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Abstract

A set S ⊆ Fn
2 is called degree-d zero-sum if the sum

∑
s∈S

f(s) vanishes for all
n-bit Boolean functions of algebraic degree at most d. Those sets correspond to the
supports of the n-bit Boolean functions of degree at most n− d− 1. We prove some
results on the existence of degree-d zero-sum sets of full rank, i.e., those that contain
n linearly independent elements, and show relations to degree-1 annihilator spaces
of Boolean functions and semi-orthogonal matrices. We are particularly interested
in the smallest of such sets and prove bounds on the minimum number of elements
in a degree-d zero-sum set of rank n.

The motivation for studying those objects comes from the fact that degree-d
zero-sum sets of full rank can be used to build linear mappings that preserve special
kinds of nonlinear invariants, similar to those obtained from orthogonal matrices
and exploited by Todo, Leander and Sasaki for breaking the block ciphers Midori,
Scream and iScream.

Keywords: Boolean function, annihilator, orthogonal matrix, nonlinear invari-
ant, trapdoor cipher, symmetric cryptography

1 Introduction

After the introduction of linear cryptanalysis in [13] as a powerful method to attack sym-
metric cryptographic primitives, people started studying how to generalize this method
in order to exploit nonlinear approximations for cryptanalysis, see, e.g., [6] and [11].
While it might be easier to find a nonlinear approximation over parts of the primitive,
e.g., over an S-box of small size, a crucial problem in nonlinear cryptanalysis is to find
nonlinear approximations that hold true for the whole round function of the primitive.
An example that exploits nonlinear approximations that are preserved over the whole
round function is bilinear cryptanalysis over Feistel ciphers [4].

∗The work of Christof Beierle was funded by the SnT Cryptolux RG budget.
†The work of Aleksei Udovenko was funded by the Fonds National de la Recherche Luxembourg

(project reference 9037104).
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More recently, an interesting solution for the above problem was described by Todo,
Leander and Sasaki in [18] for round functions that can be described in terms of an LS-
design [5]. Let one round of a substitution-permutation cipher operating on n S-boxes
of t-bit length be given as depicted in Figure 1 and let the linear layer L(t) : Fnt

2 → Fnt
2

only XOR the outputs of the S-boxes, i.e., each (y1, . . . , yn) for yj ∈ Ft
2 is mapped to

(z1, . . . , zn) where zj =
∑n

i=1 αi,jyi for particular αi,j ∈ F2. In that case, L(t) can be
defined by

L =




α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n
...

...
. . .

...
αn,1 αn,2 . . . αn,n


 .

Todo et al. observed that if L is orthogonal, then for any t-bit Boolean function f of
algebraic degree less than or equal to 2 it is

f(y1) + f(y2) + · · ·+ f(yn) = f(z1) + f(z2) + · · ·+ f(zn) . (1)

This fact was used to successfully cryptanalyze the block ciphers Midori, Scream and
iScream in a weak key setting. Indeed, if f is any invariant function for the S-box S, i.e.,
if for all x ∈ Ft

2, f(x) = f(S(x)), and if deg(f) ≤ 2, one obtains an invariant function
for the whole round according to Equation 1.

An interesting question is whether the property of L being orthogonal is also neces-
sary for Equation 1 to hold for all f with degree upper-bounded by 2. More generally, we
would like to understand the necessary and sufficient properties of the linear layer that
preserve such invariants in the case when deg(f) ≤ d for d > 2. Although the existence
of a non-trivial1 linear layer for which Equation 1 holds for all f with deg f ≤ d is totally
unclear, such a construction would be of significant interest. On the one hand, it would
deepen the knowledge on how to design strong symmetric cryptographic primitives and
to avoid possible attacks and could on the other hand be useful in order to design sym-
metric trapdoor ciphers to be used as public-key schemes, see, e.g., [2, 15, 17]. The idea
would be to hide a nonlinear approximation as the trapdoor information. If the linear
layer is designed such that it preserves all invariants of a special form, e.g., all functions
of degree at most d, the specification of the linear layer would not leak more information
on the particular invariant and thus on the trapdoor. There could also be applications
besides cryptography, so the above problem might be of independent interest.

1.1 Our Contribution

In this work we answer the above question and consider the case of L ∈ Fn×m
2 , i.e., the

number of outputs (m) might be different than the number of inputs (n). We precisely
characterize the matrices that preserve all invariants of the form similar as given in
Equation 1, i.e.,

f(y1) + · · ·+ f(yn) = f(z1) + · · ·+ f(zm) + f(0) · (m+ n mod 2) , (2)

1By non-trivial we mean that the matrix L is not a permutation matrix.
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Figure 1: The round function of a substitution-permutation cipher based on an LS-
design.

where the degree of f is upper bounded by d and we call such matrices degree-d sum-
invariant. We show that such matrices can be build from zero-sum sets of rank n, i.e.,
they correspond to the n-bit Boolean functions of degree at most n− d− 1 which admit
no linear annihilator. This characterization is obtained in Propositions 2, 3 and 4. Our
results imply that m ≥ n and, for the case of d = 2, the property of L being (semi-
)orthogonal is not only sufficient, but also necessary. Moreover, we obtain an interesting
characterization of orthogonal matrices over F2, i.e., L ∈ Fn×n

2 is orthogonal if and only
if in every 2× 2n submatrix of

[
In L

]
, each column occurs an even number of times.

Besides showing the link between degree-d zero-sum sets and degree-d sum-invariant
matrices, we study degree-d zero-sum sets of full rank in more detail. We are in particular
interested in the smallest of such sets. Let F (n, d) denote the minimum number of
elements in a degree-d zero-sum set of rank n. The following theorem summarizes our
main results.

Theorem 1. Let n, d ∈ N with n > d ≥ 1. Then the following properties of F (n, d)
hold.

(i) F (n, d) = min{wt(g) | g ∈ Bn,n−d−1 \ {0} with dimAN1(g) ≤ 1}.

(ii) F (n, 1) = n+ 2− (n mod 2) and, for n = 4 or n > 5, F (n, 2) = 2n.

As exceptions, F (3, 2) = 8 and F (5, 2) = 12.

(iii) F (d+1, d) = F (d+2, d) = 2d+1. Moreover, F (d+3, d) = 3 · 2d and F (2d+4, d) =
2d+2. For d+ 4 ≤ n ≤ 2d+ 3,

F (n, d) = 22d−n+4(2n−d−2 − 1) .

(iv) for any fixed d, the sequence F (n, d) is increasing, i.e., F (n+ 1, d) ≥ F (n, d).

(v) for n1, n2 > d, the inequality

F (n1 + n2, d) ≤ F (n1, d) + F (n2, d)
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holds. Moreover, for d ≥ 2, it is

F (n+ d, d− 1) ≤ F (n, d) ≤ 2F (n− 1, d− 1) .

The last inequality implies that, for n ≥ 4, F (n, 3) ≥ 2n+ 6.

We prove the above values by providing a construction of the corresponding zero-sum
sets (resp. Boolean functions). In case where we only prove an upper bound, we provide
a construction that meets this bound. Table 1 shows the values and bounds for F (n, d)
for n ≤ 30 and d ≤ 10.

The last inequality in Theorem 1 implies that any degree-d sum-invariant matrix
L ∈ Fn×n

2 for d ≥ 3 must be a permutation matrix. In other words, the observation of
Todo et al. cannot be extended for higher-degree invariants without L being expanding.

1.2 Organization

In Section 2, we fix our notation and recall basic properties of Boolean functions. We
also recall the observations made in [18] with regard to orthogonal matrices and the
preservation of degree-2 invariants. For motivating the remainder of the paper, we
directly present an example construction of an expanding linear mapping that preserves
higher-degree invariants.

In Section 3, we show equivalent characterizations of degree-d zero-sum sets and
explain the links between degree-d sum-invariant matrices and degree-d zero-sum sets.

We study minimal degree-d zero-sum sets in Section 4 and prove the results summa-
rized in Theorem 1. We further summarize the implications to degree-d sum-invariant
matrices in Section 5. Finally, the paper is concluded in Section 6.

2 Preliminaries

By N we denote the set of natural numbers {1, 2, . . . } and by F2 we denote the field with
two elements, i.e., {0, 1}. We represent elements in Fn

2 as row vectors and we denote by
ei the i-th unit vector. For a vector u = (u1, . . . , un) ∈ Fn

2 let wt(u) := |{i ∈ {1, . . . , n} |
ui = 1}| denote the Hamming weight of u. For a Boolean function f , we denote by wt(f)
the Hamming weight of the value vector of f . For a set S ⊆ Fn

2 , the indicator of S is
defined as the Boolean function ✶S : Fn

2 → F2 for which ✶S(x) = 1 if and only if x ∈ S.
Let Bn,d denote the set of n-bit Boolean functions f : Fn

2 → F2 of algebraic degree at
most d. Any Boolean function f ∈ Bn,d can be uniquely represented as a multivariate
polynomial in F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn) through its algebraic normal form

(ANF). That is,

f(x) =
∑

u∈Fn

2

aux
u ,

where x = (x1, . . . , xn), u = (u1, . . . , un) and xu :=
∏n

i=1 x
ui

i . Because the algebraic
degree is upper bounded by d, it is au = 0 for all u with wt(u) > d. Any Boolean
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function with algebraic degree at most 1 is said to be affine and an affine function f
with f(0) = 0 is said to be linear. The algebraic degree of the zero-function is defined
to be −∞. We use the symbol � to denote the partial ordering on Fn

2 defined by x � u
if and only if, for all i ∈ {1, . . . , n}, xi ≤ ui.

For any two vectors x, y ∈ Fn
2 , we denote by x ⊙ y := (x1y1, . . . , xnyn) ∈ Fn

2 the
Hadamard product of x and y. The inner product of x and y is given by

〈x, y〉 :=
n∑

i=1

xiyi = wt(x⊙ y) mod 2 .

We generalize this notion to one vector or more than two vectors in the following sense.
Let x1, . . . , xd ∈ Fn

2 . Then we define

〈x1, . . . , xd〉 :=
n∑

i=1

d∏

j=1

xj,i = wt(x1 ⊙ · · · ⊙ xd) mod 2 .

We use Fn×m
2 to denote the set of matrices in F2 with n rows and m columns. The

n × n identity matrix will be denoted by In. Any matrix L ∈ Fn×m
2 defines a linear

mapping ϕ : Fn
2 → Fm

2 , x 7→ xL. We denote by L⊤ the transpose of the matrix L. Li

denotes the i-th row of L.

2.1 Higher-Order Derivatives, Affine Equivalence and Algebraic Im-
munity of Boolean Functions

For a Boolean function f : Fn
2 → F2 and a vector α ∈ Fn

2 , we denote the function δαf :
Fn
2 → F2 to be the derivative of f with respect to α, given by δαf(x) := f(x)+f(x+α).

It is well known that deg δαf ≤ deg f −1 for any Boolean function f and any α, see [12].
The derivation can be iterated multiple times resulting in a higher-order derivative. For
d linearly independent vectors α1, . . . , αd ∈ Fn

2 it holds that

δα1
. . . δαd

f(x) =
∑

z∈span(α1,...,αd)

f(x+ z) .

If the vectors α1, . . . , αd are linearly dependent, then the derivative is equal to zero.
Boolean functions have several applications in cryptography, e.g., for designing stream

ciphers. In order to resist algebraic attacks, the notion of algebraic immunity was intro-
duced in 2004 as follows.

Definition 1 (Algebraic immunity [14]). Let f : Fn
2 → F2. An n-bit Boolean function

g 6= 0 is called an annihilator of f , if fg = 0. The set of annihilators of f together
with g = 0 forms a vector space, denoted by AN(f). We denote by ANd(f) the subspace
of annihilators of f with algebraic degree at most d together with the zero-function.
The algebraic immunity of f , denoted AI(f), is defined as the minimum k for which
ANk(f) ∪ANk(f + 1) 6= {0}.
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An important concept for Boolean function is the notion of affine equivalence.

Definition 2 (Affine Equivalence). Two Boolean functions f, g : Fn
2 → Fn

2 are called
affine equivalent if there exists a linear bijection ϕ : Fn

2 → Fn
2 and a vector c ∈ Fn

2 such
that g = f ◦ (ϕ+ c). If c = 0, f and g are called linear equivalent.

It is well known that the weight, the algebraic degree and the dimensions of the anni-
hilator spaces (and thus the algebraic immunity) are invariant under affine equivalence.

2.2 Orthogonal Matrices and Preservation of Nonlinear Invariants

In [18], Todo, Leander and Sasaki introduced the nonlinear invariant attack and success-
fully distinguished the block ciphers Midori, Scream and iScream from a random per-
mutation for a significant fraction of weak keys. For an n-bit permutation G : Fn

2 → Fn
2 ,

the main idea consists in finding a non-constant n-bit Boolean function f and a constant
ε ∈ F2 such that

∀x ∈ Fn
2 : f(x) = f(G(x)) + ε .

Such a function f is called an invariant for G. In order to find an invariant for
the cipher, Todo et al. observed that if L ∈ Fn×n

2 is an orthogonal matrix, i.e., if
〈xL, yL〉 = 〈x, y〉 for all x, y ∈ Fn

2 , then for all Boolean functions f ∈ Bt,2 it is

∀X ∈ Ft×n
2 :

n∑

i=1

f
(
(X⊤)i

)
=

n∑

j=1

f
(
((XL)⊤)j

)
. (3)

In other words, any Boolean function f : Ft
2 → F2 of algebraic degree at most 2 gives

rise to an invariant over the linear layers of Midori, Scream and iScream of the form
(x1, . . . , xn) 7→ f(x1) + · · · + f(xn), where n denotes the number of S-boxes, t denotes
the bit length of the S-box and xi ∈ Ft

2.
We illustrate this from a slightly different point of view on the example of the linear

layer used in Midori (see [1]), which is defined by the following matrix:

L =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 . (4)

It is easy to see that L is orthogonal. Thus, according to Equation 3, for any f ∈ Bt,2

and all x1, x2, x3, x4 ∈ Ft
2, the following equation holds:

f(x1) + f(x2) + f(x3) + f(x4) =

f(x2 + x3 + x4) + f(x1 + x3 + x4) + f(x1 + x2 + x4) + f(x1 + x2 + x3) .

We now consider an alternative way of proving this. The arguments of f form an
affine subspace of dimension 3, namely x1 + span(x1 + x2, x1 + x3, x1 + x4). Therefore,
the equation is equivalent to

δx1+x2
δx1+x3

δx1+x4
f(x1) = 0 , (5)
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which is clearly true for any f ∈ Bt,2 and any x1, x2, x3, x4 since all third-order derivatives
of a quadratic function are equal to zero. This observation gives new insights on how to
generalize the linear layer in order to preserve higher-degree invariants.

Proposition 1. Let d ≥ 2 be an integer. Then there exists a matrix L ∈ Fn×m
2 with

n = d + 2,m = 2d+1 − d − 2 and full rank n such that for any t ≥ 1 and any f ∈ Bt,d,
the following property holds:

∀X ∈ Ft×n
2 :

n∑

i=1

f
(
(X⊤)i

)
=

m∑

j=1

f
(
((XL)⊤)j

)
. (6)

An example of such L is given by a matrix with columns taken as all vectors from Fn
2

with an odd Hamming weight greater or equal to 3.

Proof. For any t ≥ 1 and any x0, . . . , xd+1 ∈ Ft
2 consider the (d + 1)-dimensional affine

subspace
V = x0 + span(x0 + x1, x0 + x2, . . . , x0 + xd+1) .

For any Boolean function f of degree d, any (d + 1)-th derivative vanishes. Therefore,∑
v∈V f(v) = 0. This can be equivalently written as

f(x0) + f(x1) + . . .+ f(xd+1) =

=
∑

I⊆{1,...,d+1}
|I|≥2 even

f(x0 +
∑

i∈I

xi) +
∑

I⊆{1,...,d+1}
|I|≥3 odd

f(
∑

i∈I

xi)

=
∑

I⊆{0,...,d+1}
|I|≥3 odd

f(
∑

i∈I

xi) .

(7)

The right-hand side contains 2d+1 − d − 2 applications of f . Let Y be the set of the
linear functions defining the arguments of f in the right-hand side of Equation 7, i.e.,

Y =

{∑

i∈I

xi

∣∣∣∣ I ⊆ {0, . . . , d+ 1}, |I| ≥ 3 odd

}
,

and let L be the matrix corresponding to the linear function mapping (x0, x1 . . . , xd+1)
to (y1, y2 . . . , y2d+1−d−2), where yi ∈ Y and all yi are pairwise different. Then, Equation 7
is equivalent to Equation 3 with the described L.

Since m ≥ n ≥ 4, any unit vector from Fn
2 can be expressed a linear combina-

tion of 3 columns of L, e.g., (1, 0, 0, 0, . . . , 0) = (1, 1, 1, 0, . . . , 0) + (1, 0, 1, 1, . . . , 0) +
(1, 1, 0, 1, . . . , 0). We conclude that L has full rank n.

Example 1. For d = 2 we obtain the orthogonal matrix given in Equation 4. For d = 3
we obtain an expanding linear mapping ϕ : F5

2 → F11
2 defined by the following 5 × 11
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matrix L:

L =




0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0 1
1 1 1 0 1 1 0 1 0 0 1



.

3 Degree-d Zero-Sum Sets and Sum-Invariant Matrices

A natural question to ask is which other linear mappings have a similar property as
given in Equation 6. To answer this question, we study degree-d zero-sum sets as a
generalization of the above problem.

Definition 3 (Degree-d Zero-Sum Set). Let S ⊆ Fn
2 and let d ∈ N. We call S to be

degree-d zero-sum if, for all f ∈ Bn,d,

∑

s∈S

f(s) = 0 . (8)

We define rank(S) to be the maximum number of linearly independent elements in S
and denote by ZSdn×m the set of degree-d zero-sum sets with m elements and rank n.

We first show the following equivalent characterizations of degree-d zero-sum sets.

Proposition 2. Let S = {s1, . . . , sk} ⊆ Fn
2 and let d ∈ N. Let MS ∈ Fn×k

2 be any matrix
(up to a permutation of the columns) the columns of which correspond to the elements
of S, i.e., MS =

[
s⊤1 . . . s⊤k

]
. Then the following statements are equivalent:

(i) S is a degree-d zero-sum set.

(ii) k is even and, for any choice of d (not necessarily distinct) rows r1, . . . , rd of MS,
it is 〈r1, . . . , rd〉 = 0.

(iii) in every d× k submatrix of MS, each column occurs an even number of times.

(iv) deg(✶S) ≤ n− d− 1.

(v) for all t ≥ 1 and all f ∈ Bt,d, ∀X ∈ Ft×n
2 :

∑
s∈S f(sX⊤) = 0.

In particular, the degree-d zero-sum sets in Fn
2 are exactly the supports of the n-bit

Boolean functions of degree at most n− d− 1. Therefore, any non-empty degree-d zero-
sum set must contain at least 2d+1 elements.

Proof. To prove (i) ⇒ (ii), let

MS =




r1
...
rn




8



with ri ∈ Fk
2. Let l1, . . . , ld be d (not necessarily distinct) row indices and consider the

monomial function f ∈ Bn,d, x 7→
∏d

i=1 xli , which has degree d. From Equation 8, it
must be

0 =
∑

s∈S

f(s) =
∑

s∈S

d∏

i=1

sli = 〈rl1 , . . . , rld〉 .

Clearly, k must be even because
∑

s∈S 1 = 0.
(ii) ⇒ (iii): We first see that any 1 × k submatrix of MS contains each element in

F2 an even number of times. Indeed, let r be any row in MS . From (ii) we know that
wt(r) mod 2 = 〈r〉 = 0 and thus r contains an even number of 1’s. Because k is even, it
must also contain an even number of 0’s. We now use induction on the number of rows.
Let d′ < d such that (ii) ⇒ (iii) holds for d′. Let us choose an arbitrary (d′ + 1) × k

submatrix H = [mi,j ]1≤i≤d′+1,1≤j≤k of MS . We define H(0) := [m
(0)
i,j ] to be the submatrix

of H that is obtained by selecting exactly the columns m⋆,j of H for which md′+1,j = 0.

Similarly, let H(1) := [m
(1)
i,j ] be the submatrix of H that is obtained by selecting exactly

the columns m⋆,j of H for which md′+1,j = 1. We have already seen from the initial step
that both H(0) and H(1) must contain an even number of columns (otherwise the row
md′+1,⋆ would have an odd weight). From (ii), we know that

0 = 〈m1,⋆, . . . ,md′,⋆,md′+1,⋆〉 = 〈m
(0)
1,⋆, . . . ,m

(0)
d′+1,⋆〉+ 〈m

(1)
1,⋆, . . . ,m

(1)
d′+1,⋆〉

= 〈m
(1)
1,⋆, . . . ,m

(1)
d′,⋆〉 = 〈m

(0)
1,⋆, . . . ,m

(0)
d′,⋆〉 .

Because of the induction hypothesis, H(0) and H(1) contain each column an even number
of times and therefore, every column of H occurs an even number of times.

(iii) ⇒ (iv): Let u ∈ Fn
2 with wt(u) ≥ n − d. Because of (iii), |{s ∈ S | s � u}| is

even. It follows that

|{s ∈ S | s � u}| mod 2 =
∑

s�u

✶S(s) = 0

and thus, the monomial xu doesn’t occur in the ANF of ✶S . Since this holds for all u
with wt(u) ≥ n− d, the algebraic degree of ✶S is at most n− d− 1.

(iv) ⇒ (v): Let f ∈ Bt,d be an arbitrary function of degree at most d. Observe that

∀X ∈ Ft×n
2

∑

s∈Fn

2

✶S · f(sX⊤) = 0 , (9)

because deg✶S · (f ◦X) ≤ deg✶S+deg f ≤ n−1. Here, f ◦X denotes the n-bit Boolean
function s 7→ f(sX⊤). Equation 9 can equivalently be written as

∀X ∈ Ft×n
2

∑

s∈S

f(sX⊤) = 0 ,

which proves (v). The implication (v) ⇒ (i) follows by letting t = n and X = In.
To see that any non-empty degree-d zero-sum set contains at least 2d+1 elements, we

use the fact that any non-zero Boolean function of degree at most n−d−1 has a weight
at least 2n−(n−d−1) = 2d+1.
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It is worth remarking that the property of being degree-d zero-sum is invariant under
the application of an injective linear mapping. Indeed, if ϕ : span(S) → Fn′

2 is an injective
linear function on the subspace span(S) of dimension rank(S), then |ϕ(S)| = |S| and if
S is degree-d zero-sum, so is ϕ(S). Further, rank(ϕ(S)) = rank(S). Therefore, without
loss of generality, we can represent a zero-sum set S ∈ ZSdn×m as a subset of Fn

2 and
given by the columns of an n×m matrix MS of the form

MS =
[
In L

]
(10)

for an L ∈ F
n×(m−n)
2 . We say that a zero-sum set (resp. a matrix MS) given in the

representation of Equation 10 is in systematic form. We are in particular interested in
the properties of such matrices L that define zero-sum sets in ZSdn×m in the above way.
For instance, such an L can only exist if m is even. We generalize this by introducing
the notion of a degree-d sum-invariant matrix as follows.

Definition 4 (Degree-d Sum-Invariant Matrix). A matrix L ∈ Fn×m
2 is called degree-d

sum-invariant if, for all t ≥ 1 and all f ∈ Bt,d,

∀X ∈ Ft×n
2 :

n∑

i=1

f
(
(X⊤)i

)
=

m∑

j=1

f
(
((XL)⊤)j

)
+ εm+nf(0) , (11)

where εm+n = (m+ n) mod 2.

Proposition 3. Let L ∈ Fn×m
2 be a linear mapping and let d ∈ N. Then the following

statements are equivalent:

(i) L is degree-d sum-invariant.

(ii) The columns of the matrix M̂L occurring with odd multiplicity define a degree-d
zero-sum set, where

{
M̂L :=

[
In L

]
∈ F

n×(m+n)
2 , if m+ n is even ;

M̂L :=
[
In L 0

]
∈ F

n×(m+n+1)
2 , if m+ n is odd .

(12)

(iii) For all x1, . . . xd ∈ Fn
2 it is 〈x1, . . . , xd〉 = 〈x1L, . . . , xdL〉.

Moreover, if L fulfills (i) and if d ≥ 2, then n ≤ m, LL⊤ = In and L must have full
rank n.

Proof. We first prove (i) ⇒ (ii). If m+ n is even, then Equation 11 is equivalent to

∀X ∈ Ft×n
2 :

n∑

i=1

f
(
eiX

⊤
)
+

m∑

j=1

f
(
(L⊤)jX

⊤
)
= 0 , (13)

where ei denotes the i-th unit vector. If there is a j for which (L⊤)j is equal to a
unit vector ek, then f((L⊤)jX

⊤) = f(ekX
⊤) and the two terms cancel in Equation 13.
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Similarly, if there exist two different j1, j2 such that (L⊤)j1 = (L⊤)j2 , then f((L⊤)j1X
⊤)

and f((L⊤)j2X
⊤) cancel out. This is another way of saying that the columns of the

matrix M̂L =
[
In L

]
occurring with odd multiplicity define a degree-d zero-sum

set.
If m+ n is odd, then εm+n = 1 and Equation 11 can be written as

∀X ∈ Ft×n
2 :

n∑

i=1

f
(
eiX

⊤
)
+

m∑

j=1

f
(
(L⊤)jX

⊤
)
+ f(0X⊤) = 0 .

This is equivalent to say that the columns of the n × (m + n + 1) matrix M̂L =[
In L 0

]
occurring with odd multiplicity define a degree-d zero-sum set.

(ii) ⇒ (iii). If the columns of M̂L occurring with odd multiplicity define a degree-
d zero sum set, then, because of Proposition 2, any d (not necessarily distinct) rows

[el1 | Ll1 ], . . . , [eld | Lld ] of M̂L fulfill

〈[el1 | Ll1 ], . . . , [eld | Lld)]〉 = 0 ,

which is equivalent to 〈el1 , . . . , eld〉 = 〈el1L, . . . , eldL〉. Because of the linearity of the
inner product, i.e., 〈x1+x′1, x2, . . . , xd〉 = 〈x1, x2, . . . , xd〉+〈x′1, x2, . . . , xd〉, the statement
follows.

(iii) ⇒ (i). If there are f1, f2 ∈ Bt,d such that Equation 11 holds for both f1 and f2,
then it clearly holds for f1+1 and for f1+f2 as well. Therefore, without loss of generality,
let f ∈ Bt,d be a monomial function, i.e., f(z) =

∏d
k=1 zlk for 1 ≤ l1 ≤ · · · ≤ ld ≤ t. Let

X ∈ Ft×n
2 . Then,

n∑

i=1

f((X⊤)i) =
n∑

i=1

d∏

k=1

(X⊤)i,lk = 〈Xl1 , . . . , Xld〉

and

m∑

j=1

f(((XL)⊤)j) + εm+nf(0) =

m∑

j=1

d∏

k=1

((XL)⊤)j,lk = 〈Xl1L, . . . , XldL〉 .

It follows that if L preserves all generalized inner products of d elements, then L is
degree-d sum-invariant.

If L fulfills the equivalent statements (i) - (iii), then, for all x, y ∈ Fn
2 , it is

xy⊤ = 〈x, y〉 = 〈xL, yL〉 = xL(yL)⊤ = xLL⊤y .

It follows that LL⊤ must be the identity and thus, L must have full rank n.

This result shows a relation between degree-d sum-invariant matrices and semi-
orthogonal matrices. A matrix L ∈ Fn×m

2 with n ≤ m is called semi-orthogonal if
LL⊤ = In. Indeed, we have shown that a matrix is degree-2 sum-invariant if and only if

11



it is semi-orthogonal.2 Because of the above relation, the degree-(d + 1) sum-invariant
matrices might also be called d-th order semi-orthogonal.

The invertible semi-orthogonal matrices are exactly the orthogonal matrices and the
orthogonal matrices in dimension n form a multiplicative group, called the orthogonal
group. With the above equivalences, we obtain an interesting characterization of the
orthogonal groups over F2.

Corollary 1. A matrix L ∈ Fn×n
2 is orthogonal if and only if in each 2× 2n submatrix

of
[
In | L

]
, each column occurs an even number of times.

3.1 Relation to Orthogonal Arrays

Proposition 2 points out a relation between degree-d zero-sum sets and orthogonal arrays.

Definition 5 (Orthogonal Array [7]). An m × n matrix M with entries from a finite
set of cardinality k is said to be an orthogonal array with k levels, strength d and index
λ, denoted OA(m,n, k, d), if every m× d submatrix of M contains each d-tuple exactly
λ times as a row. Without loss of generality, we will assume that M is a matrix with
elements in Zk.

For our purposes we are only interested in the case of k = 2. We directly obtain the
following.

Corollary 2. Let S ⊆ Fn
2 . If M⊤

S is an OA(|S|, n, 2, d) such that 2d+1 divides |S| (i.e.,
if the index λ is even), then S is a degree-d zero-sum set.

As an example, for d = 3, there is a well-known construction of orthogonal arrays
from Hadamard matrices (see, e.g., [7, pp. 145–148]). A Hadamard matrix of order n is
a matrix H ∈ Zn×n which can only take values in {−1, 1} and which fulfills H⊤H = nIn.

For a matrix M with elements in {−1, 1}, we denote by M̃ the F2 matrix obtained from

M by replacing −1 with 0, i.e., we define M̃ to be the result of 1
2(M +1), interpreted in

F2.
If H is a Hadamard matrix of order 8k for k ∈ N, it is well known that

˜[ H
−H

]

is an OA(16k, 8k, 2, 3) of even index (see [8, Theorem 4.16]). Therefore, it defines a
degree-3 zero-sum set S ⊆ F8k

2 with 16k elements. However, its rank can be at most 4k
(see [16, Proposition 2]) and we are interested in the zero-sum sets of full rank.

2We only consider matrices with n ≤ m. If L ∈ Fn×m

2 with n > m, L would be defined to be
semi-orthogonal if L⊤

L = Im. Then, L is semi-orthogonal if and only if L⊤ is degree-2 sum-invariant.
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4 Minimal and Maximal Zero-Sum Sets

In this section we study zero-sum sets of particular rank n and prove results on their
existence. We are particularly interested in the smallest of such sets, defined in the
following sense.

Definition 6. We denote by F (n, d) the minimum number m ∈ N for which there
exists an S ∈ ZSdn×m. We call a zero-sum set minimal if it is contained in ZSdn×F (n,d).

Analogously, a zero-sum set S ∈ ZSdn×m is called maximal if ZSdn′×m = ∅ for all n′ > n.

Note that F (n, d) is only defined if n > d as otherwise, the only degree-d zero-sum
set in Fn

2 is the empty set. We first characterize the zero-sum sets of particular rank n
in terms of Boolean functions.

4.1 Relations between Zero-Sum Sets and Affine Annihilators of
Boolean Functions

The first three existence results are presented in Propositions 4, 5 and 6 and outline the
link between zero-sum sets and the dimensions of degree-1 annihilator spaces of Boolean
functions.

Proposition 4. There exists a degree-d zero-sum set S ∈ ZSdn×m if and only if there
exists a Boolean function h ∈ Bn,n−d−1 with wt(h) = m and dimAN1(h) ≤ 1.

Proof. Let us assume that S ∈ ZSdn×m is given in systematic form, i.e., it can be rep-
resented as in Equation 10. Then, S = supp(h) for a Boolean function h ∈ Bn,n−d−1

for which ∀i ∈ {1, . . . , n} : h(ei) = 1. Such a function cannot have a linear annihilator
and therefore, any a ∈ AN1(h) \ {0} must be of the form a = ℓ+ 1 for a linear Boolean
function ℓ. It follows that dimAN1(h) ≤ 1.

Let now h ∈ Bn,n−d−1 with wt(h) = m and dimAN1(h) ≤ 1. Let a ∈ AN1(h) \ {0}.
If a = ℓ+1 for a linear function ℓ, then h has no linear annihilator. If a is linear, we fix a
constant c ∈ Fn

2 for which a(c) = 1 and consider the function hc : x 7→ h(x+c) ∈ Bn,n−d−1

which is affine-equivalent to h and thus has the same weight. It is easy to verify that
a+1 is an affine annihilator for hc. Because the dimensions of the annihilator spaces are
invariant under affine equivalence, hc has no linear annihilators. Therefore, without loss
of generality, we can assume that h has no linear annihilator. Let S = supp(h) ⊆ Fn

2 be
the support of h and consider a matrix MS the columns of which form exactly the set
S. Since h has no linear annihilator, there is no linear combination of rows of MS that
is equal to zero. We conclude that MS has full rank n and S ∈ ZSdn×m.

Proposition 5. Given a function h ∈ Bn,n−d−1 with wt(h) = m and AN1(h) = {0}, it
is possible to construct a zero-sum set in ZSd(n+1)×m.

Proof. Consider the function

h′ : Fn+1
2 → F2, (x1, . . . , xn+1) 7→ xn+1h(x1, . . . , xn) .
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Note that h′ has degree at most n− d. Further, h′ has no linear annihilator. Otherwise,
by setting xn+1 = 1, we would obtain that h has an annihilator of algebraic degree 1,
contradicting AN1(h) = {0}. By Proposition 4, we can construct S ∈ ZSd(n+1)×m.

A converse statement is true for maximal zero-sum sets.

Proposition 6. Let n ≥ 2 and let S ∈ ZSd(n+1)×m be maximal. Then, ✶S is linear
equivalent to a function h ∈ Bn+1,n−d of the form

h(x1, . . . , xn+1) = xn+1 · g(x1, . . . , xn) , (14)

where g ∈ Bn,n−d−1 with wt(g) = wt(h) = m and AN1(g) = {0}. Further, if m < 2n−1,
then AI(g) ≥ 2.

Proof. Let MS be a matrix which columns correspond to the elements of S. Because S
is maximal, the vector subspace of Fm

2 spanned by the rows of MS must contain the all-1
vector 1m := (1, 1, . . . , 1). Otherwise, one would obtain a zero-sum set in ZSd(n+2)×m

defined by the matrix [
MS

1m

]
.

Therefore, we can apply a linear permutation A on the columns of MS such that ✶A(S) =
h where h ∈ Bn+1,n−d is of the form as given in Equation 14 with g ∈ Bn,n−d−1 and
wt(g) = wt(h). It is left to show that AN1(g) = {0}.

Clearly, g cannot have a linear annihilator. We assume now that g has an annihilator
of degree 1 of the form (x1, . . . , xn) 7→ 1 +

∑n
i=1 aixi. Then, g(x) = 0 for all x with∑n

i=1 aixi = 0. Let j be such that aj = 1. For the linear permutation Q : Fn
2 → Fn

2 ,
Q(x1, . . . , xn) = (x1, . . . , xj−1,

∑n
i=1 aixi, xj+1, . . . , xn), we have

g(Q(x1, . . . , xn)) = xj · g
′(x1, . . . , xj−1, xj+1, . . . , xn)

for a function g′ ∈ Bn−1,n−d−2. But this means that h is linear-equivalent to a function
of the form (x1, . . . , xn+1) 7→ xn+1 · xn · g′(x1, . . . , xn−1), which has a linear annihilator
xn+1 + xn. We get a contradiction and conclude that AN1(g) = {0}.

If m < 2n−1, it is easy to see that g + 1 cannot admit an annihilator of algebraic
degree 1. Suppose that a ∈ AN1(g + 1) \ {0}. Then, wt(a) = 2n−1 and ag = a, which is
impossible.

As Proposition 6 only holds for maximal zero-sum sets we cannot use it to establish
an equivalence between minimal degree-d zero-sums of rank n + 1 and n-bit Boolean
functions of degree n − d − 1 with algebraic immunity at least 2 and minimum weight.
We therefore propose the following question:

Question 1. Let S ∈ ZSdn×m be minimal. What are necessary and sufficient conditions
for S to be maximal?
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4.2 Minimal Zero-Sum Sets: Bounds and Values for F (n, d)

In order to derive values for F (n, d), we basically have to study the Boolean functions
that admit at most one annihilator of algebraic degree 1 and find those of minimum
weight. Indeed, from Proposition 4, we know that

F (n, d) = min{wt(g) | g ∈ Bn,n−d−1 \ {0} with dimAN1(g) ≤ 1} .

For d = 1 and d = 2 we can easily determine the cardinalities of minimal degree-d
zero-sum sets, as stated in Propositions 7 and 8. The proofs also provide a construction
for a minimal zero-sum set. While the proof for d = 1 is rather trivial, the proof for d = 2
relies on the relation between degree-2 zero-sum sets and semi-orthogonal matrices.

Proposition 7. For n ≥ 2, F (n, 1) = n+ 2− (n mod 2).

Proof. Consider a zero-sum set S ∈ ZS1n×m and its matrix in systematic form. Each row
must have an even weight, therefore there must be at least one extra column besides
the identity part, i.e. m ≥ n + 1. Furthermore, m must be even and the proposition
follows.

Proposition 8. For n = 4 and for n > 5, it is F (n, 2) = 2n. Further, F (3, 2) = 8 and
F (5, 2) = 12.

Proof. Let n ≥ 3 and m be minimal such that there exists an S ∈ ZS2n×m. Let further

L ∈ F
n×(m−n)
2 such that S is in systematic form with MS = [In|L]. As MS cannot

contain any repeated columns, it is MS = M̂L and thus, L must be semi-orthogonal and
n ≤ (m− n). It follows that F (n, 2) = m ≥ 2n.

Let now n = 4 or n ≥ 6. To prove the existence of an S ∈ ZS2n×2n, we observe that
if L ∈ Fn×n

2 is an orthogonal matrix for which each column has weight larger than 1,

M̂L defines a degree-2 zero-sum set of size 2n and rank n according to Proposition 3.
It is left to show that, for any dimension n = 4 or n ≥ 6, there exists an orthogonal
matrix for which no column corresponds to a unit vector. We are going to distinguish
four cases. Let us define the orthogonal matrices M4 and M6 as

M4 =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 , M6 =




0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0




.

Case 1 (n = 0 mod 4): The block-diagonal matrix diag(M4, . . . ,M4) which contains
M4 as its diagonal blocks is orthogonal and each column weight is equal to 3.

Case 2 (n = 2 mod 4): Because n > 5, it is n = 4k + 6 for k ≥ 0 and the matrix
diag(M6,M4,M4, . . . ,M4) is orthogonal and each column has weight at least 3.
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Case 3 (n = 3 mod 4): Because n > 5, it is n = 4k+3 for k ≥ 1 and the two matrices
D1 = diag(1, 1, 1,M4,M4, . . . ,M4) and D2 = diag(M4, 1, 1, . . . , 1) are orthogonal. Their
product is orthogonal and of the form

D1D2 =




0 1 1 1
1 0 1 1
1 1 0 1

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

A D


 , (15)

where D is the 4k × (4k − 1) submatrix of diag(M4, . . . ,M4) omitting the first column.
It is obvious that each column has weight at least 3.

Case 4 (n = 1 mod 4): Because n > 5, it is n ≥ 9 and n = 4k + 6 + 3 for k ≥ 0.
The two matrices D1 = diag(1, 1, 1,M6,M4, . . . ,M4) and D2 = diag(M4, 1, 1, . . . , 1) are
orthogonal. Their product is orthogonal and of the form given in Equation 15 with D
as the (4k + 6)× (4k + 6− 1) submatrix of diag(M6,M4,M4, . . . ,M4) omitting the first
column. It is obvious that each column has weight at least 3.

For n = 3 we use that any degree-d zero-sum set must contain at least 2d+1 elements.
Thus, F (n, 2) ≥ 8. We obtain F (3, 2) = 8 because F3

2 is a degree-2 zero-sum set.
For n = 5, assume that there exists an orthogonal matrix L ∈ F5×5

2 which does not
have a unit vector as its row (or column). From point (iii) of Proposition 2 it follows
that any 2× 5 submatrix of L must contain an odd number of columns equal to each of
(0, 1), (1, 0), (0, 0) and an even number of columns equal to (1, 1) (same applies for rows
of any 5 × 2 submatrix of L). It follows that, up to a permutation of rows, L has the
following form:

L =




1 0 0 1 1
0 1 0 1 1
0 0 . . .
1 1 . . .
1 1 . . .



. (16)

It is easy to see that it is not possible to complete this matrix such that all 2 × 5 and
5× 2 submatrices satisfy the condition. Therefore, F (5, 2) > 10. Moreover, it is easy to
verify that

MS =




1 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 1 0 1 1
0 0 1 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1




defines a zero-sum set in ZS25×12, thus F (5, 2) = 12.

Proposition 9 below presents a simple way to construct a d+ 1 zero-sum set of rank
n+1 from a degree-d zero-sum set of rank n. This construction might be used to derive
an upper bound on F (n, d).

Proposition 9. If there exists an S ∈ ZSdn×m, one can construct a zero-sum set S′ ∈

ZSd+1
(n+1)×2m. In particular, for n > d+ 1, F (n, d) ≤ 2F (n− 1, d− 1).
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Proof. If S ∈ ZSdn×m, then the columns of the matrix

[
0 . . . 0 | 1 . . . 1
MS | MS

]

define a degree-(d + 1) zero-sum set S′ with 2m elements of rank n + 1. We remark
that both sets S and S′ have essentially the same indicator function, only the domain
dimension is different.

Note that the upper bound on F (n, d) given by this construction is not always tight.
Let S ⊆ F9

2 be such that ✶S(x) = x1(x2x3x4x5 + x6x7x8x9). It easy to verify that
S ∈ ZS39×30. It follows that F (9, 3) ≤ 30 6= 2F (8, 2) = 32. The corresponding matrix
MS is given by:

MS =




0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




.

Proposition 10. For any d ∈ N and n1, n2 > d, F (n1 + n2, d) ≤ F (n1, d) + F (n2, d).

Proof. If S1 ∈ ZSdn1×m1
, S2 ∈ ZSdn2×m2

, then the columns of the matrix

MS =




MS1

0 . . . 0
...

0 . . . 0

0 . . . 0
...

0 . . . 0

MS2




repeating an odd number of times define a degree-d zero-sum set S with at most m1+m2

elements of rank n1+n2. More precisely, if both S1 and S2 contain the zero vector, then
the resulting zero-sum set has size m1 +m2 − 2 due to the zero-vector being cancelled
by the repetition. Otherwise, S has size m1 +m2.

Proposition 11. Let d ≥ 2. If there exist an S ∈ ZSdn×m, one can construct a zero-sum

set in ZSd−1
(n+d)×m

. In particular, for n > d, F (n, d) ≥ F (n+ d, d− 1).

Proof. Let MS =
[
In|L

]
be a matrix for S in systematic form. By reordering the rows

of MS , one can bring it into the form
[
1 . . . 1 1 0 . . . 0 0 . . . 0
A 0 B In−1

]
, (17)
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where A ∈ F
(n−1)×m1

2 and B ∈ F
(n−1)×m2

2 for some m1, m2 with m1 + m2 + n = m.
Moreover, m1 cannot be zero because the first row must have an even weight. We see
that

[
A 0

]
must define a degree-(d − 1) zero-sum set in Fn−1

2 , i.e.,
[
A 0

]
= MT

for a T ∈ ZSd−1
r×(m1+1). This is simply because the Hadamard product of any d− 1 rows

of
[
A 0

]
can be expressed as the Hadamard product of d rows of MS , i.e., the d− 1

rows at the same positions as those of
[
A 0

]
and the first row [11 . . . 100 . . . 0]. We

conclude that m1 = |T | ≥ 2d and thus, r ≥ d.
Let v1, . . . , vd be d linearly independent rows of A and consider the matrix




1 . . . 1 1 0 . . . 0 0 . . . 0
A 0 B In−1

v1 0 0 . . . 0 0 . . . 0
v2 0 0 . . . 0 0 . . . 0
...

...
...

...
vd 0 0 . . . 0 0 . . . 0




,

which must define a zero-sum set in ZSd−1
(n+d)×m

by the same argument as above, i.e., the
Hadamard product of any d − 1 rows can be expressed as the Hadamard product of d
rows of MS . It is also easy to see that no linear combination of rows can be equal to
zero, i.e. the constructed set has full rank n+ d.

Using the above result and Proposition 8, we can prove a lower bound on F (n, 3) as
follows.

Corollary 3. For n ≥ 4 it is F (n, 3) ≥ 2n+ 6.

So far, we were able to characterize the minimal degree-d zero-sum sets for d = 1
and d = 2 and proved some inequalities for the general case. Further, we can use the
following classification theorem by Kasami, Tokura and Azumi in order to derive some
more exact values of F (n, d).

Theorem 2 ([9, 10]). Let r ≥ 2 and let f ∈ Bn,r \ {0} with wt(f) < 2n−r+1. Then f is
affine equivalent to either (i) or (ii), where

(i) f = x1 . . . xr−2(xr−1xr + xr+1xr+2 + . . .+ xr+2ℓ−3xr+2ℓ−2), n ≥ r + 2ℓ− 2

(ii) f = x1 . . . xr−ℓ(xr−ℓ+1 . . . xr + xr+1 . . . xr+ℓ), r ≥ ℓ, n ≥ r + ℓ .

A direct application leads to the following results.

Proposition 12 (Values of F (n, d) for n ≤ 2d+ 4). (i) F (d+ 1, d) = 2d+1.

(ii) F (d+2, d) = 2d+1 and the minimal zero-sum sets in Fd+2
2 correspond to the Boolean

functions of algebraic degree 1.

(iii) F (d+3, d) = 3 · 2d and the minimal zero-sum sets in Fn
2 correspond to the Boolean

functions affine equivalent to x 7→ x1x2 + x3x4.
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(iv) For d+ 4 ≤ n ≤ 2d+ 3, F (n, d) = 22d−n+4(2n−d−2 − 1) = wt(hn,d), where

r = n− d− 1, hn,d : (x1, . . . , xn) 7→ x1(x2x3 . . . xr + xr+1xr+2 . . . x2r−1) .

(v) F (2d+ 4, d) = 2d+2 = wt(gd), where:

gd : (x1, . . . , x2d+4) 7→ x1(x2x3 . . . xd+3 + (x2 + 1)xd+4xd+5 . . . x2d+4) .

Proof. For d ∈ N, d < n, let us define the set

Sn,d := {g ∈ Bn,d \ {0} with dimAN1(g) ≤ 1} .

From Proposition 4 we know that F (n, d) = min{wt(g) | g ∈ Sn,n−d−1}. Therefore, we
trivially obtain F (d+ 1, d) = 2d+1. Sd+2,1 is the set of (d+ 2)-bit Boolean functions of
algebraic degree 1 (together with the constant-1 function) and thus F (d+ 2, d) = 2d+1.

To obtain the minimum weight of functions in Sd+3,2, we first note that every Boolean
function of algebraic degree 2 of the minimum weight 2d+1 must be affine equivalent to
a monomial function, i.e., x 7→ x1x2 (see Proposition 12 of [3]). As this monomial
function admits the annihilators x 7→ x1 + 1 and x 7→ x2 + 1, the minimum weight in
Sd+3,d must be at least 2d+2−2d (see, e.g., [3, p. 70] for the possible weights of quadratic
Boolean functions). This weight is obtained by the function x 7→ x1x2 + x3x4, which
clearly is in Sd+3,2. To see that all other functions in Sd+3,2 of minimum weight are
affine equivalent to it, it is enough to see that all of the functions qn,ℓ : (x1, . . . , xn) 7→
x1x2+x3x4+ · · ·+x2ℓ−1x2ℓ with ℓ ≥ 3 have a strictly larger weight. Indeed, by induction
on ℓ, it can be easily shown that wt(qn,ℓ) = 2n−1 − 2n−ℓ−1.

Let now d + 4 ≤ n ≤ 2d + 3. It is easy to see that hn,d ∈ Sn,n−d−1. Further, its
weight can be computed as

wt(hn,d) = 2d+1 + 2d+1 − 22d−n+4 = 22d−n+4(2n−d−2 − 1) .

It is left to show that hn,d is an element of minimum weight in Sn,n−d−1. Let therefore
be h′ ∈ Sn,n−d−1 with wt(h′) ≤ wt(hn,d). Since wt(hn,d) < 2n−(n−d−1)+1 = 2d+2 the
assumptions of Theorem 2 are fulfilled and h′ would be affine equivalent to one of the
forms given in cases (i) and (ii) of Theorem 2. If n ≥ d + 5, Case (i) corresponds to
a Boolean function of the form x 7→ x1x2g which admits x 7→ x1 + 1 and x 7→ x2 + 1
as degree-1 annihilators. For n = d + 4, Case (i) corresponds to a function of the form
x 7→ x1(x2x3 + x4x5 + · · ·+ x2ℓx2ℓ+1) = x1g for g ∈ Sn,2 and, therefore, its weight must
be at least 2n−2 − 2n−4 = 22d−n+4(2n−d−2 − 1).

Otherwise, h′ must be affine equivalent to one of the functions given in Case (ii).
Since it cannot admit two annihilators of algebraic degree 1, it must be affine equivalent
to either x 7→ x1(x2x3 . . . xr + xr+1xr+2 . . . x2r−1) = hn,d or gn,d : x 7→ x1x2 . . . xr +
xr+1xr+2 . . . x2r, where r = n− d− 1. As wt(gn,d) = 22d−n+3(2n−d−1 − 1) > wt(hn,d) =
22d−n+3(2n−d−1 − 2), statement (iv) follows.

It is easy to see that wt(gd) = 2d+2, i.e. F (2d+ 4, d) ≤ 2d+2. By Proposition 9 and
(iv) of this proposition, F (2d+4, d) ≥ F (2d+5, d+1)/2 = (2d+2−1). Since F (2d+4, d)
has to be even, statement (v) follows.
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We are now going to show that, for any fixed d, the sequence F (n, d) is increasing
with n. For that, we need the following lemma.

Lemma 1. For n > 2d+ 3, we have F (n, d) ≤ 2n

n+1 .

Proof. By repeatedly applying Proposition 9 and by Proposition 8, we obtain

F (n, d) ≤ 2d−1(n− d+ 2) = 2n
n− d+ 2

2n−d+1
.

It is left to show that n−d+2
2n−d+1 ≤ 1

n+1 . We know that

(n+ 1)(n− d+ 2) < (2n− 2d− 2)(n− d+ 2) = 2(n− d− 1)(n− d+ 2) ≤ 2n−d+1 ,

which is true for n − d ≥ 5. The latter is guaranteed by n ≥ 2d + 4 and d ≥ 1. This
proves the statement.

Proposition 13. For n > d+ 1, it is F (n, d) ≥ F (n− 1, d).

Proof. We prove this statement by induction on d. If d = 1 and d = 2, the statement
is obviously true by Propositions 7 and 8. Let thereby d ≥ 3 and assume that the
statement is true for d− 1.

Let S ∈ ZSdn×m be a minimal zero-sum set, i.e., m = F (n, d), such that MS can

be given as in Equation 17 for A ∈ F
(n−1)×m1

2 and B ∈ F
(n−1)×m2

2 with m1, m2 such
that m1 + m2 + n = m. Let m′ := m2 + n − 1. We see that [B|In−1] must define a
degree-(d − 1)-zero-sum set in Fn−1

2 , i.e., [B|In−1] = MT for a T ∈ ZSd−1
(n−1)×m′ . This is

because every (d− 1)×m′ submatrix of MT must occur an even number of times (from
the property of S being a degree-d zero-sum set) and, since MT contains In−1, it must
have rank n− 1. We now distinguish two cases.

Case 1 (m′ ≤ m
2 ): In that case we directly obtain

m = F (n, d) ≥ 2F (n− 1, d− 1) ≥ 2F (n− 2, d− 1) ≥ F (n− 1, d) ,

where the second estimation follows from the induction hypothesis and the last one
follows from Proposition 9.

Case 2 (m′ > m
2 ): We first remark that if n ≤ 2d+ 3, the statement directly follows

from Proposition 12. For example, for n ≥ d+ 5,

F (n, d) = 2d+2 − 22d−n+4 ≥ 2d+2 − 22d−n+5 = F (n− 1, d) .

Let us therefore assume that n > 2d + 3. Note that in the matrix MS , we can add
the first row [11 . . . 100 . . . 0] to any other row and would obtain an equivalent zero-sum
set. This operation does not change the right part of MS containing In−1. Indeed, it
allows us to obtain a zero-sum set Sc ∈ ZSdn×m represented by

MSc
=

[
1 . . . 1 1 0 . . . 0 0 . . . 0
A+ c⊤ c⊤ B In−1

]
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for any c ∈ Fn−1
2 . Let us denote by R the set of columns of A together with the zero

column vector. Our statement to prove follows if we can guarantee the existence of a
vector c̃ such that, for all v ∈ (R + c̃⊤), wt(v) ≥ 2. Then, we would obtain a zero-sum
set in ZSd(n−1)×m′′ defined by

[
A+ c̃⊤ c̃⊤ B In−1

]

as there won’t be any cancellation between [A+ c̃⊤ | c⊤] and In−1. Indeed, such a vector
must always exist. Assume that, for all c ∈ Fn−1

2 , there exists a v ∈ (R+ c̃⊤) with weight
at most 1. This is equivalent to say that the covering radius of the set R is equal to 1.
By a simple counting argument it follows that |R| ≥ 2n−1

n
. On the other hand, it is

|R| = m−m′ < F (n, d)−
F (n, d)

2
=

1

2
F (n, d) ≤

2n−1

n+ 1
,

where the last inequality follows from the previous lemma.

5 Implications for Degree-d Sum-Invariant Matrices

In this section, we point out the implications of the above results on degree-d sum-
invariant matrices. The most interesting implication is that any bijective degree-3 sum-
invariant matrix must be trivial. As the linear layer of a block cipher based on an LS-
design certainly has to be bijective, this shows that one cannot extend the observation
of Todo et al. to invariants of degree higher than two.

Corollary 4. Let L ∈ Fn×n
2 be a degree-d sum-invariant matrix for d ≥ 3. Then L must

be a permutation matrix.

Proof. Let us assume a degree-3 sum-invariant matrix L ∈ Fn×n
2 and let M̂L be given by

M̂L =
[
In L

]
∈ Fn×2n

2 .

By Proposition 3, the columns of M̂L occurring an odd number of times correspond
to a degree-3 zero-sum set S ⊆ Fn

2 . Note that the unit columns of In do not repeat
inside In. Therefore, after removing the even occurrences of each column, the number
of columns left in In will be not smaller than the number of columns left in L. It follows
that rank(S) ≥ |S|/2. This is only possible if S is empty and thus L is a permutation
matrix.

Consider a degree-d sum-invariant matrix L and consider the matrix M̂L defined as
in Proposition 3:

{
M̂L :=

[
In L

]
∈ F

n×(m+n)
2 , if m+ n is even;

M̂L :=
[
In L 0

]
∈ F

n×(m+n+1)
2 , if m+ n is odd,

(18)
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where it is shown that the columns of M̂L occurring and odd number of times define
a degree-d zero-sum set. Because of the cancellations, the size and the rank of the
zero-sum set may be lower. We deduce the following decomposition of sum-invariant
matrices.

Proposition 14. Let L ∈ Fn×m
2 be a degree-d sum-invariant matrix such that no column

of L is equal to zero. Then, up to permutations of rows and columns, L can be expressed
in the following form:

L =

[
A

0

Ik
M M

]
, (19)

where k, t are some integers, M ∈ Fn×t
2 , A ∈ F

n×(m−2t−k)
2 , and the columns of A do nei-

ther contain unit vectors nor repetitive columns. Such integers k, t are unique. Consider
the matrix Â:





Â :=

[
In−k

0
A

]
∈ F

n×(m+n−2t−2k)
2 , if m+ n is even;

Â :=

[
In−k

0
A 0

]
∈ F

n×(m+n−2t−2k+1)
2 , if m+ n is odd.

(20)

The columns of the matrix Â are pairwise distinct and form a degree-d zero-sum set.

Proof. The columns of M̂L occurring an odd number of times form a degree-d zero-sum
set. The columns of In may only cancel with columns from L. Let k be the number
of unit vectors occurring an odd number of times in L. Let A be the matrix consisting
of the columns of L that are repeated an odd number of times and which are not unit
vectors. It follows that L can be expressed in the form given in Equation 19. Now
consider the matrix M̂L. After removing even repetitions of columns, the matrix will be
equal to Â. It follows that the columns of Â define a degree-d zero-sum set.

To show uniqueness of k, t, first recall that A must not contain unit vectors. It follows
that all columns of L occurring an even number of times must be in M , and all columns
occurring an odd number of times must be either in A or in Ik depending only on the
column weight.

5.1 Minimum Expansion Rate

We have shown that for d ≥ 3, there exist no bijective degree-d sum-invariant matrices.
However, there exist rectangular degree-d sum-invariant matrices resulting in expanding
linear mappings. A natural problem would be to find a degree-d sum-invariant matrix
with a minimum expansion rate.

Definition 7 (Expansion Rate). The expansion rate of a matrix L ∈ Fn×m
2 is the ratio

m
n
.
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Note that, given a degree-d sum-invariant matrix L ∈ Fn×m
2 , we can always build a

a degree-d sum-invariant matrix in F
(n+1)×(m+1)
2 of the form

[
L 0
0 1

]
.

Therefore, by repetitively extending any matrix L by unit vectors in the above way,
we can construct a matrix with an expansion rate arbitrarily close to 1. Indeed, the
permutation matrices have an expansion rate of exactly 1. Therefore, by the minimum
expansion rate for a degree-d sum-invariant matrix of fixed d, we refer to the minimum
expansion rate over all degree-d sum-invariant matrices that do not contain a unit vector
as a column.

It is clear that for d = 2 the minimum expansion rate is 1 and is achieved by
orthogonal matrices. For d ≥ 3 the minimum expansion rate is an open problem. It
corresponds to the minimum value of F (n,d)

n
−1. Among the established values of F (n, d)

the minimum expansion rate is achieved for F (d+2, d) = 2d+1, i.e. by the matrices from
the construction given in Proposition 1. We conjecture that this is indeed the optimal
expansion rate.

Conjecture 1. Let d ≥ 3. The minimum expansion rate of a degree-d sum-invariant
matrix is equal to 2d+1−d−2

d+2 .

6 Conclusion and Open Problems

In this work we have revealed the precise properties of the linear layer used in LS-designs
that allow to preserve nonlinear invariants of a similar form than those observed by Todo
et al. As a negative result, we have shown that it is not possible to construct such an
LS-design block cipher that generalizes the invariants to be preserved up to algebraic
degree 3. Those results were obtained by studying the Boolean functions of minimum
weight that admit no linear annihilator.

An interesting open question is stated in Question 1. That is, can we understand
in which cases the minimal degree-d zero-sum sets are also maximal? A more general
and indeed remarkable result would be to derive exact formulas for F (n, d) in those
cases where we were only able to provide upper and lower bounds. Indeed, solutions to
those problems would have interesting implications such as understanding the minimum
expansion rate of degree-d sum-invariant matrices and deriving equivalences between
degree-d zero-sum sets and Boolean functions with algebraic immunity at least 2.
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A Values and Bounds for F (n, d)

In the following table we describe known exact values or known bounds of F (n, d) for
n ∈ {2, . . . , 30} and d ∈ {1, . . . , 10}. The exact values come from Propositions 7, 8 and
12. The lower bounds come from Propositions 11 and 9. The upper bounds come from
Proposition 10. We remark that for F (2d+ 5, d) the upper bound is obtained by using
a slightly different construction. We use the same diagonal construction but fill the free
space with 1s. Consider the matrix M̂S given by

MS =




MS1

1 . . . 1
...

1 . . . 1

1 . . . 1
...

1 . . . 1

MS2




,

where S1 ∈ ZSd(d+1)×F (d+1,d), S2 ∈ ZSd(d+4)×F (d+4,d) and both M̂S1
, M̂S2

contain a column

(1, . . . , 1) so that two columns repeat in M̂S . Note that the row span of S1 does not

contain a row (1, . . . , 1) and thus rank(M̂S) = rank(M̂S1
) + rank(M̂S2

) = 2d + 5. The

columns of M̂S form a zero-sum set from ZSd(2d+5)×(5·2d−2).
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Table 1: This table shows the values of F (n, d) for n ∈ {2, . . . , 30} and d ∈ {1, . . . , 10}. In cases where the exact value is not known, [a, b] denotes
that a ≤ F (n, d) ≤ b.

n,d 1 2 3 4 5 6 7 8 9 10

2 4
3 4 8
4 6 8 16
5 6 12 16 32
6 8 12 24 32 64
7 8 14 24 48 64 128
8 10 16 28 48 96 128 256
9 10 18 30 56 96 192 256 512
10 12 20 32 60 112 192 384 512 1024
11 12 22 [32,38] 62 120 224 384 768 1024 2048
12 14 24 [32,40] 64 124 240 448 768 1536 2048
13 14 26 [32,44] [64,78] 126 248 480 896 1536 3072
14 16 28 [34,46] [64,80] 128 252 496 960 1792 3072
15 16 30 [36,48] [64,88] [128,158] 254 504 992 1920 3584
16 18 32 [38,54] [64,92] [128,160] 256 508 1008 1984 3840
17 18 34 [40,56] [64,94] [128,176] [256,318] 510 1016 2016 3968
18 20 36 [42,60] [64,96] [128,184] [256,320] 512 1020 2032 4032
19 20 38 [44,62] [64,110] [128,188] [256,352] [512,638] 1022 2040 4064
20 22 40 [46,64] [64,112] [128,190] [256,368] [512,640] 1024 2044 4080
21 22 42 [48,70] [64,120] [128,192] [256,376] [512,704] [1024,1278] 2046 4088
22 24 44 [50,72] [64,124] [128,222] [256,380] [512,736] [1024,1280] 2048 4092
23 24 46 [52,76] [64,126] [128,224] [256,382] [512,752] [1024,1408] [2048,2558] 4094
24 26 48 [54,78] [64,128] [128,240] [256,384] [512,760] [1024,1472] [2048,2560] 4096
25 26 50 [56,80] [64,142] [128,248] [256,446] [512,764] [1024,1504] [2048,2816] [4096,5118]
26 28 52 [58,86] [66,144] [128,252] [256,448] [512,766] [1024,1520] [2048,2944] [4096,5120]
27 28 54 [60,88] [68,152] [128,254] [256,480] [512,768] [1024,1528] [2048,3008] [4096,5632]
28 30 56 [62,92] [70,156] [128,256] [256,496] [512,894] [1024,1532] [2048,3040] [4096,5888]
29 30 58 [64,94] [72,158] [128,286] [256,504] [512,896] [1024,1534] [2048,3056] [4096,6016]
30 32 60 [66,96] [74,160] [128,288] [256,508] [512,960] [1024,1536] [2048,3064] [4096,6080]
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