[1..m]) are defined and that S' (I) = S . 
i ii i 
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As G is non-circular and t is fixed there is a partial ordering of the attributes 

in p, such that x<y means that the value of y depends on the value of x. This par- 

tial ordering can be used to solve the equations by subsitution. 

Let B (i£[1..k]) be the attributes of the defining positions of p, and let 
i 

B <B (i~[1..k-1]) where the partial dependency ordering is extended to some 
i i+1 

total ordering). Each B has an associated equation defining a function B '' 
i i 

[INH(A )->DOM(B )]. The equation defining B ' is independent of B ',..., B '; 
0 i i I i-1 

if not then G is circular. Consequently the equations may be solved by sub- 

stitution in the order BI ~" B2'''''" Bk'. 

// 

In his original definition of AGs Knuth has excluded circular AGs in order to assure 

that all attributes in all possible derivation trees can be assigned unique values. 

This may be too strong a requirement. Consider the following examples: 

- ~D~i~£ ~- ~-~- If we transform a given AG into one with only two attributes 

for each symbol A, an inherited with domain INH(A) and a synthesised with domain 

SYN(A), then the new AG is circular if some inherited attribute of A depends on 

some synthesised attribute of A. However if the original AG is well defined 

then the new one should not give problems with assigning values to attributes. 

- ~i~Q ~2D~J~i~D~ ~ ! ~ D ~  - Consider the rules: 

<A~y+z> ::= <B~cond(c,y,z)~c~y~z> 

where cond(c,y,z)=If c then y else z 

<B~x~true~7fx+2> ::= 'a' 

<Bfx~false~x+l~8> ::= 'b' 

The dependency graph for the derivation <A> => <B> => a has cycles in it but 

there is no problem in assigning unique values to the attributes. 

The equations [4.2*] give a basis for discussing circularity. A given parse tree 

defines a set of equations defined by the productions in the tree and the correspon- 

ding equations [4.2*]. These equations may have either (1) Exactly one solution, (2) 

more than one solution, or (3) no solution. 

Case 1 captures all non-circular AGs and some circular ones where unique values may 

be assigned. Case 2 and 3 capture circular AGs where unique values cannot be assig- 

ned. 
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In the style of denotational semantics we shall now assume that an AG is extended in 

the following way. The domains are extended to Scott-type domains with a least 

element and a partial ordering. The equations associated with a parse tree and 

defined by [4.2*] will then always have a unique least solution. 

In this connection it is thus natural to define the meaning of a parse tree based on 

the minimal solution to the corresponding equations. ~D ~ £~E~ ~ ~i~D ~ ~ 

~h~k! ~ ~ ~hi~ ~!i~i~i~ ~! ~. 

This in fact gives a difference when compared to EAGs. If there is no solution to the 

equations then the EAG cannot generate the corresponding input string. If there are 

more than one solution then the EAG may generate the string in ways corresponding to 

each solution. 

As mentioned in section 2 the definition of EAGs in [2.1] and the corresponding AG 

definition in [2.4] give also an interpretation to circular AGs. When we extend the 

domains to Scott-type domains we could also base 'the least solution' approach to AGs 

on the minimal solution to the equations defined in [2.4]. 

If we when using Scott-domains use the EAG approach then we must define an ordering 

upon attributed parse trees in order to get a unique attribute assignment to all par- 

se trees. 

With these constructions of 'the least solution' approach we loose the ability to 

recognise certain kinds of semantic ambiguity. This may be the case if the EAG can 

generate distinct attributed parse trees with the same corresponding (context-free} 

parse tree. But this is perhaps reasonable since any AG-evaluator will probably com- 

pute the least solution. 

By using the reformulated AG of definition 4.2 it is straightforward how to make an 

equivalent Denotational Semantics. However this reformulation is in general very com- 

plicated and unreadable as one must express a general solution to the equations in- 

dependent of the parse trees. In [Mayoh 78], [4.2*] is viewed as a set of equations 

defining a function from the set of parse trees into the attribute domains of the 

start symbol of the AG. Such a solution using the fixpoint operator may be found in 

[Mayoh 78]. He shows that if the AG is non-circular then the solution may be expres- 

sed without using fixpoints. Next Mayoh defines a hierarchy of AGs which in turns 

simplifies the solution and improves the readability. The hierarchy classifies AGs 

by the evaluation order of attributes and is also interesting when considering im- 

plementations of AGs. 

Here we shall consider the opposite direction, namely converting a denotational 
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semantics into an equivalent AG. This is done by passing denotations as attributes. 

It should be clear that the two formalisms are equally powerful so the purpose of 

this is to show how AGs may be used to express a denotational semantics. We note that 

in general mechanical transformations from one meta language into another may not 

work very well in the sense that the readability of the transformed definition will 

usually be bad. It is Like transforming PASCAL programs mechanically into FORTRAN 

programs. 

A straightforward transformation of a denotational semantics(DS) is as follows: 

ADS is defined by means of functions from syntactic domains (parse trees) into some 

semantic domains. Let Com be a syntactic domain for the nonterminal <com> (then Com 

is the set of parse trees derivable from <com> ). Consider the semantic function 

cc: [Com -> A], where A is some semantic domain, and the production 

<com> ::= w <A > w <A > ... <A > w , and the semantic equation 
0 I I 2 n n 

cc[w <A >w <A >...<A >w ] = f(aa [A1],aa2[A2],...,aa [A ]) 
0 I I 2 n n I n n 

where f is some function and aa (i=1,2,...,n) are semantic functions. 
i 

In the corresponding AG, <com> will have a synthesised attribute with domain A and we 

will have the following rule: 

<com~f(C1,C2,...,Cn)> ::= w 0 <AI~CI> Wl <A2~C2 > "'" <An~Cn > Wn. 

If there are more functions defined on the domain Com, then <com> has a synthesised 

attribute for each of these. 

If we turn to more specific DSs, then the meaning of a construct like <com> is often 

defined relatively to an environment (Env) and a (command) continuation (CC), i.e. 

A=[Env -> CC -> B] 

In the AG terminology Env and CC intuitively correspond to inherited attributes and B 

to a synthesised attribute. This will in fact correspond more to the domain [Env X CC 

-> B] which however is isomorphic to [Env -> CC -> B]. 

This is illustrated by the following example: 
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sz_n_tactic Do m_ai_ns. 

PROG=Programs; COM=Commands; EXP=Expressions; VAR=Variables; CONST=Constants; 

Sema_ntic _Domains. 

V=Values=Integers; S=States=[VAR -> V]; 

CC=Command Continuations = [S -> S]; 

EC=Expression Continuations = [V -> EM]; 

EM=Expression Meaning = [CC + EC]; 

Note that for technical reasons we use an expression continuation which is (slightly) 

different from what is normal been used. We return to that later. An EC will require 

a sequence of values in order to produce a CC. Consider the following auxillary 

domains: EC =CC, and for each n>O EC =[V -> EC ]. For a given k ~ EC there exists 
0 n n-1 

an n>O such that k £ EC . 
n 

We do not use an environment in this example as this will not change the principle of 

the reformulation. In fact environments are straightforward to pass as inherited at- 

tributes whereas continuations cause more problems. 

Auxikkarz F un££ions. 

COND : [CC X CC -> [V -> CC]] 

COND(Cl,C2)(v)= i f  v>O then c else c 
I 2 

CONTENT : [VAR X EC -> EC] 

I f  k £ EC , n>O then CONTENT(A,k) ~ EC 
n n-1 

CONTENT(A,k)v ...v s = k(s(A))v ..v 
2 n 2 n 

UPDATE: [VAR X CC -> [V-> CC]] 

UPDATE(n,c)(v)s = c(s[v/n]) 

Sz_nt_a_x 

<program> ::= <com> 

<com> ::= <corn> ; <com> i <var> := <exp> 

i i f  <exp> then <com> else <com> 

i while <exp> do <com> 

<exp> ::= <exp> + <exp> I <var> I <const> 

and 

pp: [PROG -> CC]; cc: [COM -> [CC -> CC]]; 

ee: [EXP -> [EC -> EM]]; vv: [CONST -> V]; 
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For each exp in a program there will exist an n>O such that ee[exp] 

EC ]. This is easily seen by checking the semantic equations below. 
n-1 

Consider the command a:=el 2 3+e +e +e4, and assume a left associative 

Then for each i ~ [1..4], ee[e ] £ [EC ->EC ]. 
i i i-1 

pp[com] = cc[com]c where c is the initial continuation 
0 0 

cc[com ;com ]c = cc[com ]{cc[com ]c} 
I 2 I 2 

cc[var:=exp]c = ee[exp]{UPDATE(var, c)} 

cc[if exp then com else com ]c = ee[exp]{COND(cc[com ]c, cc[com ]c)} 
1 2 1 2 

cc[while exp do comic = ~i~ }c'.ee[exp]{COND(ccEcom]c',c)} 

ee[exPl+exP2]k = ee[exPl]{ee[exP2 ]{}v2"~vl.k(vl+v2 )}} 

ee[var]k = CONTENT(var,k) 

ee[const]k = k(vv[const]) 

/ /  

[EC -> 

parse tree. 

In the AG the idea is  to  Let each symbol have two a t t r i b u t e s ,  an i n h e r i t e d  d e f i n i n g  

i t s  c o n t i n u a t i o n  and a synthes ised d e f i n i n g  i t s  meaning in tha t  c o n t i u a t i o n .  We w i l l  

e .g .  have the f o l l o w i n g  r u l e :  

<com ¢C~C2> : :=  <tom ~CI#C2> ; <com ~C#CI> 
0 I 2 

The meaning of <com> in a g iven c o n t i n u a t i o n  C, is  C2 which is the meaning of <com> 
0 I 

in the c o n t i u a t i o n  CI which again is  the meaning of <com> in  the c o n t i u a t i o n  C. 
2 

We use the same semantic domains as in the DS. 

<prog~CC>; <comgCC~CC>; <exp#EC#EM>; <var#VAR>; <const#V>; 

<pros%C> ::= <com#CO#C> 



277 

<comfC~C2> ::= <com~C1~C2> 7 <com~C~C1> 

<comfC~C1> ::= <var~N> := <expfUPDATE(N,C)~CI> 

<com~C~C3> ::= if <expfCOND(CI,C2)~C3> then <com~C~Cl> else <comfC~C2> 

<com~C~C2> ::= while <expfCOND(CIrC)~C2> do <comfC2~C1> 

<exp~K~K2> ::= <expfK1fK2> + <expf~V2.}VI.K(VI+V2)~KI> 

<exp~K~CONTENT(N,K)> ::= <var~N> 

<expfK~K(C)> ::= <const~C> 

// 

If the above AG is transformed into an equivalent one using the method of section 

4.2, then we obtain synthesised function attributes which are similar to the func- 

tions defined by the semantic equations. AS the while-imperative is the most dif- 

ficult one (involves circularity) we shall make the transformation. 

The corresponding rule is: 

<comiC'> ::= while <exp~E'> do <comiC'1> 

where C'= }C. C2, C2 = E'(K), K = COND(C1,C), and C1 = C'I(C2). 

This implies that C2 = E'(COND(C'I(C2),C)) 

and thus C' = }C. ~i~ }C2 .E'(COND(C'I(C2),C)) 

Now comparing this with the whiLe-equation and letting C'=cc[while exp do com], 

E'=ee[exp], and C'1=cc[com] we see that our reformulated AG defines the same func- 

tion. 

As mentioned we use another definition of the meaning of expressions than the usual 

one. A more standard one is 

EC = [V -> CC] 

ee: [EXP -> [EC -> CC]] 

Consider the rule: 

ee[exPl+exP2]k = ee[exPl]{~V I .ee[exP2]{}V2.k(V I +V2 )}} 

In our corresponding AG <exp> should have the domains <expfEC~CC>, and the AG rule 

should be 

<exp~K~K2> ::= <exp~}VI.K1tK2> + <exp~}V2.K(VI+V2)~KI> 

Now this does not work as }V2.K(VI+V2) is passed as an EC attribute with V1 as a free 

variable. This works in the DS-rule as VI is bound past the meaning of exP2. 
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The meaning of a construct (command or expression) is interpreted relative to a func- 

tion (its continuation) which specifies what is to be done after executing the con- 

struct. When applying the meaning of a construct to its continuation one gets the 

meaning of the whole program if executing it beginning with the construct. 

If we consider expressions then the meaning of an expression (relative to a con- 

tinuation) depends on the context of the expression. Consider the expression exp in 

the following constructs: 

(I) If exp then com else com 
I 2 

(2) exp' + exp 

In the above DS the meaning of an expression (relative to an EC) is a CC. In case 

(I) the EC of exp can be determined by the program text alone (a ~i~ ~ i ~ i ~  

). In case (2) the EC of exp depends upon the execution of the program (a d~am~ 

~ i ~ i ~  ) since it includes the value of exp'. 

In an AG one can only express as attributes values which are a static property of the 

program text unless one turns to include rules for executing the program. One may 

then discuss whether or not it is reasonable to require a continuation to be static 

or not. Perhaps it is. 

!~r~ ~ ~r~k r~L~ !~r ~im~ i~h~ri~ ~i~- 

There is of course no general rules for transforming a DS into and AG with both in- 

herited and synthesised attributes. It seems likely that a semantic function in a DS 

can be made more readable by decomposing it into a number of attributes when each at- 

tribute is a static property of the program text. One may often benefit by conver- 

ting a semantic function f with domain [A->B] into an inherited attribute with domain 

A and a synthesised attribute with domain B. 

This may be reasonable if A is naturally expressed as a (static) property determined 

by the context of the constructs defined by f. The following is a rule for this to be 

natural and possible: 

[4.6] Consider a semantic rule 

c[..] = e 

where e involves one or more applications of f and possibly c=f. 

(1) all occurences of f in e must be applied to an expression of type A. 

(2) If f is applied to the expression a, then all free variables in a must be 

convertable to attributes. 

The semantic functions cc and ee of example 4.4 satisfy this whereas ee with the 

'standard' definition of EC in the previous section does not. 

An extension of the AG model which makes it possible to express dynamic properties as 
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attributes is discussed in [Ganzinger 79a]. In section 5 we shall (among others) 

demonstrate a technique for doing this within the existing model of AGs. 

Instead of passing functions around as attributes one might pass lambda-expressions. 

This will look Like the reformulation of section 4.2.1 but be quite different. The 

meaning of a program will then be a lambda-expression instead of a function. This 

would then correspond to an AG defining a code generation. In a practical TWS based 

on AGs this might be a reasonable way of implementing a denotational semantics. 

Yet another approach would be to define a denotational semantics by means of syntax 

directed translation schemes as used in [Aho & Ullman 72]. In their generalised 

translation schemes they allow nonterminals to have translation elements other than 

just strings, e.g. integers, booleans. If one allows translation elements to be 

functions (or lambda-expressions) then a denotational semantics may be defined in a 

notation which is quite close to the usual notation of denotational semantics. Such a 

definition will however just be another notation for the one of section 4.2.1 (or the 

above mentioned). 

~.~ £~a£!~i£n. 

It has been shown that AGs are a suitable tool for defining a TWS in which compilers 

may be generated based upon a denotational semantics, like e.g. SIS ([Mosses 79]). We 

also think that the AG notation in many situations gives a more natural and readable 

definition than the corresponding DS. This is due to the fact that one in the AG may 

have simpler domains and thus simpler expressions. 

A further modularization (and simplification) can be obtained by using a model based 

on EATGs. Here it is possible to separate the context-sensitive syntax from the 

semantics. 

If one does not like the AG notation then with the right TWS it should be no problem 

to define ones own notation and just use AGs as an implementation. 

In addition to a higher degree of modularity in the semantic definitions one may also 

benefit when the semantic definition has to be converted into a more implementation 

oriented semantics. In the AG it is possible to isolate the static propertiets of 

the definition; the context-sensitive syntax may (as mentioned) be isolated and the 

semantic functions may (as mentioned) be split up into attributes describing static 

properties, like environments and contiuations. The possibilities of transforming a 

D$ into an implementation oriented AG have been studied by [Bj6rner 78] and 

[Ganzinger 79b]. 
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In this section a technique to specify operational semantics by means of EAGs will be 

presented. The approach is to specify a set of EAG rules which defines the possible 

transformations upon an abstract representaion of the program. Consequently it is not 

a traditional operational semantics where the program is transformed into code for a 

hypothetical machine which then executes the code. The examples presented in this 

section are inspired by recent work in the area of specifying abstract data types and 

make use of techniques which have been used with vW-grammars ([Marcotty et ai.76]). 

Section 5.1 is related to the specification of abstract data types, section 5.2 is 

about specifying semantics of programming languages, and finally section 5.3 shows 

how AGs may be viewed as a model for defining nondeterministic and concurrent com- 

putations. 

~.! ~J~xJ~ ~ D~ IX~- 

An abstract data type is considered to consist of an (abstract) set of values and an 

(abstract) set of operations. The operations may be combined into expressions 

denoting abstract values. 

An abstract data type is specified by an EAG in the following way: The EAG generates 

the set of all expressions yielding values of the data type. The synthesised at- 

tributes of the start symbol is then the value of the generated expression. The 

values of the data type are defined by the domains of the EAG and the set of expres- 

sions and their values are defined by the production rules of the EAG. 

We illustrate the approach by specifying the famous stack: 

~i~ 

S: SEQ=(empty I cat(SEQ , ELM)); E: ELM=...; 

The values of a stack is a sequence of elements (not specified here). 

<stacktempty> ::= ~ 

<stack~cat(S,E)> ::= ~h ( <stackfS> , <element~E> ) 

<stack,S> ::= ~9~ ( <stack~cat(S,E)> ) 

<elementtE> ::= ~ ( <stack~cat(S,E)> ) 

<boolean~true> ::= ~ ( <stack~empty> ) 

<boolean~false> ::= em~ ( <stackfcat(S,E)> ) 
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The above EAG generates a l l  v a l i d  stack expressions and the synthesised a t t r i b u t e  of 

<stack> is  the value of the stack express ion.  An example of a stack expression is 

~E~(~g~C~(~(D~ ,el),e2)),e3) 

with the value cat(cat(empty, el),e3). 

Note that this EAG also contains rules for generating expressions of type element and 

boolean. 

One nice property of the EAG is that errors are treated implicitly in the sense that 

only valid stack expressions can be generated. E.g. it is impossible to generate an 

expression like: ###(Bew~a~k). 

The type ELM could be integers in which case we could define the domain 

E: ELM=INTEGER=(zero I suc(INTEGER) [ pred(INTEGER)) 

The stack example makes only use of synthesised attributes. Below we define the data 

type ~QE~a[ ~#ZD9 from a set D into a set R ({D->R}). Let d:D, r:R, f,g:{D->R}, 

then {} is the empty map, {d->r} is the map defined in one point, fUg is the union of 

f and g (only defined if the domains of f and g are disjoint), f\g is the overriding 

of f by g (the values of g are used ~before' those of f). 

~a~ 5.2. Specification of partial mapping. 

f,g,h: M=(empty I add(M,D,R)); d: D=...; r: R=...; 

<mapfempty> ::= {} 

<map~add(empty, d,r)> ::= { <domfd> -> <rangefr> } 

<mapth> ::= <maptf> U <maptg> <disjointfffg> <unionfffg~h> 

I <maptf> \ <map~g> <unionff~g~h> 

<rangefr> ::= ~BB[Z ( <map~f> , <domfd>) <appLy~f~dfr> 

<disjoint~empty~f> ::= EMPTY 

<disjoint~add(f,d,r)~g> ::= <undef~d~g> <disjoint~f~g> 

<undef~d~empty> ::= EMPTY 

<undef~d~add(f,d,r)> ::= <not-equal~d~d1> <undeffd~f> 

<union~f~empty~f> ::= EMPTY 

<union~f~add(g,d,r)~add(h,d,r)> ::= <union~ffgfh> 
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<apply~add(f,d,r)~d~r> ::= EMPTY 

<apply~add(f,dl,rl)fd~r> ::= <not-equal~dfd1> <applyfffd~r> 

The nonterminals <disjoint> ,<undef>, <union> and <apply> are used in a special way. 

They can only generate the empty string and they do if some relations hold between 

their actual attributes. The rules for <not-equal> depend on the domain D. This 

technique is also used in connection with vW-grammars where such nonterminals are 

called primitive predicate symbols. 

~.~ ~£i!z~ ~ i ~  2! ~9~. 

The techniques used for defining abstract data types may easily be used to define an 

operational semantics of a programming language. This is done by using an EAG to 

define all possible executions of a given program. In [Marcotty et al. 76] a small 

programming language is defined this way but using vW-grammars. 

We define the semantics of the language presented in the example of 4.2.2. 

E~m~ ~.~ 

T: TREE=(seq(TREE,TREE) I assign(NAME,EXP) 

I cond(EXP, TREE, TREE) I rep(EXP, TREE)); 

E: EXP=(plus(EXP, EXP) I v(NAME) I c(INTEGER)); 

N: NAME; I: INTEGER; S: STATE={NAME->INTEGER}; 

<programTS> ::= <stmtTT> <execute@{}~TTS> 

<stmtCseq(TI,T2)> ::= <stmt~T1> ; <stmt~T2> 

<stmt¢assign(N,E)> ::= <var~N> := <exp~E> 

<stmt~cond(E,~,T2)> ::= i~ <exp~E> ~he~ <stmt~T1> e~e <stmt~T2> 

<stmtCrep(E,T)> ::= w~ <exp~E> d~ <stmt~T> 

<var~N> ::= <name~N> 

<exp~pLus(EI,E2)> ::= <expCE1> + <exp~E2> 

<expCv(N)> ::= <vat,N> 

<exp~c(I)> ::= <const~I> 

<execute~Sfseq(TI,T2)¢S2> ::= <executefS~T1¢S1> <executefS1fT2~S2> 
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<execute¢SCassign(N,E)¢S\{N->I}> ::= <eval~S¢E¢I> 

<execute~S~cond(E,~,T2)#S1> ::= 

<evaL¢SfE#pos(I)> <execute¢S~T1#S1> 

I <eval¢SCE~zero> <execute~S¢T2¢S1> 

<execute¢SCrep(E,T)~S> ::= <evalfS¢E#zero> 

<execute¢SCrep(E,T)#S2> ::= 

<evalfS~E~pos(I)> <executefSfT#S1> <execute~Sl~rep(E,T)~S2> 

<evalfSCplus(~,E2)~I1+I2> ::= <evalfSfE1~I1> <evalfSfE2#I2> 

<eval~SCv(N)~S[N]> ::= EMPTY 

<evalfS~c(I)#I> ::= EMPTY 

The definition of the language consists of some rules that define the syntax and col- 

lect the given program in a tree structure. The remaining rules define an execution 

of the given program starting with an empty state and returning a final state, the 

result of the program is this final state which is the meaning of the program (a syrr- 

thesised attribute of the start symbol). 

The integers are defined in the following way: 

Integer=(neg(N) I zero I pos(N)); N=(one I suc(N)) 

We shall now investigate the possibilities for using EAGs as a model for defining 

nondeterministic and concurrent computations. 

Let us for a moment consider CFGs as a model for defining computations consisting of 

derivations, and let a meaning of a (terminal-) string be a derivation of it. CFGs 

are by nature nondeterministic because of the alternative operator l- 

For a given derivation one may define a partial order between applications of produc- 

tions in the derivation: Let r and s be applications of productions, then r<s if s 

cannot be done before r is done. Juxta position in a CFG may then be viewed as a con- 

currency operator as all nonterminals of a sentential form may be rewritten indepen- 

dently of each other. 

If one turns to context-sensitive grammars then juxta position is no longer neces- 

sarily a concurrency operator as some dependence may exist between symbols in a sen- 

tential form. 

We shall not go further with this view upon Chomsky-grammars but instead turn to 
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EAGs. We shall only consider non-circular EAGs in this connection. 

~f~j~j~ of an EAG is still described by the alternative operator in the sense 

that a given string may have several parse trees and thus several meanings. Consider 

a parse tree t. The dependency graph defines a partial ordering between attributes in 

t in the sense that a<b if the value of b depends upon the value of a. This partial 

ordering may be interpreted to define the amount of ~E~Z£~E% that can be applied 

during the computation of the attribute values by some machine. 

A dependency and independency relation may be defined between symbols on the right 

side of a production: 

Let A and B be symbols on the rightside of some production. A de~end~ on B if an at- 

tribute in a defining position of B is used in an applied position of A. A and B is 

i~dependent iff neither A is dependent on B nor vice versa. 

Consider example 5.3 and the rules defining <executefS~seq(~,T2)~S2> and 

<eval¢$~plus(EI,E2)~II+I2>. In the rule defining seq(~,T2) the two instances of 

<execute> on the right side are dependent whereas the two instances of <eval> on the 

right side of the rule defining plus(El,E2) are independent. In the first case se- 

quentiallity is imposed. In the second case no evaluation order is imposed and it may 

in fact go on concurrently. 

Below we give four examples of how EAGs may be used to define nondeterminism and con- 

currency in programming languages. 

Example 5.4 ~ 2 ~ ! ~ -  

Assume that we add the following statement to the grammar of example 5.3: 

<stmt> ::= 2D9 ~! <stmt> 9£ <stmt> ~D~ 

We may then extend the definition of TREE by oneof(TREE,TREE), and add the rules 

<stmt~oneof(~,T2)>:: = ~ !  <stmt~T1> ~ <stmt~T2> en_d_ 

<execute~S~oneof(~,T2)~Sl> ::= <execute~S~Tl~$1> I <execute~$#T2#Sl> 

Now either of the two alternatives may be selected in a given execution. 

Consider the following statement: 

~ i  <- SI -> ; <- S2 -> ; ... ; <- SN -> ; 

a~d <- ~' -> ; <- $2' -> ; ... ; <- SM' -> ; 

The two sequences of statements may be executed in 'parallel'. The statements en- 
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closed by <- , -> are considered to be indivisible actions. Parallel execution will 

in this case then mean interleaving of the two sequences of indivisible actions. This 

kind of 'parallel' construct is in fact more nondeterministic than parallel. 

We extend the definition of TREE by aLLof(ITREE,ITREE), and add the domain 

IT: ITREE={TREE}* 

and add the rules 

<stmt~allof(I~,IT2)> ::= a~o~ <indiv-stmt~IT1> a~d <indiv-stmtfIT2> ~ 

<indiv-stmt~[]> ::= EMPTY 

<indiv-stmt~T.IT> ::= <- <stmtfT> -> ; <indiv-stmt~IT> 

<execute~Sfallof(T.IT, IT1)~S2> ::= 

<executefS~T~S1> <executefS1fallof(IT, IT1)~S2> 

<execute~S~allof(I~,T.IT)~S2> ::= 

<execute~S~T~S1> <execute~S1fallof(I~,IT)~S2> 

<execute~S~allof([],[])fS> ::= EMPTY 

E~am~e 5.6. Concurrency. 

We now turn to specify the semantics of concurrent computations. By concurrent we 

mean that two computations can be carried out independently of each other. Consider 

the following construct: 

We shall require that ~ and $2 do not refer to the same variables in order to ensure 

that $I and $2 can in fact be executed concurrently. 

In order to specify the semantics of ~gJ~ we make the following extensions of ex- 

ample 5.3: 

- <stmt> is extended with an extra synthesised attribute that is used to collect 

the set of names used in the statement, 

TREE is extended with co(TREE, TREE), 

- the following rules are added 

<stmt~co(~,T2)~R1 U R2> ::= 5~be~ <stmtfT1~Rl> and <stmtfT2fR2> ~d 

<execute~Sfco(~,T2)~ \$2>::= <execute~S~Tl~S1> <execute~S~T2fS2> 

Now why does this define a concurrent execution of TI and T2. Consider the last rule: 
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The two instances of execute on the right side are independent according to our 

previuos definition, i.e. this defines two independent computations. Note that the 

expression $1\$2 is not symmetric. One might instead pass only the restriction of S 

corresponding to the names being used by T1 to the first <execute> and similarly for 

the second. The result will then be S\(~ U $2) instead of $1\$2. 

~.~ ~l~j~. 

It has been shown how to use EAGs to define operational semantics for various 

programming language constructs. In our opinion these definitions are straightfor- 

ward to make and easy to read. Again this is a matter of personal opinion. The 

useability of such definitions have to be tested on real programming languages. 

Another interesting question is the possibility for generating a compiler 

automatically from such a description. We shall not discuss methods for doing this 

but just indicate some of the problems and give some ad hoc rules that may be a basis 

for further investigations. 

Let nonterminals that only generate the empty string be called 2£J~J~ ~£~J~- 

(like <execute> and <eval> in example 5.3) 

None of the standard AG-evaluators (including the one of section 7) are directly 

useable for this puspose. The reason is that there are an infinite number of parse 

trees (due to the heavy use of primitive predicates) to be considered. 

It is possible to strip the underlying CFG for primitive predicates and then con- 

struct a parse tree in the usual way (this may still cause difficulties if the under- 

lying CFG is ambiguous, but the EAG is structurally unambiguous). Afterwards one may 

then fill in the primitive predicates by simulating all possible derivations. In 

order to make this process efficient one must probably restrict the degree of non- 

determinism in order to recognise deterministic parts of the EAG. 

The generation process may be simplified if all rules defining primitive predicates 

are required to be Left-attributed. This is in fact the case in all our examples. 

In some cases it is possible to factorise the EAG. Consider the rules in ex. 5.3 

defining the execution of cond(E,~,T2). These rules may be factorised into one rule 

with the following right-side: <eval~S~E~V> <selection~SfT1fT2fV~S1> 

where <selection> selects between TI or T2 depending upon the value of V. This 

definition makes it easier to avoid two evaluations of <eval>. 
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Here we shall give certain proposals for future work with the AG/EAG formalisms. 

When using an EAG to define a language one needs to specify the domains and 

operations upon these domains. A disadvantage of EAGs (AGs in general) is that the 

formalism itself does not contain a method for specifying these domains. This disad- 

vantage is not present in vW-grammars, (pure) affix-grammars and extended affix gram- 

mars as the domains here are specified as context free (string) languages. 

In section 5.1 we have seen that EAGs may be used to define abstract data types. We 

shall thus propose to use EAGs to define the domains of a particular EAG. This has 

the effect that EAGs now become a complete formalism. In order to accomplish this we 

must define a bottom in the hierarchy of EAGs, i.e. a domain constructor which is 

part of the formalism. Because of the similarities between extended affix grammars 

and EAGs it seems natural to let extended affix grammars be the bottom. However as 

argued in [Watt & Madsen 77] the discriminated union seems much more adequate as the 

basic domain constructor. A discriminated union may be viewed as an abstract context 

free grammar and is useful to define abstract properties of a language instead of its 

concrete syntax. A sentential form of a CFG does not contain information about the 

structure of the form (how it is derived) whereas this is explicitly available in a 

discriminated union. Altogether we find the latter to be more useful as it leads to 

more compact and readable descriptions. 

A set of discriminated unions can be viewed as a regular tree grammar ([Engelfriet 

74]). The theory of tree languages is well founded and gives a good notation. In the 

formal model we shall thus propose to use tree languages as the basic domain. We 

may then reformulate definition 2.1 as follows: 

[6.1] A P~e (E~e~ded) A~£~b~ G£a~ma~ is a 5-tuple: 

G = (D,V,Z,B,R). 

The elements of G are similar to the ones of an EAG except that D = (N,W,P,S) 

is a regular tree grammar and the domains of attribute positions and variables 

are defined as nonterminals of D. 

One may then define a Multi-level EAG as an EAG where the domains are defined by 

other Multi-level EAGs or Pure EAGs. 

The practical and theoretical use of such concepts need to be further investigated. 

In [Engelfriet & Fil~ 79J ,[Madsen 79b], and [Riis 80] some results on attribute 

grammars and tree transducers are given. 
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When implementing an evaluator for AGs one is among others concerned with the fol- 

lowing problems: 

(a) Decide whether or not to test the AG for circularity, 

(b) deciding the order of evaluation of the attributes, 

(c) the storing of the syntax tree and the attribute values during the evaluation, 

(d) the possibility of evaluating some of the attributes during the (context-free) 

parsing phase, 

(e) the possibility of letting the attributes influence the (context-free) parsing 

(so-called affix-(or attribute) directed parsing [Watt 74b]). 

In order to overcome (or ease) some of these problems a number of subclasses of AGs 

have been defined. These include L-attributed grammars ([Lewis et al. 74]), multipass 

AGs ([Bochmann 76]), and many more ([Watt 77],[Mayoh 78]). Affix grammars ([Koster 

71]) may also be considered as such a subclass. 

A class of general evaluators build the syntax tree and then evaluate the attributes 

in some order. The efficiency of these evaluators depends on the method used to 

determine the order of evaluation of the attributes. These evaluators may roughly be 

divided into two classes: 

(1) S~a~i__c ~ ! £ ~  ~E~C: Those where the order of evaluation can be determined 

from the AG; i.e. the attributes of a symbol X are evaluated in an order which is 

independent of the subtree below X ([Kennedy & Warren 76], [Saarinen 78]). These 

AGs are called benign in [Mayoh 78b]. 

(2) D~n#m~ ~#~#~$J~D ~£~£: Those where the order of evaluation is determined by 

the parse tree built during the parsing phase ([Lorho 77], [Cohen & Harry 79], 

[Kennedy & Ramanathan 79]). 

In case (I) the order of evaluation may be defined once and for all by some analysis 

done by the TWS. In case (2) the analysis for determining the order of evaluation 

must be done for each parse tree. It is obvious that evaluators in class (1) accept 

a smaller class of AGs than those in class (2). 

Less general methods avoid building the parse tree but use a linear representation in 

form of e.g. a right-parse or left-parse ( [Aho & UIlman 72]). Attributes are then 

assigned values during one or more scans (forward or backwards) of the linear tree. 

These methods include L-attributed AGs, multipass AGs, The Alternating Semantic 

Evaluator ([Jazayeri & Walter 75]). 

It is well known that the underlying CFG plays an important role here. If the under- 

lying CFG is LL(k) then the construction of a left-parse may coincide with a first 

left-to-right scan of the linear syntax tree. If the underlying CFG is known to be 
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LR(k) then one can in general only evaluate synthesised attributes during the parsing 

phase. 6~-~£~ LR-grammars ([Watt 77]) are a ~a££e and u~e~u~ subclass of AGs 

with LR(k) underlying CFGs. They include all LL(k) grammars and have the same advan- 

tages as LL(k)-grammars and so have SD-grammars ([Lewis et al. 74]). 

The evaluator presented below (from now on called the DAG-evaluator) is based on 

dynamic evaluation order. The parse tree has to be represented in the form of a 

right-parse. A DAG is constructed during one left-to-right scan of the right-parse. 

This DAG represents the dependency-graph of the parse tree and the necessary infor- 

mation for evaluating all attributes. The value of the attributes may be evaluated by 

a recursive scan of the DAG. 

The advantages of the DAG-evaluator are: (I) it works for all AGs, (2) the syntax 

tree is represented as a right-parse, (3) the DAG is constructed through a single 

scan of the right-parse, (4) if the underlying CFG is LR(k) then the DAG may be con- 

structed during the parsing phase. 

Furthermore the method will also work for circular AGs. The DAG will then contain cy- 

cles. The recursive scan may detect these cycles. As mentioned in section 4 it may be 

meaningful to continue the evaluation. In many cases the DAG itself may be con- 

sidered as the result of the evaluation. E.g. the AG in ex. 4.5 defines a translation 

from parse trees to functions (command continuations). In this case the DAG itself 

may be a suitable representation of the function and such a DAG may have cycles in 

it. 

In many cases it may be desirable to Let the TWS check the AG for circularity and not 

defer it to the evaluator. 

The DAG-evaluator is based upon the fact that any AG has an equivalent one using only 

synthesised attributes. It may in fact be viewed as an implementation based upon the 

transformation of def. 4.2 The DAGs being constructed by the evaluator may thus be 

viewed as a representation of the function valued attributes. 

The DAG-evaluator is used in NEATS which is a TWS based on EATGs ([Jespersen et al. 

78]). 

Z-1 ~# D__AG-evaluator. 

Below we describe the DAG evaiuator. It is assumed that a right-parse of the input 

string has been constructed. During a left-to-right scan of the right-parse a DAG is 

constructed. In the following description this left-to-right scan is described as a 

simulation of the parsing phase (as mentioned it may in fact be performed during the 

parsing if the grammar is e.g. LR(k)). 

The evaluator uses three stacks, the ordinary parse stack (PARSE), a stack for 
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storing information about synthesised attributes (SYN), and one 

mation about inherited attributes (INH). 

Assume that the parser reduces by a production 

p: X -> X X ... X 
0 I 2 n 

and that 

for storing infor- 

SYN contains a value for each right side synthesised attribute of p (called 

RS[p]). Each value is a pointer to an expression-DAG which when evaluated wilL 

yield the value of the corresponding synthesised attribute. Let SA be a syn- 

thesised attribute of X . Some of the leaves in the DAG for SA will correspond 
i 

to inherited attributes of X , and a value has not yet been filled in for these 
i 

leaves. 

INH contains a value for each right side inherited attribute of p (RI[p]). Let IA 

be an inherited attribute of X . The value on INH corresponding to IA is a poin- 
i 

ter to a list of leaves in the DAGs corresponding to the synthesised attributes 

of X . A value for IA has to be inserted at each such leaf in order to define the 
i 

synthesised attributes. 
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The following picture illustrates the situation: 

PAR SE 

SYN 

INH 

t'-" ~hesised attributes of X n 

:... I, I-..II 

inherited attributes of X 
n 

When the reduction is applied the following steps are performed: 

(I) For each leftside inherited attribute (LI[p]) an empty list is constructed. 

(2) For each rightside inherited attribute A (RI[p]) a DAG-node is constructed: The 

value of A is a function: f(al,...,an,b1,...,bm) 

where each a ~ LI[p] and b ~ RS[p]. The DAG-node has the form: 
i 

f 

a N w l  a 

1 n 

b ... b 

~I m 

The DAG-node has a pointer corresponding to each a and b o The pointer for b 
i i i 

points to the DAG for b . The pointer field for a is chained in the list con- 
i i 

structed for a in step (I) 
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The list stored in INH corresponding to A is scanned and each leaf in the list is 

replaced by a pointer to the newly constructed DAG-node for A. 

(3) For each leftside synthesised attribute A in LS[p], a DAG is constructed in the 

same way as in step (2). 

(4) All elements on INH and SYN corresponding to rightside attributes of p are popped 

off INH and SYN. The values corresponding to leftside attributes of p (the ones 

constructed in steps (I) and (3)) are pushed on INH and SYN. 

R#~a£k. If in steps (2) and (3) n=O and m=1 and f is the identity function, then a 

new DAG-node is not constructed. Pointers to the DAG-node for A will instead point to 

the DAG for b . 
I 

When the scan of the right parse is finished the SYN-stack will contain a polnter (a 

root of the DAG) for each synthesised attribute of the start-symbol. 

The values of these attributes may be evaluated by a recursive scan of the DAG star- 

ting at each root. Assume that the DAG contains no cycles. By using a so-called 

'depth-first-search' of the DAG each node need only be visited once. After the visit 

of a node a value may be assigned to the node. The next visit to the node may then 

use this value. 

Cycles in the DAG may easily be detected by the depth-first-search algorithm. It 

will then depend upon the actual AG whether or not a further evaluation is meaning- 

ful. 

Some domains, like partial maps, may contain 'large' values. In such cases it may not 

be practical to store a value at each node without using a shared representation. The 

DAG itself is such a shared representation. By using a sub-DAG as the representation 

of a value, this sub-DAG may of course be traversed several times during the scan of 

the DAG. 

For common used domains (partial maps) it may be possible to transform the DAG into a 

more suitable representation. 
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Consider the f o l l o w i n g  EAG. 

~gm~D Env: [NAME -> INTEGER]; V: INTEGER; N: NAME; 

<evaluationCV> ::= <expf{}~V> 

<expfEnv~V> ::= ( <idCN> = <expfEnv~V1> , <expfEnv\{N->V1}tV> ) 

<expfEnvCVl+V2> ::= <exp~EnvfV1> + <expfEnvtV2> 

<expfEnvCV> ::= <termfEnvtV> 

<term~Env~Env(N)> ::= <idCN> 

<term~Env~V> ::= <const~V> 

The construct (a=el,e2) is an abbreviation of LET a=el IN e2. 

the following string: 

(a=7,(b=a+2,a+b)) 

f 

Consider the following snapshot of the stacks when the input is 

placed at t: 

IN. I /I 

Consider a parse of 



The next two reductions yield 

After the reduction <exp> ::= (<id>=<exp>,<exp>) we have 

SYN I 

PARSE I<e!aluati°n> ... 

SYN 
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A reduction of the DAG will yield the value 16. 
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E~m~ [.2. Circular AG. 

Consider the following EAG 

<Afy+z> ::= <B~cond(c,y,z)tcCytz> 

<B~x?true?7?x+2> ::= a 

<B~x?false~x+1?8> ::= b 

Assume that the input string b has been reduced to <B>. We then 

snapshot: 

INH 

Next when <B> is reduced to <A> we have: 

PARSE 1 <A> 
1 

SYN ! \ i 

+ 

Ii 

have the following 

IN. L-- 

The constructed DAG is circular, but an evaluation may reduce it to the value 17. 

It should be obvious that the DAG-evaluator works for any well formed AG in normal 

form. It is also reasonably fast as it does not need to detect an evaluation order 

for the attributes in the tree of the parsed string. Furthermore the evaluation of 

the DAG may be done during one scan of the DAG. 

The main problem is that the DAG-evaluator may take up too much space to be prac- 

tical. We shall compare the space requirements with an evaLuator that builds the par- 
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se tree and then assigns values to attributes in some order. We assume that at each 

node there will be space to store the values of the associated attributes (or a poin- 

ter to values). 

In the DAG-evaluator the situation is as follows: (1) The parse tree is not stored, 

(2) only a subset of the attributes in the parse tree have a corresponding node in 

the DAG. 

Cf. (2): Consider a symbol appearing in the parse tree as part of rules 

X -> Q A b and A -> 

A synthesised attribute of A will have a DAG-node if the function in the rule A -> 

defining the attribute is nontrivial (not the the identity function). Similarly for 

an inherited attribute of A. Thus attributes that are simple copies of other at- 

tributes will not occupy space in the DAG. Notice that the lists for collecting the 

use of inherited attributes take no additional space as they use the pointer fields 

that have not yet been filled in. 

The DAG-node corresponding to a nontrivial function f may take up more space than the 

value of the attribute. 

The size of the DAG is a linear function of the parse tree. It may be smaller or lar- 

ger depending on the amount of copying and the format of the nontrivial functions. 

It should be noticed that some attribute domains such as partial mappings are of a 

form where it is unreasonable to store the values at the nodes. These domains must be 

implemented as data structures with a shared representation. The DAG-representation 

of such domains may then turn out to be smaller. 

In some situations it is possible to reduce the space requirements: 

- If A is a synthesised attribute of X and the values of all the inherited at- 

tributes of X are known in the DAG for A then the value of A may be evaluated. 

In many situations during parsing, the values of some inherited attributes are in 

fact known. This is the case if the grammar is L-attributed and the underlying 

CFG is LL(k). Using a bottom-up parser this information is not directly 

available. In [Watt 77] an algorithm is given which is able to parse L-attributed 

AGs having an underlying CFG in a subset of the LR(k)-grammars. This subset in- 

cludes LL(k) grammars and most practical LR-grammars. Watt's algorithm makes use 
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of the fact that for many practical L-attributed AGs most rules simply copy the 

inherited attributes of the left side. In the rules where the inherited at- 

tributes are given 'new' values the parser is often in an LL(k) situation (the 

LR-table has one item in ~ts closure). Extra nonterminals are inserted in the 

rules before nonterminals where inherited attributes are given 'new' values. If 

the grammar is still LR, then the original AG is called affix-free. It is pos- 

sible to detect automaticalLy where such e-productions may be inserted without 

destroying LR-properties (introducing conflicts). 

The algorithm of section 7.1 may be improved by using Watt's method and computing in- 

herited attributes whereever possible. 

Unfortunately this only improves the one pass case and does not help the multipass 

situation. In general one have to use secondary storage to store the DAGs if not 

enough primary storage is available. 

8- £~£~Q ~m~. 

We think that it has been demonstrated that EAGs (and AGs and EATGs) may be used for 

many different purposes, and that a TWS based upon EATGs may serve many different 

purposes. 

EAGs may also be used as a powerful tool for defining computations not necessarily 

connected with semantics of programming languages. 

Various variants of attribute grammars have been discussed, EAGs, pure EAGs, multi- 

level EAGs, and AGs with Scott-type domains. Furthermore pure EAGs have been for- 

mulated within the theory of tree languages. 

The three main approaches are the original AGs of Knuth, AGs with Scott-type domains 

and EAGs. We tend to prefer the generative approaches or the equational approaches 

for the Knuth AGs. 

It has been demonstrated elsewhere ([Madsen et ai.76], [Watt & Madsen 77], and [Watt 

79]) that EAGs are suitable for defining the analysis phase (context-sensitive syntax 

and a translation into an intermediate form) for realistic programming languages. 

The purpose of this paper has been to demonstrate that EAGs have a much wider range 

of applications. The main subject has been to show how three dominating methods for 

specifying semantics can be expressed within the framework of EAGs. 

This makes it possible within the same TWS to experiment with several definitions and 

implementations. Consistency between different semantic definitions can be proved 

within the framework of the same formalism. This may turn out to be an advantage al- 

though it has not been treated here. 
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Given a TWS based on EAGs it should be possible to define 

(1) The context-sensitive syntax of a programming language, and 

(2) the following kinds of translators/compilers: - a verification generator, - a 

compiler based on denotational semantics corresponding to the ones generated by 

SIS ([Mosses 79]), - a compiler based on abstract interpretation, - the analysis 

phase of a (production) compiler, and - a compiler generating code to an abstract 

machine. 

For some of the approaches to be satisfactory/efficient there are (as mentioned) 

certain problems to be considered. 

First of all an efficient AG evaluator must be available. We think that the 

DAG-evaluator presented in section 7 is a useful contribution to this. It avoids most 

of the standard problems concerning the order of evaluation of attributes and it con- 

struct the DAG during one left-to-right scan of a right parse of the input string. 

Furthermore it works for all AGs and does not imply a strange subclass. This is im- 

portant for the users of a TWS. 

The possibilities of letting the attributes influence the parse tree/translation 

selected for a given string needs a satisfactory solution in order to make full use 

of EAGs to handle ambiguities in the underlying CFG. 
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