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1 Introduction and statement of the results

Although the main results of the paper are obtained in the two-dimensional case, the
problems under consideration can be posed in an arbitrary dimension.

Let (M, g) be a compact Riemannian manifold with boundary. The boundary rigidity
problem consists of determining the Riemannian metric g on M , up to isometries which
are the identity on the boundary, by measuring the geodesic distance, dg, between bound-
ary points. It is easy to see that the answer to this question is no in general. We can
find metrics g such that there exists x0 ∈ M satisfying dist(x0, ∂M) > supx,y∈∂Mdg(x, y).
Then we can change the metric g in a neighborhood of x0 without changing the bound-
ary distance function. A compact Riemannian manifold (M, g) with boundary is called
boundary rigid if the metric g is uniquely determined by dg, up to isometries which are
the identity on the boundary. There are a few classes of metrics which are known to be
boundary rigid (see [13] for references).

In this paper we consider the linearized problem. Let gτ be a one-parameter family of
Riemannian metrics on M such that dgτ = dg0 , −ε < τ < ε. For a geodesic γ : [a, b] → M
of the metric g0, with γ(a), γ(b) ∈ ∂M it is easy to see that

If(γ) :=

b∫

a

fij(γ(t))γ̇i(t)γ̇j(t) dt = 0, (1.1)

where f = (fij) = d
dτ

gτ |τ=0. We remark that the integrand in (1.1) is written in local
coordinates. It is easy to see that it is invariant, that is independent of the choice of
coordinates. The question we address in this paper is the following: given (M, g), to what
extent is a symmetric tensor field f determined by integrals (1.1) that are known for all
geodesics γ : [a, b] → M of the metric g with endpoints on the boundary, γ(a), γ(b) ∈ ∂M?
The operator I defined by (1.1) is called the ray transform. We denote by C∞(S2τ ′M)
the space of symmetric tensor two-fields on M . Let Z(S2τ ′M) denote the subspace of
C∞(S2τ ′M) consisting of all symmetric tensor two-fields f such that If(γ) = 0 for every
geodesic γ with endpoints on the boundary. The space Z(S2τ ′M) is not zero as is seen
from the following argument. Let C∞(τ ′M) be the space of covector fields, and

σ∇ : C∞(τ ′M) → C∞(S2τ ′M) (1.2)
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be the differential operator defined using coordinates by the equality (σ∇v)ij = 1
2
(∇ivj +

∇jvi) where ∇ denotes the covariant derivative. In other words, σ∇v is the symmetric
part of the covariant derivative of the field v. A tensor field f ∈ C∞(S2τ ′M) is called
a potential field if it can be represented in the form f = σ∇v for some v ∈ C∞(τ ′M)
vanishing on the boundary, v|∂M = 0. Let P (S2τ ′M) be the space of all potential fields. It
is easy to see that

P (S2τ ′M) ⊂ Z(S2τ ′M). (1.3)

Indeed, if f = σ∇v, then the integrand in (1.1) is the total derivative with respect to t,
fij(γ(t))γ̇i(t)γ̇j(t) = d(vi(γ(t))γ̇i(t))/dt.

The question we address in this paper is the following: for what classes of compact
Riemannian manifolds (M, g) with boundary is the inclusion (1.3) in fact equality? In the
latter case (M, g) is called a deformation boundary rigid manifold. As we have indicated
the deformation boundary rigidity problem is a linearization of the boundary rigidity
problem. The right-hand side of (1.3) can be considered as the tangent space, at the
point g, to the manifold of metrics on M with the same boundary distance function as g;
while the left-hand side of (1.3) is the tangent space, at the point g, to the manifold of
metrics that are isometric to g via an isometry which is the identity on the boundary.

We recall some known results on the deformation boundary rigidity problem. Equality
in (1.3) was first proved [11] for a compact Riemannian manifold of nonpositive sectional
curvature with strictly convex boundary. Then this result was generalized [12] by replacing
the condition of nonpositivity of the curvature with some weaker curvature condition.
In particular, this condition is satisfied for every sufficiently small convex piece of an
arbitrary Riemannian manifold. For a simple Riemannian manifold, it is proved [14] that
the inclusion (1.3) has a finite codimension. A simply connected Riemannian manifold
(M, g) is called simple if its boundary is strictly convex and it has no conjugate points.
Such a manifold is diffeomorphic to the ball Bn, and every two points of M are joint by
a unique geodesic.

The boundary ∂M of a Riemannian manifold is strictly convex if the second funda-
mental form of the boundary is positively definite at every point x ∈ ∂M . A Riemannian
manifold (M, g) has no focal points if, for every geodesic γ : [a, b] → M and every nonzero
Jacobi field Y (t) along γ satisfying the initial condition Y (a) = 0, the module |Y (t)| is a
strictly increasing function on [a, b], i.e., d|Y (t)|2/dt > 0 for t ∈ [a, b].

In this paper we solve the deformation boundary rigidity problem for Riemannian
surfaces with no focal points and with strictly convex boundary. More precisely we have:

Theorem 1.1 A compact simply connected two-dimensional Riemannian manifold with
strictly convex boundary and with no focal points is deformation boundary rigid.

If a Riemannian manifold has no focal points, then it has no conjugate points. This
implies that the manifolds satisfying the hypotheses of Theorem 1.1 are simple and, in
particular, are diffeomorphic to the disk B2.

Now we consider the corresponding question for closed Riemannian manifolds, i.e.,
compact Riemannian manifolds without boundary. For a symmetric tensor field f ∈
C∞(S2τ ′M) on a closed Riemannian manifold (M, g), we can consider the integral If over
a closed geodesic γ. Let Z(S2τ ′M) be the space of all fields f such that If(γ) = 0 for
every closed geodesic γ. By P (S2τ ′M) we denote the range of the operator (1.2), elements
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of P (S2τ ′M) are again called potential fields. The inclusion (1.3) holds for every closed
Riemannian manifold. The natural question is: for what classes of closed Riemannian
manifolds is (1.3) in fact equality?

Of course, the question makes sense only for closed manifolds that have sufficiently
many closed geodesics. In the present article we consider the question for Anosov mani-
folds. A closed Riemannian manifold is said to be an Anosov manifold if its geodesic flow
is of Anosov type. For such a manifold, the set of closed geodesics is dense in the set of all
geodesics. The class of Anosov manifolds contains the class of closed negatively curved
manifolds.

For an Anosov manifold of nonpositive sectional curvature, the inclusion (1.3) is equal-
ity. This fact is proved in [3] for negatively curved manifolds, but it is only nonpositivity
of the curvature and Anosov type of the geodesic flow that are used in the proof. Without
constraining the curvature, it is proved [4] that the inclusion (1.3) has a finite codimension
for an Anosov manifold.

The second main result of the present article is the following

Theorem 1.2 The inclusion (1.3) is equality for a two-dimensional Anosov manifold with
no focal points.

It is known [9, 2] that an Anosov manifold has no conjugate points but can have focal
points [7].

The second question under consideration is close to the spectral rigidity problem. Let
us recall the corresponding definitions. A smooth one-parameter family gτ (−ε < τ < ε)
of metrics on a closed manifold M is said to be a deformation of a metric g if g0 = g. Such
a family is called an isospectral deformation if the spectrum of the Laplace — Beltrami
operator ∆τ of the metric gτ is independent of τ . A deformation gτ is called the trivial
deformation if there exists a family ϕτ of diffeomorphisms of M such that gτ = (ϕτ )∗g.
A manifold (M, g) is called spectrally rigid if it does not admit a nontrivial isospectral
deformation.

The following result is proved in [6]: an Anosov manifold is spectrally rigid if inclusion
(1.3) is equality. The statement is formulated in [6] for negatively curved manifolds.
However, the same proof applies to Anosov manifolds. In view of this result, the left-hand
side of (1.3) can be considered as the space of trivial infinitesimal deformations, while the
right-hand side is the space of infinitesimal isospectral deformations. In particular, under
hypotheses of Theorem 1.2, (M, g) is a spectrally rigid surface. More precisely we have

Corollary 1.3 Two-dimensional Anosov manifolds with no focal points are spectrally
rigid.

Theorems 1.1 and 1.2 are proved by the same method which we describe briefly below.
First of all, by the same arguments as in [6, 11], we reduce the question to an inverse
problem for the kinetic equation

Hu(x, ξ) = fij(x)ξiξj (1.4)

on the manifold ΩM = {(x, ξ) | x ∈ M, ξ ∈ TxM, |ξ| = 1} of unit tangent vectors,
where H is the differentiation with respect to the geodesic flow. The claims of the the-
orems are equivalent to the statement that every solution to the equation (satisfying
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the homogeneous boundary condition in the case of Theorem 1.1) is linear in ξ, i.e.,
u(x, ξ) =

∑
ui(x)ξi. In [11, 12, 3, 4] the latter statement was proved by decomposing

the field f into potential and solenoidal parts and demonstrating that the corresponding
boundary value problem has only the trivial solution for a solenoidal field f .

In [15], an integral equation was obtained in the nonlinear boundary rigidity problem
whose left-hand side can be considered as a weighted analog Iρ of the ray transform (1.1).
Because of presence of the weight ρ, the operator Iρ is badly related to the decomposition
of the field f into potential and solenoidal parts. Another approach to investigation of
Iρ is based on using the fiber-wise Laplacian ∆f that is naturally defined on the bundle
ΩM . In this approach, one has to prove that a solution to the kinetic equation (1.4) is
an eigenfunction of ∆f . In the case of a two-dimensional manifold M , the Laplacian ∆f

coincides with the partial derivative ∂2/∂θ2 with respect to the angle coordinate θ on
one-dimensional fibers of ΩM . There is a simple commutation formula for the operators
∂2/∂θ2 and H. Applying the operator ∂2/∂θ2 to equation (1.4) and using the commutation
formula, we obtain a quadratic relation for the function ϕ = uθθ + u which plays a key
role in the proof. In the case of absence of focal points, the terms of the relation admit
estimates that yield to the claims of theorems 1.1 and 1.2.

In the multidimensional case, the approach runs into some additional difficulties be-
cause of a more complicated form of the commutation formula for the operators ∆f and
H. A similar situation arises in the nonlinear boundary rigidity problem. The commu-
tation formula for ∆f and Iρ contains some terms dependent on the weight ρ, and we
need some sharp estimates for these terms. The authors intend to pursue these questions
further.

2 Pestov’s identity in the two-dimensional case

Let (M, g) be a compact oriented two-dimensional Riemannian manifold, possibly with
boundary. By ΩM = {(x, ξ) | x ∈ M, ξ ∈ TxM, |ξ| = 1} we denote the three-dimensional
manifold of unit tangent vectors of M . There are three canonically defined vector fields
H, H⊥, and ∂θ = ∂

∂θ
on ΩM which are linearly independent at every point. These fields are

defined as follows. H is the vector field generating the geodesic flow. The flow generated
by the field ∂θ is the group of rotations of one-dimensional fibers of the bundle ΩM → M
which are defined due to the orientation. In what follows, we use the notation fθ = ∂θf
for a function f ∈ C∞(ΩM). Finally, the flow ϕt of the field H⊥ is defined as follows.
Given a point (x, ξ) ∈ ΩM , let ξ⊥ ∈ ΩxM be the unit vector orthogonal to ξ whose
direction is chosen with the help of the orientation, and γx,ξ⊥ be the geodesic determined
by the initial conditions γx,ξ⊥(0) = x and γ̇x,ξ⊥(0) = ξ⊥. Then ϕt(x, ξ) = (γx,ξ⊥(t), ξ(t)),
where ξ(t) is the result of the parallel transport of the vector ξ along γx,ξ⊥ .

The commutation formulas

[∂θ, H] = H⊥, [∂θ, H
⊥] = −H, [H, H⊥] = K∂θ (2.1)

hold where K is the Gaussian curvature. The simplest way of proving these formulas
is based on using isothermal coordinates such that the length element is given by the
expression

ds2 = e2µ(x,y)(dx2 + dy2). (2.2)
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Such a system exists in a neighborhood of every point of M . Given such coordinate
system, the local coordinates (x, y, θ) are defined on ΩM , where θ is the angle from ∂x

to the current vector ξ ∈ Ω(x,y)M . The vector fields H and H⊥ are expressed in these
coordinates as follows:

H = e−µ

(
cos θ

∂

∂x
+ sin θ

∂

∂y
+ (−µx sin θ + µy cos θ)

∂

∂θ

)
, (2.3)

H⊥ = e−µ

(
− sin θ

∂

∂x
+ cos θ

∂

∂y
− (µx cos θ + µy sin θ)

∂

∂θ

)
. (2.4)

On using (2.3), (2.4) and the equality K = −e−2µ∆µ, formulas (2.1) are proved by
straightforward calculations that are omitted.

Given an arbitrary function c ∈ C∞(ΩM), we introduce the operator

H⊥
c = H⊥ + c∂θ.

The commutation formulas

[∂θ, H] = H⊥
c − c∂θ, [∂θ, H

⊥
c ] = −H + cθ∂θ, [H, H⊥

c ] = −cH⊥
c +(Hc+ c2 +K)∂θ (2.5)

follow from (2.1).
Let dσ be the surface form on M . We use the same notation dσ for the 2-form on ΩM

which is the pull-back of dσ under the projection ΩM → M . There is also the natural
volume form dΣ on ΩM . In isothermal coordinates (2.2), these forms are expressed as
follows:

dσ = e2µdx ∧ dy, dΣ = e2µdx ∧ dy ∧ dθ. (2.6)

We denote the operator of inner multiplication by a vector field X by ι(X). For an
arbitrary function f ∈ C∞(ΩM), the relations

d(fdσ) = fθdΣ, d(fι(H)dΣ) = Hf · dΣ, d(fι(H⊥
c )dΣ) = (H⊥

c f + cθf)dΣ (2.7)

are proved by straightforward calculations in coordinates on the base of representations
(2.3), (2.4) and (2.6).

Lemma 2.1 (the Pestov identity) For arbitrary real functions c, ϕ ∈ C∞(ΩM), the equal-
ity

2

(
H⊥

c ϕ,
∂

∂θ
(Hϕ)

)

L2(ΩM)

= ‖Hϕ‖2
L2(ΩM)+‖H⊥

c ϕ‖2
L2(ΩM)−

∫

ΩM

(Hc+c2+K)ϕ2
θdΣ+

∫

∂(ΩM)

ωc(ϕ)

(2.8)
holds with

ωc(ϕ) = ϕθH
⊥
c ϕ · ι(H)dΣ− ϕθHϕ · ι(H⊥

c )dΣ, (2.9)

where the L2-norm on ΩM is defined as follows:

(f, g)L2(ΩM) =
∫

ΩM

fg dΣ.
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This identity can be (and has been) obtained from Pestov’s identity with modified
horizontal derivative (see Section 8.2 of [13]) by changing coordinates. However the change
of coordinates leads to lengthy and complicated calculations. We present the following
straightforward proof.

Proof. On using the commutation formulas (2.5), we derive for a function ϕ ∈
C∞(ΩM)

2H⊥
c ϕ · ∂

∂θ
(Hϕ)− ∂

∂θ
(H⊥

c ϕ ·Hϕ) = H⊥
c ϕ · ∂

∂θ
Hϕ− ∂

∂θ
H⊥

c ϕ ·Hϕ =

= H⊥
c ϕ · (Hϕθ + H⊥

c ϕ− cϕθ)− (H⊥
c ϕθ −Hϕ + cθϕθ) ·Hϕ =

= (Hϕ)2 + (H⊥
c ϕ)2 + H⊥

c ϕ ·Hϕθ −H⊥
c ϕθ ·Hϕ− cϕθH

⊥
c ϕ− cθϕθHϕ =

= (Hϕ)2 + (H⊥
c ϕ)2 + H(ϕθH

⊥
c ϕ)−H⊥

c (ϕθHϕ)− ϕθ([H, H⊥
c ]ϕ + cH⊥

c ϕ + cθHϕ) =

= (Hϕ)2 + (H⊥
c ϕ)2 − (Hc + c2 + K)ϕ2

θ + H(ϕθH
⊥
c ϕ)−H⊥

c (ϕθHϕ)− cθϕθHϕ.

We have thus proved the equality

2H⊥
c ϕ · ∂

∂θ
(Hϕ) = (Hϕ)2 + (H⊥

c ϕ)2 − (Hc + c2 + K)ϕ2
θ+

+H(ϕθH
⊥
c ϕ)−H⊥

c (ϕθHϕ) +
∂

∂θ
(H⊥

c ϕ ·Hϕ)− cθϕθHϕ.

We multiply this equality by dΣ and use (2.7) to obtain

2H⊥
c ϕ · ∂

∂θ
(Hϕ)dΣ =

(
(Hϕ)2 + (H⊥

c ϕ)2
)
dΣ− (Hc + c2 + K)ϕ2

θdΣ+

+d
(
ϕθH

⊥
c ϕ · ι(H)dΣ− ϕθHϕ · ι(H⊥

c )dΣ + Hϕ ·H⊥
c ϕ · dσ

)
.

Integrating this equality over ΩM , we obtain (2.8) because the restriction of dσ to ∂(ΩM)
is equal to zero.

3 An identity for a tensor field of second rank

Here we will prove the following

Lemma 3.1 Let c ∈ C∞(ΩM) be an arbitrary real function. If a real function u ∈
C4(ΩM) satisfies the kinetic equation (1.4), then the function

ϕ = uθθ + u

satisfies the equality

‖Hϕ‖2
L2(ΩM)+‖H⊥

c ϕ‖2
L2(ΩM)+4‖H⊥

c ϕ−cϕθ/2‖2
L2(ΩM) =

∫

ΩM

(Hc+2c2+K)ϕ2
θdΣ−

∫

∂(ΩM)

ωc(ϕ),

(3.1)
where ωc(ϕ) is defined by (2.9).
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Proof. In isothermal coordinates (2.2), the kinetic equation (1.4) can be rewritten in
the form

Hu =
1

2
f0 + f1 cos 2θ + f2 sin 2θ, (3.2)

where the functions

f0 =
1

2
e−µ(f11 + f22), f1 =

1

2
e−µ(f11 − f22), f2 = e−µf12

are independent of θ.
Differentiating equation (3.2) with respect to θ and applying the first of formulas (2.5),

we obtain
Huθ + H⊥

c u− cuθ = 2(−f1 sin 2θ + f2 cos 2θ). (3.3)

Differentiating (3.3) with respect to θ and applying (2.5) again, we obtain

Huθθ − 2cuθθ + 2H⊥
c uθ −Hu = −4(f1 cos 2θ + f2 sin 2θ). (3.4)

Multiplying equation (3.2) by 2 and adding the result to (3.4), we get the equality

H(uθθ + u)− 2cuθθ + 2H⊥
c uθ = f0 − 2(f1 cos 2θ + f2 sin 2θ)

that can be rewritten in the form

Hϕ = −2H⊥
c uθ + 2cuθθ + F (3.5)

with
F = f0 − 2(f1 cos 2θ + f2 sin 2θ). (3.6)

By (3.5),
∂

∂θ
(Hϕ) = −2

∂

∂θ
H⊥

c uθ + 2cuθθθ + 2cθuθθ + Fθ.

Using the second of commutation formulas (2.5), we rewrite the latter equality in the
form

∂

∂θ
(Hϕ) = −2H⊥

c uθθ + 2Huθ + 2cuθθθ + Fθ. (3.7)

By (3.3),
Huθ = −H⊥

c u + cuθ + 2(−f1 sin 2θ + f2 cos 2θ).

Inserting this expression into (3.7), we obtain

∂

∂θ
(Hϕ) = −2H⊥

c uθθ − 2H⊥
c u + 2cuθ + 2cuθθθ + 4(−f1 sin 2θ + f2 cos 2θ) + Fθ.

By (3.6), the sum of two last terms on the right-hand side of the latter equality is equal
to zero, and we arrive at the equation

∂

∂θ
(Hϕ) = −2H⊥

c ϕ + 2cϕθ. (3.8)

Although we have proved (3.8) with the help of local coordinates, it is an invariant equa-
tion and therefore is valid globally on ΩM .

By (3.8),

2

(
H⊥

c ϕ,
∂

∂θ
(Hϕ)

)

L2(ΩM)

= −4‖H⊥
c ϕ‖2

L2(ΩM) + 4(H⊥
c ϕ, cϕθ)L2(ΩM) =

= −4‖H⊥
c ϕ− cϕθ/2‖2

L2(ΩM) +
∫

ΩM

c2ϕ2
θ dΣ.

Inserting this expression into the left-hand side of (2.8), we arrive at (3.1).
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4 Proof of Theorem 1.1

First of all we will prove the following

Lemma 4.1 Under hypotheses of Theorem 1.1, there exists a real function c ∈ C∞(ΩM)
satisfying the inequality

Hc + 2c2 + K ≤ 0, (4.1)

where K is the Gaussian curvature.

Proof. Let us fix a unit speed geodesic γ : [0, l] → M with endpoints on the boundary,
γ(0), γ(l) ∈ ∂M . We will first prove that inequality (4.1) has a solution on γ. Putting
x = γ(t), ξ = γ̇(t) in (4.1), we arrive at the inequality

ċ + 2c2 + K ≤ 0. (4.2)

By the change c = a/2, the inequality is transformed into the following one:

ȧ + a2 + 2K ≤ 0. (4.3)

Since the geodesic γ has no focal points, the Jacobi equation

ÿ + Ky = 0 (4.4)

has a positive solution yγ
1 with the positive derivative ẏγ

1 on [0, l]. Consequently, the
function a1 = ẏγ

1/yγ
1 is positive and satisfies the Riccati equation

ȧ1 + a2
1 + K = 0. (4.5)

Applying the same argument to the geodesic γ with the reversed orientation, we obtain
a positive solution yγ

2 to the Jacobi equation (4.4) with negative derivative ẏγ
2 on [0, l].

Consequently, the function a2 = ẏγ
2/yγ

2 is negative and satisfies the Riccati equation

ȧ2 + a2
2 + K = 0. (4.6)

Summing (4.5) and (4.6), we conclude that the function a = a1 + a2 satisfies the
equality

ȧ + a2 + 2K = 2a1a2.

Since the functions a1 and a2 have different signs, we see that inequality (4.3) is satisfied
by a.

We represent ΩM as the union of disjoint curves, the orbits of the geodesic flow, which
are geodesics considered as curves in ΩM . We have proved that inequality (4.1) has a
solution on every such curve. We have now to choose these solutions in such a way that
their union gives us a function that is smooth on the whole of ΩM . To this end we
observe that the above-discussed construction of the function c has only the choice of
the initial values yγ

i (0), ẏγ
i (0) (i = 1, 2) of the solutions to the Jacobi equation which can

be arbitrary. The family of oriented geodesics γ can be parameterized by points of the
product Ω1 × Ω1 of two circles. Choosing smooth on Ω1 × Ω1 functions yγ

i (0), ẏγ
i (0), we

obtain the solution c to inequality (4.1) which is smooth on ΩM . The lemma is proved.
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We start proving Theorem 1.1. Given a real tensor field f ∈ Z(S2τ ′M), we define the
function u ∈ C(ΩM) by putting

u(x, ξ) =

0∫

τ−(x,ξ)

fij(γx,ξ(t))γ̇
i
x,ξ(t)γ̇

j
x,ξ(t) dt, (4.7)

where γx,ξ : [τ−(x, ξ), 0] → M is the geodesic satisfying the initial conditions γx,ξ(0) =
x, γ̇x,ξ(0) = ξ and such that γx,ξ(τ−(x, ξ)) ∈ ∂M . The function u satisfies the kinetic
equation (1.4) and the homogeneous boundary condition

u(x, ξ)|x∈∂M = 0. (4.8)

The function u(x, ξ) depends smoothly on (x, ξ) ∈ ΩM except of the points of the set
Ω(∂M) where some derivatives of u can be infinite. Consequently, some of the integrals
considered below are improper and we have to verify their convergence. The verification
is performed in the same way as in Section 4.6 of [13], since the singularities of u are
due only to the singularities of the low integration limit in (4.7). In order to simplify the
presentation, we will not pay attention to these singularities in what follows.

We write down the equality (3.1) for the function ϕ = uθθ +u. The boundary integral
is equal to zero as is seen from (2.9) and the fact that the function ϕθ vanishes on ∂(ΩM),
the latter fact follows from (4.8). We thus obtain

‖Hϕ‖2
L2(ΩM) + ‖H⊥

c ϕ‖2
L2(ΩM) + 4‖H⊥

c ϕ− cϕθ/2‖2 =
∫

ΩM

(Hc + 2c2 + K)ϕ2
θdΣ.

By Lemma 4.1, the right-hand side is nonpositive. Since the left-hand side is nonnegative,
this implies that Hϕ = 0. The latter equation, together with the homogeneous boundary
condition ϕ|∂(ΩM) = 0, implies that

ϕ = uθθ + u = 0.

This means that the function u has the form

u(x, y, θ) = α(x, y) cos θ + β(x, y) sin θ (4.9)

in isothermal coordinates (2.2).
Substituting the expression (4.9) for u into the kinetic equation (3.2), we see that

f11 = eµ(αx + µyβ), f12 =
1

2
eµ(αy + βx − µyα− µxβ), f22 = eµ(βy + µxα).

This equalities are equivalent to the relation f = σ∇v, where v is the covector field with
the coordinates v1 = eµα and v2 = eµβ. Since v vanishes on ∂M by (4.8), the field f is
potential. The theorem is proved.

5 Proof of Theorem 1.2

First of all we will reduce the question to the case of orientable M . Let M be a nonori-
entable Riemannian surface satisfying the hypotheses of Theorem 1.2, and π : M̃ → M
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be the twofold covering with the orientable M̃ . Then M̃ satisfies also the hypothe-
ses of the theorem. In particular, almost every unit speed geodesic of M̃ is dense in
ΩM̃ . Let η : M̃ → M̃ be the isometry changing two points in every fiber of π. By
η∗ : C∞(Skτ ′

M̃
) → C∞(Skτ ′

M̃
) and π∗ : C∞(Skτ ′M) → C∞(Skτ ′

M̃
) we denote the mappings

of tensor fields induced by η and π respectively. Since η is an isometry, η∗ commutes with
the operator σ∇.

Given f ∈ Z(S2τ ′M), the field f̃ = π∗f belongs to Z(S2τ ′
M̃

) and satisfies the relation

η∗f̃ = f̃ . Assuming Theorem 1.2 to be valid for M̃ , we find ṽ ∈ C∞(τ ′
M̃

) such that

f̃ = σ∇ṽ. We have to prove that ṽ is the lifting of some covector field v on M , i.e., that
ṽ = π∗v. To this end we should demonstrate that η∗ṽ = ṽ. Indeed,

σ∇(η∗ṽ − ṽ) = η∗(σ∇ṽ)− σ∇ṽ = η∗f̃ − f̃ = 0.

We have thus shown that
σ∇(η∗ṽ − ṽ) = 0.

With the help of Lemma 2.1 of [3], the latter equality implies that

η∗ṽ − ṽ = 0.

The following statement is an analog of Lemma 4.1.

Lemma 5.1 Under hypotheses of Theorem 1.2, there exists a real function b ∈ C(ΩM)
which is smooth on every orbit of the geodesic flow and satisfies the inequality

Hb + 2b2 + K ≤ 0, (5.1)

where K is the Gaussian curvature.

Proof. In fact we will repeat the arguments of E. Hopf [8] with a slight modification
related to the absence of focal points.

We consider the Jacobi equation (4.4) along a unit speed geodesic γ : R → ΩM .
Absence of conjugate points means that every nontrivial solution to the equation has at
most one zero, and any two solutions coincide at most at one point if they are not equal
identically. For a 6= b, let y(t; a, b) be the solution satisfying the conditions

y(a; a, b) = 0, y(b; a, b) = 1. (5.2)

These functions satisfy the identity

y(t; a, b) = y(β; a, b)y(t; α, β) + y(α; a, b)y(t; β, α). (5.3)

Indeed, both sides of the equality are solutions to (4.4) which, by (5.2), coincide at t = α, β
and therefore are equal identically. In the particular case of α = a and β = b′, (5.3) gives

y(t; a, b) = y(b′; a, b)y(t; a, b′). (5.4)

Since γ has no focal points,

ẏ(t; a, b) > 0 for a < b and every t, (5.5)
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and

y(t; a, b) < 0 for t < a < b, y(t; a, b) > 0 for a < b and t > a. (5.6)

Two solutions y(t; a, b) and y(t; a′, b), a′ < a, coincide at t = b and at no other point.
Consequently, by (5.6),

y(t; a′, b) ≤ y(t; a, b) for a′ < a < b ≤ t. (5.7)

(5.6) and (5.7) imply existence of the limit

y(t; b) = lim
a→−∞ y(t; a, b) (5.8)

for every t ≥ b.
If α and β in (5.3) are chosen more than b, it becomes evident that limit (5.8) exists

for every t, and y(t; b) is a solution to equation (4.4). This implies also that

ẏ(t; b) = lim
a→−∞ ẏ(t; a, b)

for every t. Using (5.2), (5.5) and (5.6) we get that

y(b; b) = 1, y(t; b) ≥ 0, ẏ(t; b) ≥ 0

for all t. Since y(t; b) is a solution to (4.4), we have the strong inequality y(t; b) > 0 for
all t.

The function

u(t) =
ẏ(t; b)

y(t; b)

is independent of b by (5.4). This function is nonnegative, depends smoothly on t, and
satisfies the Riccati equation

u̇ + u2 + K = 0.

We have thus constructed the function u(t) for every unit speed geodesic γ : R → ΩM .
The value u(t) depends only on the point γ(t) but not on the choice of the origin γ(0)
on γ. In other words, u can be considered as a well-defined function u(x, ξ) on ΩM . As
E. Hopf has mentioned in [8] without proof, the function u is continuous on ΩM . In our
case continuity of u can be justified as follows. As is established in [5], there is a one-to-
one correspondence between the function u and the stable distribution in the case of an
Anosov geodesic flow. This means that the stable distribution can be expressed in terms
of u and vise versa. On the other hand, it is well known [1] that the stable distribution
of an Anosov flow is continuous. This implies continuity of u.

We have thus defined a nonnegative function u ∈ C(ΩM) which is smooth on orbits
of the geodesic flow and satisfies the Riccati equation

Hu + u2 + K = 0.

We define now a new function a ∈ C(ΩM) by putting

a(x, ξ) = u(x, ξ)− u(x,−ξ).
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It satisfies the equation

Ha + a2 + 2K = −2u(x, ξ)u(x,−ξ).

Since u is nonnegative, a satisfies the inequality

Ha + a2 + 2K ≤ 0.

Finally, putting a = 2b, we arrive at (5.1). The lemma is proved.

We start proving Theorem 1.2. Given a real tensor field f ∈ Z(S2τ ′M), the integral
of the function fij(x)ξiξj ∈ C∞(ΩM) over a closed orbit of the geodesic flow equals zero.
Applying the smooth version of the Livčic theorem [10], we obtain a function u ∈ C∞(ΩM)
satisfying the kinetic equation (1.4).

We can assume M to be orientable. Fixing an orientation, the differential operator
∂/∂θ is well-defined on ΩM . Our aim is to prove that ϕ = uθθ + u is a constant function.

The statement of Lemma 3.1 looks as follows in the boundaryless case:

‖Hϕ‖2
L2(ΩM) + ‖H⊥

c ϕ‖2
L2(ΩM) + 4‖H⊥

c ϕ− cϕθ/2‖2
L2(ΩM) =

∫

ΩM

(Hc + 2c2 + K)ϕ2
θdΣ. (5.9)

Equality (5.9) is valid for an arbitrary function c ∈ C∞(ΩM). Let now b ∈ C(ΩM) be
the function constructed in Lemma 5.1. With the help of Lemma 4.1 of [4], we can find a
sequence of smooth functions ck ∈ C∞(ΩM) (k = 1, 2, . . .) such that ck and Hck converge
uniformly on ΩM to b and Hb respectively as k → ∞. Writing down equality (5.9) for
c = ck and passing to the limit in the equality as k → ∞, we obtain the same equality
(5.9) with b in place of c. By Lemma 5.1, the right-hand side of the latter equality is
nonpositive. Since the left-hand side is nonnegative, the equality implies that Hϕ = 0.
This means that the function ϕ is constant on every orbit of the geodesic flow. Since
there exists such an orbit dense in ΩM , the function ϕ = uθθ + u is constant on ΩM .
This means that the function u is representable in the form

u(x, y, θ) = u0 + u1(x, y) cos θ + u2(x, y) sin θ (5.10)

in the domain of an isothermal coordinate system, where u0 is a constant.
The rest of the proof is similar to the end of the previous section. Substituting the

expression (5.10) for u into the kinetic equation (3.2), we obtain f = σ∇v for the 1-form
v = eµ(u1dx + u2dy). The latter form is easily seen to be well-defined on the whole of M .
The theorem is proved.
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