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Abstract. A minimal Legendrian submanifold in a Sasakian manifold is by definition a Leg-

endrian submanifold in a Sasakian manifold which is a minimal submanifold in the sense

of vanishing mean curvature vector field. The minimal Legendrian deformation means a

smooth family of minimal Legendrian submanifolds.

In this note we discuss minimal Legendrian deformations of certain 3-dimensional

compact minimal Legendrian submanifolds embedded in the 7-dimensional standard Ein-

stein Sasakian manifolds, 7-dimensional unit sphere S7(1) and Stiefel manifold V2(R
5).

We prove that all non-trivial minimal Legendrian deformations of a certain non-totally

geodesic minimal Legendrian orbit of SU(2) in S7(1) are given by the 7-dimensional

family of minimal Legendrian submanifolds which is constructed by the group action of

Sp(2,C). Moreover we show that a 3-dimensional compact minimal Legendrian submani-

fold SO(3)/(Z2+Z2) in V2(R
5) with constant positive sectional curvature has no nontrivial

minimal Legendrian deformation.

Introduction

A smooth immersion ψ : L→M of a smooth manifold L into a contact manifold
(M,η) is called Legendrian immersion if dimL = m and ψ∗η = 0. A Legendrian
deformation of ψ is defined as a smooth family {ψt} of Legendrian immersions
ψt : L → M with ψ0 = ψ. Let (M2m+1, η, g, ξ, ϕ) be a Sasakian manifold with
the Sasakian structure (g, η, ξ, ϕ). A minimal Legendrian submanifold of a Sasakian
manifold is a Legendrian submanifold relative to its contact structure which is
a minimal submanifold with respect to the Riemannian metric of the Sasakian
structure in the sense of vanishing mean curvature vector field, or equivalently
extremal volume under any compactly supported smooth variations.

It is a natural question whether a given compact minimal Legendrian subman-
ifold in a specfic Sasakian manifold can be deformed into a family of compact min-
imal Legendrian submanifolds or not. The minimal Legendrian deformation means
a one-parameter smooth family of compact minimal Legendrian submanifolds. A
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minimal Legendrian deformation is said to be trivial if the minimal Legendrian
deformation is induced by the automorphisms of the ambient Sasakian manifold.

Question. Determine all minimal Legendrian deformations of a given compact min-

imal Legendrian submanifold L in a Sasakian manifold.

The theory of minimal Legendrian deformations of compact minimal Legen-
drian submanifolds works well in the case when the ambient Sasakian manifold is
an η-Einstein Sasakian manifold (see Section 3). It is known the standard construc-
tion of η-Einstein and Einstein Sasakian manifolds from Einstein-Kähler manifolds
with positive Einstein constant, and Einstein Sasakian manifolds provide Ricci-
flat Kähler cone metrics (cf. Section 2). In the construction minimal Legendrian
submanifolds corresponds to both minimal Lagrangian submanifolds in Einstein-
Kähler manifolds with positive Einstein constant and special Lagrangian subcones
in Ricci-flat Kähler cone.

The purpose of this note is to discuss minimal Legendrian deformations of 3-
dimensional certain compact minimal Lagrangian submanifolds in the 7-dimensional
standard Einstein-Sasakian manifolds such as the 7-dimensional unit standard
sphere S7(1) and the 7-dimensional Stiefel manifold V2(R) of orthonormal 2-frames
in R5. Three examples will be treated. The simplest example should be a 3-
dimensional totally geodesic Legendrian submanifold S3(1) embedded in S7(1) and
we show that it has no non-trivial minimal Legendrian deformation (see Proposition
4.1).

Let (V3, ρ3) be the irreducible unitary representation of SU(2) of degree 3. As
the first non-trivial example, we know a non-totally geodesic minimal Legendrian
orbit L3 := ρ3(SU(2))(w) of SU(2) in S7(1) ⊂ V3

∼= C4 (see Subsection 4.2, cf.
[14]). One of main results in this note is as follows (see Theorem 4.1) :

Theorem. All non-trivial minimal Legendrian deformations of L3 = ρ3(SU(2))(w) ⊂

S7(1) are given by the 7-dimensional family of minimal Legendrian submanifolds

which is constructed by the group action of Sp(2,C).

Let N3 = SO(3)/(Z2 +Z2) ⊂ S4(1) be a 3-dimensional isoparametric hypersur-
face embedded in S4(1) with 3 distinct principal curvatures, which is one of so called
Cartan hypersurfaces. The second example is its Legendrian lift to V2(R5) which
is a compact embedded minimal Legendrian submanifold L3 = SO(3)/(Z2 + Z2) ⊂
V2(R5) whose induced metric from the Einstein Sasakian metric of V2(R5) is of
constant positive sectional curvature. Our another result is as follows (see Theorem
4.2) :

Theorem. L3 = SO(3)/(Z2+Z2) ⊂ V2(R5) has no non-trivial minimal Legendrian

deformation.

In Section 1 we shall prepare fundamental properties and formulas for Legen-
drian submanifolds in a contact manifold, the notion of Legendrian deformations
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and a Banach manifold structure of the space of Legendrian submanifolds. In Sec-
tion 2 we shall describe differential geometry of Legendrian submanifolds in Sasakian
manifolds and the notion of minimal Legendrian deformations. In Section 3 we shall
describe a general theory of minimal Legendrian deformations for minimal Legen-
drian submanifolds in η-Einstein Sasakian manifolds. Section 4 we shall discuss
minimal Legendrian deformation problem for three examples of 3-dimensional com-
pact minimal Legendrian submanifolds in the 7-dimensional unit standard sphere
S7(1) and the 7-dimensional Stiefel manifold V2(R5).

In the forthcoming paper we shall discuss these problems, results and their
generalizations in detail.

1 Legendrian submanifolds and Legendrian deformations

Let (M2m+1, η) be a (2m+1)-dimensional contact manifold with contact 1-form
η and ψ : L −→ M2m+1 be a smooth immersion a connected smooth manifold L
into M2m+1.

Definition 1.1. ψ is called a Legendrian immersion if

1. ψ∗η = 0,

2. dimL = m.

For any V ∈ C∞(ψ−1TM), we define a 1-form αV ∈ Ω1(L) on L by

αV (X) := −1
2
dη(V, ψ∗(X)).

for each X ∈ TL. If ψ is a Legendrian immersion, then we have the canonical linear
isomorphism

χ : ϕ−1TM/ϕ∗TL 3 v 7−→ (η(v), αv) ∈ R⊕ T ∗L .

Let ψt : L −→ M2m+1 be a smooth family of immersions with a Legendrian

immersion ψ0 = ψ. Set Vt :=
∂ψt
∂t

∈ C∞(ψ−1
t

∗
TM), which is the variational vector

field of ψt : L −→M2m+1.

Definition 1.2. {ψt} is called a Legendrian deformation of ψ if ψt is a Legendrian

immersion for each t.

Proposition 1.1. {ψt} is a Legendrian deformation if and only if

αVt =
1
2
d(η(Vt))

for each t.
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There were two notions of Hamiltonian deformations for Lagrangian deforma-
tions in Lagrangian Geometry. In contrast there is only a notion of Legendrian
deformations in Legendrian Geometry.

The (suitably completed) space of all Lagrangian immersions of compact L into
M is a Banach manifold modeled on the vector space of (suitable) functions on L
in the following way (cf. [12]). Let ϕ : L −→ M be a Legendrian immersion of
an m-dimensional compact smooth manifold L into a (2m+1)-dimensional contact
manifold (M,η). We may choose an almost contact metric structure (ξ, g) on M
compatible with the contact structure η. LetW be a sufficiently small neighborhood
of O in C∞(ϕ−1TM/ϕ∗TL). For each V ∈ W ⊂ C∞(ϕ−1TM/ϕ∗TL), define a
smooth map

expϕV : L 3 x 7−→ expϕ(x)(Vx).

We have a homeomorphism

C∞(ϕ−1TM/ϕ∗TL) ⊃ W 3 V 7−→ expϕV ∈ W̄ ⊂ C∞(L,M)

and expϕO = ϕ. We define a function

F : C∞(ϕ−1TM/ϕ∗TL) ⊃ W 3 V 7−→ (expϕV )∗η ∈ Ω1(L).

For each V ∈ C∞(ϕ−1TM/ϕ∗TL),

(dF)O(V ) = d(η(V )) + ιV (dη) ∈ Ω1(L).

Since ιV (dη), V ∈ C∞(ϕ−1TM/ϕ∗TL), can take all elements of Ω1(L), the differ-
ential of F at O

(dF)O : C∞(ϕ−1TM/ϕ∗TL) −→ Ω1(L)

is surjective. Hence (the suitable completion of) a space of Legendrian immersions
which are C1-close to ϕ is a Banach manifold modeled on the vector space of (suit-
able) functions on L ([12]).

2 Legendrian submanifolds in Sasakian manifolds

Let (M2m+1, η, g, ξ, ϕ) be a (2m + 1)-dimensional Sasakian manifold with
Sasakian structure (η, g, ξ, ϕ). Here

η : the contact 1-form of M

g : a Riemannian metric,

ξ : a Killing vector field,

φ : a tensor field of type (1, 1) on M
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satisfying the following equations :

η(ξ) = 1,

φ2 = −Id + η ⊗ ξ,

g(φ(X), φ(Y )) = g(X,Y )− η(X)η(Y ),
(dη)(X,Y ) = 2g(X,φ(Y )),
[φ, φ](X,Y ) + (dη)(X,Y )ξ = 0,

where

[φ, φ](X,Y ) := φ2[X,Y ] + [φ(X), φ(Y )]− φ[φ(X), Y ]− φ[X,φ(Y )].

A (2m + 1)-dimensional Sasakian manifold (M2m+1, η, g, ξ, ϕ) is called η-Einstein
with η-Ricci constant A if its Ricci tensor field Ricg satisfies

Ricg(X,Y ) = Ag + (2m−A) η ⊗ η .

Note that an η-Einstein Sasakian manifold (M2m+1, η, g, ξ, ϕ) is Einstein-Sasakian
if and only if A = 2m .

We shall recall the standard construction of a Sasakian manifold
(M2m+1, η, g, ξ, φ) from a given Kähler manifold (M̄2m, ω, J, ḡ) ([15, p331], cf. [2],
[7]) : Suppose that there is a non-zero constant γ such that 1

γ [ω] ∈ H2(M̄2m,R)
is an integral class. Then there is a principal U(1)-bundle πγ : Pγ → M̄2m and a
connection form θγ on Pγ whose curvature form coincides with 2π

γ

√
−1π∗ω. The

standard Sasakian structure on M2m+1 = Pγ induced from the Kähler structure
of M̄2m such that π : (M2m+1, gγ) → (M̄2m, ḡ) is a Riemannian submersion with
totally geodesic fibers can be defined as follows : ηγ = γ

π
√
−1
θγ , gγ = π∗γ ḡ+ ηγ ⊗ ηγ ,

iξγgγ = ηγ and

φγ(X) =

{
(J(π∗X))∗ if X ∈ Ker η,
0 if X ∈ Rξ,

where (·)∗ denotes the horizontal lift with respect to the connection θγ . If
(M̄2m, ω, J, ḡ) is a Einstein-Kähler manifold, with Ricci form ρ̄ = κω, then the
Ricci tensor field Ricgγ

satisfies

Ricgγ = (κ− 2)gγ + 2mηγ ⊗ ηγ ,

that is, (M2m+1, ηγ , gγ , ξγ , φγ) is an η-Einstein-Sasakian manifold with η-Ricci con-
stant κ−2. In particular κ = 2m+2 if and only if gγ is an Einstein-Sasakian metric.
If (M̄2m, ω, J, ḡ) is an Einstein-Kähler manifold with Einstein constant κ = 2m+2,

then for each integer l ∈ Z by choosing γ =
2π

(2m+ 2)l
=

π

(m+ 1)l
we obtain an

Einstein-Sasakian manifold (M2m+1 = Pγ , gγ , ηγ , ξγ , φγ).

Example 2.1. M̄2m = CPm = SU(m+1)/S(U(1)×U(m)) is a complex projective

space equipped with the Fubini-Study metric ḡ. Then M2m+1 = S2m+1(1) is the
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(2m + 1)-dimensional unit standard sphere, π : S2m+1(1) → CPm is the Hopf

fibration.

Example 2.2. M̄2m = Qm(C) = G̃r2(Rm+2) = SO(m + 2)/SO(2) × SO(m)

is the complex hyperquadric of CPm+1, which is compact Hermitian symmetric

space of rank 2. Qm(C) is canonically isometric to the real Grassmannian manifold

G̃r2(Rm+2) of oriented 2-dimensional vector subspaces of Rm+2. Then M2m+1 =

V2(Rm+2) = SO(m+ 2)/SO(m) is the Stiefel manifold of orthonormal 2-frames in

Rm+2 :

V2(Rm+2) := {(a,b) | a,b ∈ Rm+2, ‖a‖ = ‖b‖ = 1, 〈a,b〉 = 0}

and

π : V2(Rm+2) 3 (a,b) 7−→ a ∧ b ∈ Qm(C) = G̃r2(Rm+2).

It is known that the cone metric CM2m+1 ∼= (0,∞)×gM2m+1 over a Sasakian
manifold M2m+1 is a Kähler metric and the converse holds :

Kähler manifold M̄2m =⇒ Sasakian manifold M2m+1

⇐⇒ Kähler cone CM2m+1.

Moreover it is known that the Kähler cone metric CM2m+1 ∼= (0,∞) ×g M2m+1

over an Einstein-Sasakian manifold M2m+1 is Ricci-flat and the converse holds :

M̄2m has an Einstein-Kähler metric

=⇒M2m+1 has an Einstein-Sasakian metric

⇐⇒CM2m+1 has a Ricci-flat Kähler cone metric .

Then there are bijective correspondences among minimal Lagrangian submanifolds
in M̄2m, minimal Legendrian submanifolds in M2m+1 and special Lagrangian sub-
cones in CM2m+1 :

CM2m+1: Ricci flat E-K. cone
∪
M2m+1 : Einstein-Sasakian mfd.

π U(1) = S1

M̄2m : Einstein-Kähler mfd.

-

-

CLm

∪
Lm

? ?

L̄m

SL

min. Leg.

min. Lag.
-
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Let (M2m+1, η, g, ξ, φ) be a Sasakian manifold and ψ : L −→M be a Legendrian
immersion. Let B denote the second fundamental form of L in (M, g) and H denote
the mean curvature vector field of ψ defined by

H =
m∑
i=1

B(ei, ei)

where {ei} is an orthonormal basis of TxL relative to the induced metric on L. The
1-form αH on L corresponding to the mean curvature vector field H is called the
mean curvature form of ψ. The mean curvature form αH of ψ satisfies the identity

(dαH)(X,Y ) = −RicM (ψ∗X,φψ∗(Y )))

for each X,Y ∈ TL. This identity follows from the Coddazi equation. Hence if
M2m+1 is η-Einstein, then the mean curvature form αH of any Legendrian immer-
sion ψ is always a closed 1-form on L.

Suppose that L is compact without boundary. A Legendrian immersion ψ is
Legendrian minimal (or shortly L-minimal) if for every Legendrian deformation
ψt : L −→M2m+1 with ψ0 = ϕ,

d

dt
Vol (L,ϕ∗t g)|t=0 = 0.

Its Euler-Lagrange equation is δαH = 0 and thus a Legendrian immersion ψ into
η-Einstein manifold M2m+1 is Legendrian minimal if and only if the mean curvature
form αH of ψ is a harmonic 1-form on L.

A minimal Legendrian immersion ψ is by definition a Legendrian immersion
whose mean curvature vector field (or equivalently, mean curvature form) identi-
cally vanishes. The Legendrian stability of minimal Legendrian submanifolds were
studied in [15], [10].

Definition 2.1. A one-parameter smooth family ψt : L −→M is called a minimal

Legendrian deformation if ψt : L −→ M is a Legendrian deformation such that ψt

is a minimal immersion (i.e. its mean curvature vector field H = 0) for each t.

A minimal Legendrian deformation ψt : L −→ M is called trivial if the min-
imal Legendrian deformation ψt is induced by the one-parameter family of auto-
morphisms of the ambient Sasakian manifold (M2m+1, η, g, ξ, ϕ). The Lie alge-
bra of the automorphism group Aut(M2m+1, g, η, ξ, ϕ) of the Sasakian manifold
(M2m+1, η, g, ξ, ϕ) consists of Sasakian Killing vector fields on M2m+1, namely
Killing vector fields preserving the Sasakian structure of M2m+1. Let X be a
Sasakian Killing vector field on M2m+1. Then

0 = LXdφ = (d ◦ ιX + ιX ◦ d)dφ = d(ιXdφ).

Suppose that M2m+1 is simply connected, more generally the first Betti number of
M2m+1 is zero. Then ιXdφ is exact, that is, ιXdφ = df for some f ∈ C∞(M2m+1).
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Setting V = X◦φ, we have αV = − 1
2ψ
∗(ιV dη) = − 1

2d(f ◦ψ) and thus each Sasakian
Killing vector field generates a Legendrian deformation. For a minimal Legendrian
immersion ψ : L→M , we define the Sasakian Killing nullity of ψ by

nsk(ψ) := dim{X⊥ | X ∈ Lie(Aut(M2m+1, g, η, ξ, ϕ))},

where X⊥ denotes the component of X ◦ ψ normal to ψ∗TL for each X ∈
Lie(Aut(M2m+1, g, η, ξ, ϕ)). Then the dimension of all trivial infinitesimal mini-
mal Legendrian deformations of ψ is equal to the Sasakian Killing nullity nsk(ψ).

3 Minimal Legendrian deformations in η-Einstein Sasakian manifolds

3.1 Infinitesimal minimal Legendrian deformations

Suppose that (M2m+1, η, g, ξ, φ) is an η-Einstein Sasakian manifold with η-Einstein
constant A. Let Lm be a compact m-dimensional smooth manifold without bound-
ary and ψ : Lm −→M2m+1 be a minimal Legendrian immersion.

Lemma 3.1. The vector space of all infinitesimal minimal Legendrian deformations

of ψ can be identified with

Eψ := R⊕ {f ∈ C∞(L) | ∆0
ψf = (A+ 2)f}.

where ∆0
ψ denotes the Hodge-de Rham-Laplace operator of L acting on Ω0(L) =

C∞(L) relative to the induced metric by ψ.

Under the canonical linear isomorphism χ : NL ∼= ψ∗TM/ψ∗TL → C∞(L) ⊕
Ω1(L), the vector space of all infinitesimal Legendrian deformations of ψ is given
by

{(f, α) ∈ C∞(L)⊕ Ω1(L) | α =
1
2
df } ∼= C∞(L) .

Let ∇⊥ denote the normal connection in the normal bundle of ψ.
In minimal submanifold theory, the equation of infinitesimal minimal deforma-

tions of ψ is known as the Jacobi equation :

Jψ(V ) = −∆⊥V + R̄(V )− Ã(V ) = 0

for V ∈ C∞(NL), where the Jacobi differential operator Jψ = −∆⊥ + R̄ − Ã :
C∞(NL) → C∞(NL) is defined as

∆⊥(V ) :=
m∑
i=1

(∇⊥ei
∇⊥ei

V −∇⊥∇L
ei
ei
V ),

g(R̄(V ), V ) =
m∑
i=1

g(R(ei, V )ei, V ),

g(Ã(V ), V ) =
m∑

i,j=1

g(B(ei, ej), V )2 = tr(AV ◦AV ) .
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For each V ∈ C∞(NL) with χ(V ) = (f, α) ∈ C∞(L)⊕ Ω1(L),

χ(Jψ(V )) =
(
∆0
Lf − 2δα,−2df + ∆1α− (A− 2)α

)
∈ C∞(L)⊕ Ω1(L) .

Suppose that V is an infinitesimal Legendrian deformation of ψ, i.e. α = 1
2df .

Then

χ(Jψ(V )) =
(

0,
1
2
(∆1

Ldf − (A+ 2)df)
)
∈ C∞(L)⊕ Ω1(L).

Now we set a vector subspace

Γ := {(f, 1
2
df) | f ∈ C∞(L)} ⊂ C∞(L)⊕ Ω1(L)

and we define a linear differential operator

J χ
ψ : Γ 3 (f,

1
2
df) 7−→

(
0,

1
2
(∆1

L − (A+ 2)Id)df
)

=
(

0,
1
2
d(∆0

Lf − (A+ 2)f)
)
∈ Γ,

which can be considered as a linearized operator at ψ of the minimal Legendrian
submanifold equation on the space of Legendrian immersions of L into M2m+1.
Then J χ

ψ is self-adjoint, i.e. (J χ
ψ )∗ = J χ

ψ and thus Ker(J χ
ψ ) = Ker(J χ

ψ )∗ = Eψ.
Hence the vector space of all infinitesimal minimal Legendrian deformations of

ψ corresponds to a vector space

Ker(J χ
ψ ) ={ (f, df) | ∆1

ψdf = (A+ 2)df }
∼=R⊕ { f ∈ C∞(L) | ∆0

ψf = (A+ 2)f } = EL .

3.2 Kuranishi type deformation theory

We can apply the Kuranishi type deformation theory to our problem. See also [12].
Let M(L) be the space of minimal Legendrian immersions near ψ from compact

Lm into an η-Einstein Sasakian manifold M2m+1. Then there exist a neighborhood
U of 0 in a vector space KerJ χ

ψ and a nonlinear map, so called Kuranishi map,

Φ : Ker(J χ
ψ ) = Eψ ⊃ U −→ Ker(J χ

ψ )∗ = Eψ

such that Φ(0) = 0 and

[a nbd. of Φ−1(0) around 0] ∼= [a nbd. of M(L) around ψ]
(homeomorphic).

Here note that if M2m+1 is a real analytic η-Einstein Sasakian manifold, then the
Kuranishi map Φ is real analytic. Hence we know that if every infinitesimal minimal
Legendrian deformation of ψ is integrable, that is, generates a minimal Legendrian
deformation of ψ, then there is a neighborhood in M(L) around psi which is a
smooth manifold of dimension equal to dim(Eψ).
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4 Minimal Legendrian deformations of 3-dimensional certain minimal

Legendrian submanifolds

We shall give our attention to the case when m = 3 and

ψ : L3 −→M7

is a 3-dimensional compact minimal Legendrian submanifold embedded in the 7-
dimensional standard (η-)Einstein Sasakian manifolds

4.1 The simplest example

Let M5 = S7(1) = U(4)/U(3) be the 5-dimensional standard unit sphere and L3 =
S3(1) = SO(4)/SO(3) be a totally geodesic Legendrian submanifold embedded in
S7(1). The Hopf fibration π : S7(1) → CP 3 induces the double covering

π : S7(1) ⊃ S3(1) −→ RP 3 ⊂ CP 3.

Since the multiplicity of the second eigenvalue 2m + 2 = 8 of ∆0
S3(1) is equal to 9,

we have dim(ES3(1)) = 1 + 9 = 10. On the other hand nsk(S3(1)) = dim(U(4)) −
dim(SO(4)) = 16− 6 = 10. Therefore we obtain

Proposition 4.1. The 3-dimensional compact totally geodesic Legendrian subman-

ifold S3(1) embedded in S7(1) has only trivial minimal Legendrian deformations.

Its deformation space is U(4)/O(4).

4.2 The first example

Let (V3, ρ3) be the irreducible unitary representation of SU(2) of degree 3, where

V3 := {f(z1, z2) | complex homogeneous polynomials
with two variable z1, z2 of degree 3}.

V3 is a 4-dimensional complex vector space equipped with the standard Hermitian
inner product such that

{ 1√
3!
z3
1 ,

1√
2!
z2
1z2,

1√
2!
z1z

2
2 ,

1√
3!
z3
2}

is a unitary basis of V3. We shall consider the SU(2)-orbit on S7(1) :

L := ρ3(SU(2))(w) ⊂ S7(1)

through the point

w :=
1√
2
(

1√
3!
z3
1 +

1√
3!
z3
2).

Then we have
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Proposition 4.2. The orbit L is a non-totally geodesic 3-dimensional compact min-

imal Legendrian submanifold embedded in S7(1). Moreover its fundamental group

is π1(L) ∼= Z3 a finite cyclic group of order 3 and thus L ∼= SU(2)/Z3
∼= S3/Z3.

Remark. The induced metric on L is never of constant sectional curvatures. This

compact minimal Legendrian submanifold was also treated in [14]. For higher di-

mensional examples of compact minimal Legendrian orbits, see also [3], [14].

We denote by ψ0 : L → S7(1) the minimal Legendrian embedding of L =
ρ3(SU(2))w into S7(1). Moreover

Lemma 4.1 ([14], Theorem 3.1). The multiplicity of the eigenvalue 2m+ 2 = 8 of

∆0
ψ0

is equal to 19.

Thus we have dim(Eψ0) = 1 + 19 = 20. On the other hand nsk(ψ0) =
dim(U(4))− dim(SU(2)) = 16− 3 = 13.

Hence we see that L can have at most 7-dimensional family of non-trivial min-
imal Legendrian deformations. In fact, we obtain the following result

Theorem 4.1. All non-trivial minimal Legendrian deformations of ψ0 are given

by the 7-dimensional family of minimal Legendrian embeddings which is induced by

the group action of Sp(2,C).

Such deformations can be explained in the following diagram :

?

?

H2 ∼=
∪
S7(1) = S7(1)

∪
C4

p2 S1

CP 3

-L
ψ0

? ?

S1

S2
h0

?

-

RP 2 ⊂ S4 = HP 1

p1 S1

CP 3 ⊃ p1(ψ0(L))

Remark. (1) p1(ψ0(L)) ⊂ CP 3 is a 3-dimensional compact strictly Hamiltonian

stable minimal Lagrangian embedded in CP 3 with non-parallel second fun-

damental form ([4], [14]).
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(2) The embedding RP 2 ⊂ S4 is the Veronese surface, which is a real projective

plane with constant positive Gaussian curvature minimally embedded in the

standard 4-sphere by the first eigenfunctions of the Laplacian of RP 2.

(3) h0 : S2 → CP 3 is its horizontal holomorphic lift into the twistor space CP 3

over S4.

Let 〈 , 〉 be the standard inner product of R8. Let I, J , IJ = K be the standard
quaternionic structure of R8. For each x ∈ S7(1) ⊂ R8,

R8 = Rx⊕RIx⊕RJx⊕RKx⊕Hx.

Relative to I, we have an identification

R8 ∼= H2 ∼= C4.

and the standard fibrations

S7(1) −→ CP 3 −→ HP 1 = S4.

Then CP 3 has the standard complex contact structure and the holomorphic contact
1-form η on CP 3 defined by

η̃x(X) := 〈X, Jx〉+
√
−1〈X,Kx〉 = 〈X, Jx〉+

√
−1〈X, IJx〉.

for each X ∈ RJx⊕RKx⊕Hx.
Suppose that h : Σ → CP 3 is a horizontal holomorphic map, that is, a holo-

morphic contact curve, which is a holomorphic map satisfying h∗η = 0.

?

?

H2 ∼=
∪
S7(1) = S7(1)

∪
C4

p2 S1

CP 3

-L = h−1(S7(1))
ψ

? ?

S1

Σ
h

?

F

-

F (Σ) ⊂ S4 = HP 1

p1 S1

CP 3 ⊃ p1(ψ(L))

If W ⊂ RJx⊕RKx⊕Hx is a vector subspace of dimW = 2, I(W ) = W and
η̃(W ) = 0, then we have an orthogonal direct sum as

R8 = Rx⊕RIx⊕W ⊕RJx⊕RKx⊕ JW.
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Indeed, we express W as
W = Rw ⊕RI(w).

Then we have JW = RJw ⊕RKw = KW . Since Jw ⊥ w, Jw ⊥ Iw, JIw ⊥ w,
JIw ⊥ Iw, we have W ⊥ JW = KW . Since

η̃(W ) = 0 ⇔ Jx ⊥W, Kx ⊥W,

we have
x ⊥W, Ix ⊥W, Jx ⊥W, Kx ⊥W

and thus
x ⊥ JW, Ix ⊥ JW, Jx ⊥ JW, Kx ⊥ JW.

Hence we obtain

R8 = Rx⊕RJx⊕ (RIx⊕W )⊕ (RKx⊕ JW )

and
J(RIx⊕W ) = RKx⊕ JW.

Therefore if we take another identification relative to J :

R8 ∼= H2 ∼= C4.

and the standard fibration
p1 : S7(1) −→ CP 3,

then the induced map

ψ = h̃ : L = h−1(S7(1)) −→ S7(1)

is a minimal Legendrian immersion relative to J and thus

p1 ◦ h̃ : L = h−1(S7(1)) −→ CP 3

is a minimal Lagrangian immersion relative to J
The complex Lie group Sp(2,C) acts holomorphically on CP 3 preserving the

horizontal distribution with respect to the Penrose twistor fibration CP 3 → HP 1 ∼=
S4 and transforms a horizontal holomorphic curve to another horizontal holomor-
phic curve in CP 3.

?

?

H2

∪
S7(1) Sp(2) ⊂ Sp(2,C)

?

π2 S1

CP 3 ∼=

-h−1(S7(1)) = L
ψ

? ?

S1

S2
h

horiz.holom.

?

-

RP 2 ⊂ S4 = HP 1

Sp(2)/(Sp(1)× U(2))
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This complex group action induces horizontal holomorphic deformations of h0 :
S2 → CP 3 and hence minimal Legendrian deformations of ψ0 : L = h−1

0 (S7(1)) →
S7(1). The dimension of the so obtained non-trivial family of minimal Legendrian
immersions can be calculated as follows :

dim(Sp(2,C))− dim(Sp(2))− (dim(Hol(S2))− dim(Isom(S2)))
=20− 10− (6− 3) = 7 .

Remark. Compare this construction with [9], [1], [8]. This family are also very

related to Lagrangian submanifolds attaining the equality in the B. Y. Chen’s in-

equality on curvatures (see [5]).

4.3 The second example

We shall consider the (2m + 1)-dimensional real Stiefel manifold of orthonormal
2-frames in Rm+2 :

V2(Rm+2) := {(a,b) | a,b ∈ Rm+2 orthonormal } ∼= SO(m+ 2)/SO(m)

which is the standard Einstein-Sasakian manifold over a complex m-dimensional
complex hyperquadric Qm(C) ∼= G̃r2(Rm+2). The natural projection p1 :
V2(Rn+2) → Qm(C) is defined by p1(a,b) = [a +

√
−1b] = a ∧ b. The natu-

ral projection p2 : V2(Rn+2) → Sm+(1) is defined by p2(a,b) = a.
LetNm be an oriented hypersurface in the (m+1)-dimensional the unit standard

sphere Sm+1(1) ⊂ Rm+2. We denote by x the position vector of a point of Nn and
by n the unit normal vector field to Nm in Sm+1(1).

?

V2(Rm+2) = V2(Rm+2)

p2 Sm

Sm+1(1)

-Lm
ψ

Legend.

?

∼=
?

Nm

ori.hypsurf.
-

p1 S1

Qm(C) ⊃ p1(ψ(L))
Lagr.

Here the Legendrian life Lm of Nm ⊂ Sm+1(1) to V2(Rm+2) is defined by Nm 3
p 7−→ (x(p),n(p)) ∈ V2(Rm+2).

The Gauss map G of Nm is defined as a smooth map

G : Nm 3 p 7−→ x(p) ∧ n(p) ∈ Qn(C),
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which we discussed in [13], and then the Gauss map G coincides with the composition
map

p1 ◦ (p2|L)−1 : Nm −→ Qm(C).

We know that for any isoparametric hypersurface Nm in Sm+1(1), the Gauss map
G : Nm → Qn(C) is a minimal Lagrangian immersion and the Legendrian life Lm

of Nm ⊂ Sm+1(1) is a minimal Legendrian submanifold in V2(Rm+2).
Now we shall discuss the case of the 7-dimensional real Stiefel manifold of or-

thonormal 2-frames in R5 (m = 3) :

V2(R5) := {(a,b) | a,b ∈ R5 orthonormal } ∼= SO(5)/SO(3)

which is the standard Einstein-Sasakian manifold over a 3-dimensional complex
hyperquadric Q3(C)

?

V2(R5) = V2(R5)

π2 S3

S4(1)

-L3
ψ

Legend.

?

∼=
?

N3

ori.hypsurf.
-

π1 S1

Q3(C) ⊃ π1(ψ(L))
Lagr.

Suppose that
N3 = SO(3)/(Z2 + Z2) ⊂ S4(1)

which is a compact 3-dimensional isoparametric hypersurface with 3 distinct prin-
cipal curvatures embedded in S4(1), which is one of so called Cartan hypersurfaces.
We choose an irreducible orthogonal representation of SO(3) which acts by conju-
gation on the vector space S2

0(R3) ∼= R5 of all real symmetric matrices with trace
0 of degree 3. Then N3 is a codimension 1 orbit of SO(3) in the unit hypersphere
S4(1) of S2

0(R3). Then the corresponding Legendrian submanifold

L3 = SO(3)/(Z2 + Z2) ⊂ V2(R5)

is a 3-dimensional compact minimal Legendrian submanifold embedded in V2(R5)
and we denote by ψ0 the minimal Legendrian embedding. Note that the induced
metric is of constant positive sectional curvature. Since the right action of SO(2)
on V2(R5) = SO(5)/SO(3) induces the Killing vector field ξ, its Sasakian-Killing
nullity is nsk(ϕ) = dim(SO(5)) + dim(SO(2))− dim(SO(3)) = 10 + 1− 3 = 8.

On the other hand, we have

Lemma 4.2 ([13], Lemma 5.3). The multiplicity of eigenvalue 2m+ 2 = 8 of ∆0
ψ0

is equal to 7.
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Hence we have dim(Eψ0) = 1 + 7 = 8. Therefore we obtain

Theorem 4.2. The 3-dimensional compact minimal Legendrian submanifold L3 =

SO(3)/Z2 + Z2 ⊂ V2(R5) has only trivial minimal Legendrian deformations. Its

deformation space is SO(5)/SO(3).
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